1
|
Petrosino G, Ponte G, Volpe M, Zarrella I, Ansaloni F, Langella C, Di Cristina G, Finaurini S, Russo MT, Basu S, Musacchia F, Ristoratore F, Pavlinic D, Benes V, Ferrante MI, Albertin C, Simakov O, Gustincich S, Fiorito G, Sanges R. Identification of LINE retrotransposons and long non-coding RNAs expressed in the octopus brain. BMC Biol 2022; 20:116. [PMID: 35581640 PMCID: PMC9115989 DOI: 10.1186/s12915-022-01303-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/21/2022] [Indexed: 01/07/2023] Open
Abstract
Background Transposable elements (TEs) widely contribute to the evolution of genomes allowing genomic innovations, generating germinal and somatic heterogeneity, and giving birth to long non-coding RNAs (lncRNAs). These features have been associated to the evolution, functioning, and complexity of the nervous system at such a level that somatic retrotransposition of long interspersed element (LINE) L1 has been proposed to be associated to human cognition. Among invertebrates, octopuses are fascinating animals whose nervous system reaches a high level of complexity achieving sophisticated cognitive abilities. The sequencing of the genome of the Octopus bimaculoides revealed a striking expansion of TEs which were proposed to have contributed to the evolution of its complex nervous system. We recently found a similar expansion also in the genome of Octopus vulgaris. However, a specific search for the existence and the transcription of full-length transpositionally competent TEs has not been performed in this genus. Results Here, we report the identification of LINE elements competent for retrotransposition in Octopus vulgaris and Octopus bimaculoides and show evidence suggesting that they might be transcribed and determine germline and somatic polymorphisms especially in the brain. Transcription and translation measured for one of these elements resulted in specific signals in neurons belonging to areas associated with behavioral plasticity. We also report the transcription of thousands of lncRNAs and the pervasive inclusion of TE fragments in the transcriptomes of both Octopus species, further testifying the crucial activity of TEs in the evolution of the octopus genomes. Conclusions The neural transcriptome of the octopus shows the transcription of thousands of putative lncRNAs and of a full-length LINE element belonging to the RTE class. We speculate that a convergent evolutionary process involving retrotransposons activity in the brain has been important for the evolution of sophisticated cognitive abilities in this genus. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01303-5.
Collapse
Affiliation(s)
- Giuseppe Petrosino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy.,Institute of Molecular Biology (IMB), Mainz, Germany
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy
| | - Massimiliano Volpe
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy.,Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Via Enrico Melen 83, 16152, Genova, Italy.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ilaria Zarrella
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy
| | - Federico Ansaloni
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Via Enrico Melen 83, 16152, Genova, Italy
| | - Concetta Langella
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy
| | - Giulