1
|
Nurmi C, Gu J, Mathai A, Brennan J, Li Y. Making target sites in large structured RNAs accessible to RNA-cleaving DNAzymes through hybridization with synthetic DNA oligonucleotides. Nucleic Acids Res 2024; 52:11177-11187. [PMID: 39248110 PMCID: PMC11472044 DOI: 10.1093/nar/gkae778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
The 10-23 DNAzyme is one of the most active DNA-based enzymes, and in theory, can be designed to target any purine-pyrimidine junction within an RNA sequence for cleavage. However, purine-pyrimidine junctions within a large, structured RNA (lsRNA) molecule of biological origin are not always accessible to 10-23, negating its general utility as an RNA-cutting molecular scissor. Herein, we report a generalizable strategy that allows 10-23 to access any purine-pyrimidine junction within an lsRNA. Using three large SARS-CoV-2 mRNA sequences of 566, 584 and 831 nucleotides in length as model systems, we show that the use of antisense DNA oligonucleotides (ASOs) that target the upstream and downstream regions flanking the cleavage site can restore the activity (kobs) of previously poorly active 10-23 DNAzyme systems by up to 2000-fold. We corroborated these findings mechanistically using in-line probing to demonstrate that ASOs reduced 10-23 DNAzyme target site structure within the lsRNA substrates. This approach represents a simple, efficient, cost-effective, and generalizable way to improve the accessibility of 10-23 to a chosen target site within an lsRNA molecule, especially where direct access to the genomic RNA target is necessary.
Collapse
MESH Headings
- DNA, Catalytic/chemistry
- DNA, Catalytic/metabolism
- SARS-CoV-2/genetics
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- RNA, Viral/genetics
- Nucleic Acid Hybridization
- Oligonucleotides, Antisense/chemistry
- Nucleic Acid Conformation
- RNA Cleavage
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/chemistry
- COVID-19/virology
- RNA/chemistry
- RNA/metabolism
- DNA, Single-Stranded
Collapse
Affiliation(s)
- Connor Nurmi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario L8S 4L8, Canada
- Biointerfaces Institute, McMaster University, Ontario L8S 4L8, Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario L8S 4L8, Canada
| | - Amal Mathai
- Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario L8S 4L8, Canada
- Biointerfaces Institute, McMaster University, Ontario L8S 4L8, Canada
| | - John D Brennan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario L8S 4L8, Canada
- Biointerfaces Institute, McMaster University, Ontario L8S 4L8, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario L8S 4L8, Canada
| |
Collapse
|
2
|
Li YL, Vergne J, Torchet C, Maurel MC. In vitro selection of adenine-dependent ribozyme against Tpl2/Cot oncogene. FEBS J 2008; 276:303-14. [PMID: 19054068 DOI: 10.1111/j.1742-4658.2008.06780.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hairpin ribozymes possess the properties of RNA sequence-specific recognition and site-specific cleavage. These properties make them a powerful extension of the antisense approach for the inhibition of gene expression. From a randomized RNA pool of hairpin ribozymes, using the systematic evolution of ligands by exponential enrichment, we have obtained an adenine-dependent hairpin ribozyme, Tpl2/Cot (tumour progression locus 2) ribozyme, which cleaves the Tpl2/Cot kinase mRNA sequence at nucleotides A225/G226 relative to the start codon of translation. This serine/threonine kinase activates the mitogen-activated protein kinase pathway implicated in cell proliferation in cancer. The selected 'Tpl2/Cot-YL ribozyme' efficiently cleaves its target sequence in cis and in trans; furthermore, the ribozyme efficiently cleaves a longer target sequence of 54 nucleotides in trans, as well as the full-length mRNA.
Collapse
Affiliation(s)
- Yan-Li Li
- Institut Jacques-Monod, Laboratoire de Biochimie de l'Evolution et Adaptabilité Moléculaire, UPMC Université Paris 06, Paris, France
| | | | | | | |
Collapse
|
3
|
Bussière F, Ledû S, Girard M, Héroux M, Perreault JP, Matton DP. Development of an efficient cis-trans-cis ribozyme cassette to inactivate plant genes. PLANT BIOTECHNOLOGY JOURNAL 2003; 1:423-35. [PMID: 17134401 DOI: 10.1046/j.1467-7652.2003.00039.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Inactivation of a targeted gene is one of the main strategies used to understand their precise cellular role. In plants, apart from chemical or physical mutagenesis and random insertions of DNA elements followed by screening for a desired phenotype, the most common strategy to inhibit the expression of a given gene involves RNA silencing. This can be achieved either through antisense suppression, sense over-expression leading to co-suppression, or expression of double-stranded DNA constructs (dsRNA). The use of ribozymes to inhibit gene product accumulation has only been occasionally attempted, mainly because of the more complex genetic engineering procedure involved, although the specificity of ribozymes can be an important factor when targeting close members of a gene family. We report here the development of a new cis-acting ribozyme cassette for the production of RNAs with desired termini. Attention to many details has been brought in order to provide a powerful procedure for plant application. For example, ultrastable GNRA tetraloops were substituted for both loops II and III of cis-acting hammerhead sequences, thereby favouring folding into the catalytically active structure that results in the self-cleavage of all transcripts. We demonstrate the usefulness of this cassette by producing a ribozyme that cleaves in trans, originally embedded in the cis-acting self-cleaving cassette. The activity of the cis-trans-cis construct, was demonstrated both in vitro and in vivo, in transgenic plants with the specific cleavage of an mRNA encoding a 2-oxo-glutarate-dependant dioxygenase predominantly expressed in pistils tissues and in leaves, from the wild potato Solanum chacoense.
Collapse
Affiliation(s)
- Frédéric Bussière
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | | | | | | | | | | |
Collapse
|
4
|
Puerta-Fernández E, Romero-López C, Barroso-delJesus A, Berzal-Herranz A. Ribozymes: recent advances in the development of RNA tools. FEMS Microbiol Rev 2003; 27:75-97. [PMID: 12697343 DOI: 10.1016/s0168-6445(03)00020-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The discovery 20 years ago that some RNA molecules, called ribozymes, are able to catalyze chemical reactions was a breakthrough in biology. Over the last two decades numerous natural RNA motifs endowed with catalytic activity have been described. They all fit within a few well-defined types that respond to a specific RNA structure. The prototype catalytic domain of each one has been engineered to generate trans-acting ribozymes that catalyze the site-specific cleavage of other RNA molecules. On the 20th anniversary of ribozyme discovery we briefly summarize the main features of the different natural catalytic RNAs. We also describe progress towards developing strategies to ensure an efficient ribozyme-based technology, dedicating special attention to the ones aimed to achieve a new generation of therapeutic agents.
Collapse
Affiliation(s)
- Elena Puerta-Fernández
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Ventanilla 11, 18001 Granada, Spain
| | | | | | | |
Collapse
|
5
|
Dolzhanskaya N, Conti J, Schwenk V, Merz G, Denman RB. Self-Cleaving-Ribozyme-Mediated Reduction of βAPP in Human Rhabdomyosarcoma Cells. Arch Biochem Biophys 2001; 387:223-32. [PMID: 11370845 DOI: 10.1006/abbi.2000.2262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A self-cleaving hammerhead ribozyme targeted to codon 47 in beta-amyloid precursor protein (betaAPP) mRNA was cloned as a eucaryotic transcription cassette into the 3' UTR of enhanced green fluorescence protein (EGFP) mRNA, producing a C-terminal fusion mRNA. CMV promotor-driven vectors bearing this construct or a mutationally inactive ribozyme construct were transiently transfected into human embryonic rhabdomyosarcoma (A-204) cells and their effects studied. Ribozyme self-cleavage in vivo was demonstrated by Northern blotting and the site of self-cleavage was delineated using site-specific deoxyoligonucleotide probes and primer extension arrest. Using this ribozyme reporter we demonstrated that ribozyme expression correlated with lower betaAPP levels in the transfected cells. Control studies with the inactive ribozyme construct showed that both ribozyme cleavage and antisense mechanisms combined to produce the observed effect. Furthermore, production of truncated EGFP mRNA via ribozyme self-cleavage reduced EGFP-reporter expression compared to full-length EGFP control mRNAs, indicating that truncation affects the translatability of the reporter. This occurred because of a slight decrease in the stability of the fusion mRNA. The results of these studies suggest that self-cleaving ribozyme vectors may be an effective means of delivering and visualizing the expression of small active ribozymes in vivo.
Collapse
Affiliation(s)
- N Dolzhanskaya
- Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314, USA
| | | | | | | | | |
Collapse
|
6
|
Dolzhanskaya N, Conti J, Merz G, Denman RB. In vivo ribozyme targeting of betaAPP+ mRNAs. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2000; 4:239-47. [PMID: 11409919 DOI: 10.1006/mcbr.2001.0287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Alzheimer's disease (AD) and Down's syndrome (DS) patients, posttranscriptional alterations of sequences encoded by exon 9 and exon 10 of the beta-amyloid precursor protein (betaAPP) mRNA result in mutant proteins (betaAPP+) that colocalize with neurofibrillary tangles and senile plaques. These aberrant messages may contribute to the development of sporadic or late-onset Alzheimer's disease; thus, eliminating them or attenuating their expression could significantly benefit AD patients. In the present work, self-cleaving hammerhead ribozymes targeted to betaAPP exon 9 (Rz9) and betaAPP+ mutant exon 10 (Rz10) were examined for their ability to distinguish between betaAPP and betaAPP+ mRNA. In transiently transfected A-204 cells, quantitative confocal fluorescence microscopy showed that Rz9 preferentially lowered endogenous betaAPP. In contrast, in transient cotransfection experiments with betaAPP+ mRNAs containing a wild-type exon 9 and mutant exon 10 (betaAPP-9/betaAPP-10+1), or a mutant exon 9 and wild-type exon 10 (betaAPP-9+1/betaAPP-10) we found that Rz9 and Rz10 preferentially reduced betaAPP+ -mutant exon 10 mRNA in a concentration and a ribozyme-dependent manner.
Collapse
Affiliation(s)
- N Dolzhanskaya
- Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10314, USA
| | | | | | | |
Collapse
|
7
|
Horn S, Schwenzer B. Oligonucleotide facilitators enhance the catalytic activity of RNA-cleaving DNA enzymes. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1999; 9:465-72. [PMID: 10555154 DOI: 10.1089/oli.1.1999.9.465] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
From in vitro selection studies, DNA structures have been found that cleave target RNA sequence specifically and show a certain similarity to the well-investigated hammerhead ribozymes. Such DNA enzymes are more resistant to nuclease-mediated degradation than RNA enzymes. On the other hand, their cleavage activity is lower than the activity of hammerhead ribozymes. In the present study, we improved the activity of DNA enzymes by adding oligonucleotide facilitators complementary to the 5' and the 3' ends of the substrate to the cleavage reaction. DNA enzyme activity in vitro was monitored under multiple turnover conditions using short RNA model substrates. We have shown that oligonucleotide facilitators strongly enhance the multiple turnover activity of the DNA enzyme reaction. In one of our model systems with a suitable facilitator combination, we were able to observe a more than 200-fold enhancement of the k(cat)/Km value. The comparison of two DNA enzyme-substrate systems showed that the principal effects of the facilitators were independent of the substrate sequence. However, the degree of facilitator effect was noticeably dependent on the basic catalytic efficiency of DNA enzymes. Furthermore, the efficiency of the DNA enzyme reaction with facilitator was compared with the reaction of a DNA enzyme with a stem sequence extended by the sequence of the facilitator. The multiple turnover activity of such a "long DNA enzyme" is higher than the activity of the short DNA enzyme without facilitators. However, when compared with the multiple turnover reactions of the short DNA enzyme with facilitator, the reaction with the long DNA enzyme is considerably slower. The results obtained with our model systems demonstrate that oligonucleotide facilitators enable DNA enzymes to act as effective multiple turnover catalysts by cleavage of RNA substrates.
Collapse
Affiliation(s)
- S Horn
- Institut für Biochemie, Technische Universität Dresden, Germany
| | | |
Collapse
|
8
|
Hammann C, Martinez E, Moosbauer J, Hormes R, Tabler M. Length variation of helix III in a hammerhead ribozyme and its influence on cleavage activity. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1999; 9:25-31. [PMID: 10192286 DOI: 10.1089/oli.1.1999.9.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The previously described HIV-1 directed hammerhead ribozyme 2as-Rz12 can form with its target RNA 2s helices I and III of 128 and 278 base pairs (bp). A series of derivatives was made in which helix III was truncated to 8, 5, 4, 3, and 2 nucleotides (nt). These asymmetric hammerhead ribozymes were tested for in vitro cleavage and for inhibition of HIV-1 replication in human cells. Truncation of helix III to 8 bp did not affect the in vitro cleavage potential of the parental catalytic antisense RNA 2as-Rz12. Further truncation of helix III led to decreased cleavage rates, with no measurable cleavage activity for the 2 bp construct. All catalytically active constructs showed complex cleavage kinetics. Three kinetic subpopulations of ribozyme-substrate complexes could be discriminated that were cleaved with fast or slow rates or not at all. Gel purification of preformed ribozyme-substrate complexes led to a significant increase in cleavage rates. However, the complex cleavage pattern remained. In mammalian cells, the helix III-truncated constructs showed the same but no increased inhibitory effect of the comparable antisense RNA on HIV-1 replication.
Collapse
Affiliation(s)
- C Hammann
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion Crete, Greece
| | | | | | | | | |
Collapse
|
9
|
Wieland HA, Hamilton BS, Krist B. Hammerhead ribozymes that selectively cleave the NPY Y1, Y4, and Y5 receptor full-length RNA. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1998; 8:435-40. [PMID: 9826270 DOI: 10.1089/oli.1.1998.8.435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The concept of exploiting the ribozyme catalytic center for cleaving a specific target RNA transcript was applied to the design of selective ribozymes for the rat Y1, Y4, and Y5 receptor subtypes. Ribozymes selective for the neuropeptide Y (NPY) receptor subtypes were designed and chemically modified. Recognition sites were selected both according to the extent of their sequence homology between the receptor subtypes and according to the localization within single-stranded regions accessible for hybridization. Stability of the ribozymes against nucleolytic activities was increased by introducing 2'-O-methylribonucleosides and 3'-terminal modifications, such as inverted ends or dideoxynucleosides. Ribozymes cleaving the full-length rat Y1, Y4 (1200 nt), and Y5 receptor mRNA (2200 nt) were identified. The specificity of the recognition sites and the subtype selectivity of the ribozyme-mediated cleavage was demonstrated.
Collapse
Affiliation(s)
- H A Wieland
- Department of Cardiovascular/Metabolic Research, Boehringer Ingelheim Pharma KG, Biberach, Germany
| | | | | |
Collapse
|
10
|
Affiliation(s)
- T K Stage-Zimmermann
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215, USA
| | | |
Collapse
|
11
|
Campbell TB, McDonald CK, Hagen M. The effect of structure in a long target RNA on ribozyme cleavage efficiency. Nucleic Acids Res 1997; 25:4985-93. [PMID: 9396806 PMCID: PMC147166 DOI: 10.1093/nar/25.24.4985] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inhibition of gene expression by catalytic RNA (ribozymes) requires that ribozymes efficiently cleave specific sites within large target RNAs. However, the cleavage of long target RNAs by ribozymes is much less efficient than cleavage of short oligonucleotide substrates because of higher order structure in the long target RNA. To further study the effects of long target RNA structure on ribozyme cleavage efficiency, we determined the accessibility of seven hammerhead ribozyme cleavage sites in a target RNA that contained human immunodeficiency virus type 1 (HIV-1) vif - vpr . The base pairing-availability of individual nucleotides at each cleavage site was then assessed by chemical modification mapping. The ability of hammerhead ribozymes to cleave the long target RNA was most strongly correlated with the availability of nucleotides near the cleavage site for base pairing with the ribozyme. Moreover, the accessibility of the seven hammerhead ribozyme cleavage sites in the long target RNA varied by up to 400-fold but was directly determined by the availability of cleavage sites for base pairing with the ribozyme. It is therefore unlikely that steric interference affected hammerhead ribozyme cleavage. Chemical modification mapping of cleavage site structure may therefore provide a means to identify efficient hammerhead ribozyme cleavage sites in long target RNAs.
Collapse
Affiliation(s)
- T B Campbell
- Department of Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | |
Collapse
|
12
|
Denman RB, Smedman M, Abraham M, Chen-Hwang MC, Currie JR. Facilitated reduction of beta-amyloid peptide precursor by synthetic oligonucleotides in COS-7 cells expressing a hammerhead ribozyme. Arch Biochem Biophys 1997; 348:82-90. [PMID: 9390177 DOI: 10.1006/abbi.1997.0383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Synthetic deoxyoligonucleotides and phosphorothioate-capped oligonucleotides targeted to bases 112-128 of beta-amyloid peptide precursor (beta APP) mRNA were analyzed for their ability to reduce steady-state beta APP in COS-7 cells and in pMEP4-Rz1 cells that express a hammerhead ribozyme targeted to bases beta APP mRNA 133-148. Cells, incubated in the presence of 10 or 25 microM oligonucleotide, remained viable and morphologically identical to untreated control cells for up to 5 days. Antisense deoxyoligonucleotides beta 112C, beta 114C, and beta 116C specifically lowered beta APP in pMEP4-Rz1 cells compared to noncognate and scrambled oligonucleotide controls. The extent of the beta APP reduction did not depend on oligonucleotide length, although it did depend on the presence and proximity of the ribozyme to the oligonucleotides. beta 117N, a phosphorothioate-capped antisense oligonucleotide, also reduced beta APP levels in pMEP4-Rz1 cells; however, in this case the sense control, beta 117S, affected beta APP similarly, indicating that the observed reduction may be nonspecific. These data imply that deoxyoligonucleotides targeted immediately upstream of a ribozyme binding site can work cooperatively in vivo. Localizing the oligonucleotides and ribozyme and substrate targets to the same cellular pools further confirmed this possibility.
Collapse
Affiliation(s)
- R B Denman
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314, USA.
| | | | | | | | | |
Collapse
|
13
|
Jankowsky E, Strunk G, Schwenzer B. Peptide nucleic acid (PNA) is capable of enhancing hammerhead ribozyme activity with long but not with short RNA substrates. Nucleic Acids Res 1997; 25:2690-3. [PMID: 9207013 PMCID: PMC146807 DOI: 10.1093/nar/25.14.2690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Long RNA substrates are inefficiently cleaved by hammerhead ribozymes in trans. Oligonucleotide facilitators capable of affecting the ribozyme activity by interacting with the substrates at the termini of the ribozyme provide a possibility to improve ribozyme mediated cleavage of long RNA substrates. We have examined the effect of PNA as facilitator in vitro in order to test if even artificial compounds have facilitating potential. Effects of 12mer PNA- (peptide nucleic acid), RNA- and DNA-facilitators of identical sequence were measured with three substrates containing either 942, 452 or 39 nucleotides. The PNA facilitator enhances the ribozyme activity with both, the 942mer and the 452mer substrate to a slightly smaller extent than RNA and DNA facilitators. This effect was observed up to PNA facilitator:substrate ratios of 200:1. The enhancement becomes smaller as the PNA facilitator:substrate ratio exceeds 200:1. With the 39mer substrate, the PNA facilitator decreases the ribozyme activity by more than 100-fold, even at PNA facilitator:substrate ratios of 1:1. Although with long substrates the effect of the PNA facilitator is slightly smaller than the effect of identical RNA or DNA facilitators, PNA may be a more practical choice for potential applications in vivo because PNA is much more resistant to degradation by cellular enzymes.
Collapse
Affiliation(s)
- E Jankowsky
- Institut für Biochemie, Technische Universität Dresden, Mommsenstrasse 13, 01069 Dresden, Germany
| | | | | |
Collapse
|
14
|
Ohkawa K, Yuki N, Kanazawa Y, Ueda K, Mita E, Sasaki Y, Kasahara A, Hayashi N. Cleavage of viral RNA and inhibition of viral translation by hepatitis C virus RNA-specific hammerhead ribozyme in vitro. J Hepatol 1997; 27:78-84. [PMID: 9252077 DOI: 10.1016/s0168-8278(97)80283-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND/AIMS A hammerhead ribozyme has been used as a new way to suppress specific gene expression. We designed hammerhead ribozymes directed against hepatitis C virus RNA, and investigated their cleavage efficiency and inhibitory effect on viral translation in vitro. METHODS Three hammerhead ribozymes bearing different cleavage sites in the core region of hepatitis C virus RNA (genotype 1b) were designed in this study. Ribozymes and the target hepatitis C virus RNA were synthesized by in vitro transcription. The cleavage efficiency was evaluated by the ribozyme cleavage assay. The inhibitory effect of the ribozyme on viral translation was further studied by the viral translation inhibition assay. RESULTS All ribozymes specifically cleaved the target RNA of 1217 bases at a physiological temperature in a dose-dependent manner, with the specific cleavage increasing with a longer incubation period. The target RNA was cleaved most efficiently by the ribozyme with the cleavage site located nearest to the initiation codon. In the viral translation inhibition assay, all ribozymes showed a significant inhibitory effect on viral translation. The ribozyme with the cleavage site located farthest from the initiation codon blocked viral translation most efficiently, and demonstrated almost 70 to 80% inhibition. For ribozymes with the T7 transcription terminator sequence, both the target RNA cleavage and the inhibition of viral translation tended to be achieved less efficiently by ribozymes with T7 terminator than by those without it. CONCLUSIONS These findings suggest that ribozyme-mediated hepatitis C virus RNA cleavage may serve as a new strategy in the treatment of hepatitis C virus infection.
Collapse
Affiliation(s)
- K Ohkawa
- First Department of Medicine, Osaka University School of Medicine, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Gavin DK, Gupta KC. Efficient hammerhead ribozymes targeted to the polycistronic Sendai virus P/C mRNA. Structure-function relationships. J Biol Chem 1997; 272:1461-72. [PMID: 8999815 DOI: 10.1074/jbc.272.3.1461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Sendai virus polycistronic P/C mRNA encodes the P and C proteins from alternate overlapping reading frames. To determine the functions of these proteins in virus replication, hammerhead ribozymes were targeted to cleave the 5'-untranslated region of the P/C mRNA. Both cell-free and intracellular assays were employed to determine ribozyme efficacy. To appropriately compare activities between cell-free and intracellular assays, identical ribozymes were synthesized in vitro as well as expressed in cells. Ribozyme parameters, namely hybridization arm length (HAL) and nonhybridizing extraneous sequences (NES), were found to have rate-determining properties. In cell-free reactions, ribozymes with 13-mer HAL were up to 10-fold more efficient than those with 9-mer HAL. Ribozymes with 9-mer HAL were relatively ineffective in transfected cells. Minimizing the number of NES increased ribozyme efficiency in vitro. However, ribozymes with minimal NES were essentially inert intracellularly. The NES at the termini of the most effective intracellular ribozyme, Rz13st ( approximately 95% inhibition of the p gene expression), were predicted to fold into stem-loop structures. These structures most likely increase ribozyme stability as evidenced by the 8-fold higher resistance to ribonuclease T2 digestion of Rz13st compared with Rz13B. Our results suggest that when designing effective intracellular ribozymes, parameters that enhance formation of productive ribozyme:substrate duplexes and that increase RNA stability should be optimized.
Collapse
Affiliation(s)
- D K Gavin
- Department of Immunology/Microbiology, Rush Medical College, Chicago, Illinois 60612, USA
| | | |
Collapse
|
16
|
Denman RB. Ribozyme and antisense RNAs inhibit coupled transcription translation by binding to rabbit polyribosomes. Biochem Biophys Res Commun 1997; 230:226-31. [PMID: 9020052 DOI: 10.1006/bbrc.1996.5926] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The behavior of ribozyme and antisense RNAs was analyzed in a coupled rabbit reticulocyte transcription translation system. Both ribozyme and antisense RNAs were efficiently produced and bound tightly to polyribosomes at 30 degrees C, but did not produce a protein product. Antisense and ribozyme RNA binding depended upon the presence of intact ribosomes, was specific since, plasmid DNA did not associate with either ribosomes or polyribosomes, and was temperature dependent. Ribozyme-specific mRNA cleavage in the coupled system was inferred from translation inhibition studies and was confirmed by primer extension analysis. Thus, ribozyme RNA can inhibit target protein production in the coupled transcription translation system by competing out cellular mRNAs and via targeted message degradation.
Collapse
Affiliation(s)
- R B Denman
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA
| |
Collapse
|
17
|
Denman RB. Facilitator oligonucleotides increase ribozyme RNA binding to full-length RNA substrates in vitro. FEBS Lett 1996; 382:116-20. [PMID: 8612731 DOI: 10.1016/0014-5793(96)00125-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Primer extension arrest (PEA) studies have demonstrated that antisense oligonucleotides (beta 112C, beta 114C), which lie upstream of a ribozyme targeted to beta-amyloid peptide precursor (beta APP) mRNA, but not sense oligonucleotides (beta 112S, beta 116S) or a scrambled oligonucleotide, beta 116 M, affect ribozyme-mediated cleavage in vitro. Substrate dissociation experiments revealed that the ribozyme binding site in this mRNA was masked; PEA kinetics showed the association of the ribozyme and substrate was enhanced by antisense oligonucleotide binding. These studies suggest that masked ribozyme cleavage sites that may occur in disease-causing mRNAs can be targeted for degradation using "facilitator" oligonucleotides.
Collapse
Affiliation(s)
- R B Denman
- Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314, USA
| |
Collapse
|
18
|
Jankowsky E, Schwenzer B. Oligonucleotide facilitators may inhibit or activate a hammerhead ribozyme. Nucleic Acids Res 1996; 24:423-9. [PMID: 8602353 PMCID: PMC145664 DOI: 10.1093/nar/24.3.423] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Facilitators are oligonucleotides capable of affecting hammerhead ribozyme activity by interacting with the substrate at the termini of the ribozyme. Facilitator effects were determined in vitro using a system consisting of a ribozyme with 7 nucleotides in every stem sequence and two substrates with inverted facilitator binding sequences. The effects of 9mer and 12mer RNA as well as DNA facilitators which bind either adjacent to the 3'- or 5'-end of the ribozyme were investigated. A kinetic model was developed which allows determination of the apparent dissociation constant of the ribozyme-substrate complex from single turnover reactions. We observed a decreased dissociation constant of the ribozyme-substrate complex due to facilitator addition corresponding to an additional stabilization energy of delta delta G=-1.7 kcal/mol with 3'-end facilitators. The cleavage rate constant was increased by 3'-end facilitators and decreased by 5'-end facilitators. Values for Km were slightly lowered by all facilitators and kcat was increased by 3'-end facilitators and decreased by 5'-end facilitators in our system. Generally the facilitator effects increased with the length of the facilitators and RNA provided greater effects than DNA of the same sequence. Results suggest facilitator influences on several steps of the hammerhead reaction, substrate association, cleavage and dissociation of products. Moreover, these effects are dependent in different manners on ribozyme and substrate concentration. This leads to the conclusion that there is a concentration dependence whether activation or inhibition is caused by facilitators. Conclusions are drawn with regard to the design of hammerhead ribozyme facilitator systems.
Collapse
Affiliation(s)
- E Jankowsky
- Institut für Biochemie, Technische Universität Dresden, Germany
| | | |
Collapse
|
19
|
Albuquerque-Silva J, De Vos MJ, Bollen A, Houard S. "Hairpin" and "hammerhead" ribozymes directed towards the mumps virus nucleocapsid RNA: specific cleavage of a small synthetic RNA substrate and full-length mRNA. Virus Genes 1996; 13:211-9. [PMID: 9035365 DOI: 10.1007/bf00366981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In an attempt to develop efficient antiviral agents against Mumps virus, we designed ribozymes targeting the nucleocapsid (NP) mRNA. Transacting catalytic RNAs of the hammerhead and hairpin types were synthesized; they contained specific motifs, shared similar flanking regions and were directed against a 5'GUC3' target immediately downstream to the initiation codon of NP mRNA. Both ribozymes were first assayed on a synthetic 16 bases target RNA and found to catalytically and efficiently cleave the substrate in a sequence specific way. No cleavage, however, occurred when mutated forms of the ribozymes were used. In addition, both ribozyme types, when tested on the full length NP mRNA, were also able to cleave the substrate although turnover could not be demonstrated. As a rule, the hammerhead ribozyme proved more efficient than its hairpin counterpart, as well on the synthetic RNA substrate as on the full length NP mRNA target.
Collapse
|
20
|
Zoumadakis M, Tabler M. Comparative analysis of cleavage rates after systematic permutation of the NUX consensus target motif for hammerhead ribozymes. Nucleic Acids Res 1995; 23:1192-6. [PMID: 7739898 PMCID: PMC306830 DOI: 10.1093/nar/23.7.1192] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A trans-cleaving asymmetric hammerhead ribozyme directed against an AUC decreases target motif within an RNA specific for human immunodeficiency virus type 1 (HIV-1) was generated. The AUC decreases motif of the target RNA was permutated in order to generate all 12 variants of an NUX decreases consensus target motif, wherein N = A, C, G or U and X = A, C or U. Four asymmetric hammerhead ribozymes differing in the nucleotide that is complementary to N were generated, of which each was specific for three of the 12 target motifs. The residual sequence context within helices I and III remained unchanged. All 12 combinations resulted in cleavage of the target RNA. Using single-turnover conditions, the detectable cleavage rate constants at 37 degrees C were determined, which varied considerably depending on the NUX decreases motif. The NUC decreases motifs were cleaved more efficiently, with AUC decreases being cleaved best. Comparison with previous studies indicates that the sequence context of the NUX decreases motif plays a major role for the detectable cleavage activity.
Collapse
Affiliation(s)
- M Zoumadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Crete, Greece
| | | |
Collapse
|
21
|
Abstract
Nucleic acids are increasingly being considered for therapeutic uses, either to interfere with the function of specific nucleic acids or to bind specific proteins. Three types of nucleic acid drugs are discussed in this review: aptamers, compounds which bind specific proteins; triplex forming (antigene) compounds; which bind double stranded DNA; and ribozymes (catalytic RNA), which bind and cleave RNA targets. The binding of aptamers to protein may involve specific sequence recognition, although this is not always the case. The interaction of triplex forming oligonucleotides or ribozymes with their targets always involves specific sequence recognition and hybridization. Early optimism concerning the possibility of designing drugs without a priori knowledge of the structure of the target (except a nucleotide sequence) has been tempered by the finding that target structure has a dramatic effect upon the hybridization potential of the nucleic acid drug. Other obstacles to the creation of effective nucleic acid drugs are their relative high molecular weight (> 3300) and their sensitivity to degradation. The molecular weight of these compounds has created a significant delivery problem which needs to be solved if nucleic acid drugs are to become effective therapies.
Collapse
Affiliation(s)
- R A Stull
- Department of Pharmacy, University of California, San Francisco 94143-0446, USA
| | | |
Collapse
|
22
|
Lieber A, Strauss M. Selection of efficient cleavage sites in target RNAs by using a ribozyme expression library. Mol Cell Biol 1995; 15:540-51. [PMID: 7528330 PMCID: PMC232008 DOI: 10.1128/mcb.15.1.540] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Inactivation of gene expression by antisense mechanisms in general and by ribozymes in particular is a powerful technique for studying the function of a gene product. We have designed a strategy for expression of ribozymes, for selection of accessible cleavage sites in target RNAs, and for isolation of ribozymes from a library of random sequences flanking the unique sequence of a hammerhead. The expression cassette for ribozyme genes is based on adenovirus-associated RNA. Alternatively, we used polymerase III or the T7 phage transcription machinery. The ribozyme sequences are positioned in the center of a stable stem-loop structure, allowing for a correctly folded ribozyme region within the expressed RNA. A library of ribozyme genes with random sequences of 13 nucleotides on both sides of the hammerhead was generated. As an example, ribozymes which are specific for seven sites within the mRNA or nuclear RNA of human growth hormone were selected and identified. Sequencing of ribozyme genes reamplified from the library confirmed not only the predicted cleavage sites but also the presence of different ribozyme variants in the library. In a test of the ribozyme variants for repression of growth hormone synthesis in a cellular assay, the strongest effect (more than 99% inhibition) was found for the variant with the shortest stretch of complementarity (7 and 8 nucleotides on either side) to the target RNA. This basic strategy seems to be applicable to the selection of suitable target sites and to the isolation of corresponding ribozymes for any mRNA of interest.
Collapse
Affiliation(s)
- A Lieber
- Max-Planck-Gesellschaft zur Förderung der Wissenschaften, Humboldt University, Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | | |
Collapse
|
23
|
Homann M, Tabler M, Tzortzakaki S, Sczakiel G. Extension of helix II of an HIV-1-directed hammerhead ribozyme with long antisense flanks does not alter kinetic parameters in vitro but causes loss of the inhibitory potential in living cells. Nucleic Acids Res 1994; 22:3951-7. [PMID: 7524030 PMCID: PMC308395 DOI: 10.1093/nar/22.19.3951] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
When designed to cleave a target RNA in trans, the hammerhead ribozyme contains two antisense flanks which form helix I and helix III by pairing with the complementary target RNA. The sequences forming helix II are contained on the ribozyme strand and represent a major structural component of the hammerhead structure. In the case of an inhibitory 429 nucleotides long trans-ribozyme (2as-Rz12) which was directed against the 5'-leader/gag region of the human immunodeficiency virus type 1 (HIV-1), helix II was not pre-formed in the single-stranded molecule. Thus, major structural changes are necessary before cleavage can occur. To study whether pre-formation of helix II in the non-paired 2as-Rz12 RNA could influence the observed cleavage rate in vitro and its inhibitory activity on HIV-1 replication, we extended the 4 base pair helix II of 2as-Rz12 to 6, 10, 21, and 22 base pairs respectively. Limited RNase cleavage reactions performed in vitro at 37 degrees C and at physiological ion strength indicated that a helix II of the hammerhead domain was pre-formed when its length was at least six base pairs. This modification neither affected the association rate with target RNA nor the cleavage rate in vitro. In contrast to this, extension of helix II led to a significantly decreased inhibition of HIV-1 replication in human cells. Together with the finding of others that shortening of helix II to less than two base pairs reduces the catalytic activity in vitro, this observation indicates that the length of helix II in the naturally occurring RNAs with a hammerhead domain is already close or identical to the optimal length for catalytic activity in vitro and in vivo.
Collapse
Affiliation(s)
- M Homann
- Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | |
Collapse
|
24
|
Tabler M, Homann M, Tzortzakaki S, Sczakiel G. A three-nucleotide helix I is sufficient for full activity of a hammerhead ribozyme: advantages of an asymmetric design. Nucleic Acids Res 1994; 22:3958-65. [PMID: 7937118 PMCID: PMC308396 DOI: 10.1093/nar/22.19.3958] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Trans-cleaving hammerhead ribozymes with long target-specific antisense sequences flanking the catalytic domain share some features with conventional antisense RNA and are therefore termed 'catalytic antisense RNAs'. Sequences 5' to the catalytic domain form helix I and sequences 3' to it form helix III when complexed with the target RNA. A catalytic antisense RNA of more than 400 nucleotides, and specific for the human immunodeficiency virus type 1 (HIV-1), was systematically truncated within the arm that constituted originally a helix I of 128 base pairs. The resulting ribozymes formed helices I of 13, 8, 5, 3, 2, 1 and 0 nucleotides, respectively, and a helix III of about 280 nucleotides. When their in vitro cleavage activity was compared with the original catalytic antisense RNA, it was found that a helix I of as little as three nucleotides was sufficient for full endonucleolytic activity. The catalytically active constructs inhibited HIV-1 replication about four-fold more effectively than the inactive ones when tested in human cells. A conventional hammerhead ribozyme having helices of just 8 nucleotides on either side failed to cleave the target RNA in vitro when tested under the conditions for catalytic antisense RNA. Cleavage activity could only be detected after heat-treatment of the ribozyme substrate mixture which indicates that hammerhead ribozymes with short arms do not associate as efficiently to the target RNA as catalytic antisense RNA. The requirement of just a three-nucleotide helix I allows simple PCR-based generation strategies for asymmetric hammerhead ribozymes. Advantages of an asymmetric design will be discussed.
Collapse
Affiliation(s)
- M Tabler
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
25
|
Denman RB, Smedman M, Ju W, Rubenstein R, Potempska A, Miller DL. Ribozyme mediated degradation of beta-amyloid peptide precursor mRNA in COS-7 cells. Nucleic Acids Res 1994; 22:2375-82. [PMID: 8036167 PMCID: PMC523698 DOI: 10.1093/nar/22.12.2375] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Two sets of eucaryotic expression vectors encoding trans-acting hammerhead ribozymes and trans-acting hairpin ribozymes were constructed. In one set of vectors ribozyme RNA transcription was placed under the control of a mouse mammary tumor virus long terminal repeat (MMTV-LTR). In the other set ribozyme expression was controlled by a metallothionein IIA (Mt-IIA) promoter. Each ribozyme was directed to the first target sequence in the Alzheimer amyloid peptide precursor mRNA (beta APP mRNA), 5' decreases GUC decreases 3'. Ribozyme RNA transcribed from these vectors, which should cleave all six alternatively spliced forms of beta APP mRNA as well as beta APP pre-mRNA, was shown to cleave a beta APP RNA substrate analog in vitro. Stably transfected COS-7 cell lines bearing both vector types were prepared. Steady-state levels of beta APP mRNA were reduced 25-30% in cells containing either active or mutant hammerhead ribozyme vectors driven by the MMTV-LTR promoter grown in the presence of glucocorticoids. In cell lines bearing Mt-IIA driven ribozymes steady-state levels of beta APP mRNA were reduced 67-80% in both hammerhead and hairpin ribozyme containing cell lines following promoter induction by glucocorticoids. These levels correlate with the appearance of low levels of induced ribozyme RNA. In contrast, steady-state alpha-actin mRNA and G3PDH mRNA levels in these cells remained constant. Western blotting of cell extracts revealed that all forms of beta APP were correspondingly reduced. Neither the RNA nor protein decreases observed in ribozyme transfected cell lines were observed in stably transfected control cells bearing the vector alone. These results suggest that ribozyme-mediated degradation of beta APP mRNA in COS-7 cells does not depend on ribozyme cleavage.
Collapse
Affiliation(s)
- R B Denman
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314
| | | | | | | | | | | |
Collapse
|
26
|
Nesbitt S, Goodchild J. Further studies on the use of oligonucleotide facilitators to increase ribozyme turnover. ANTISENSE RESEARCH AND DEVELOPMENT 1994; 4:243-9. [PMID: 7537560 DOI: 10.1089/ard.1994.4.243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We showed previously that the turnover of a hammerhead ribozyme cleaving a substrate RNA could be increased by an oligonucleotide (facilitator) that bound to the substrate continguously with the ribozyme. This phenomenon has been investigated further by varying the temperature and the number of base pairs formed between the ribozyme and substrate. The results support the hypothesis that facilitators act by cooperative binding and are beneficial when the rate of cleavage is limited by the stability of the ribozyme/substrate complex. The facilitator also promotes cleavage at lower concentrations of magnesium.
Collapse
Affiliation(s)
- S Nesbitt
- University of Massachusetts Medical Center, Worcester, Massachusetts 01655
| | | |
Collapse
|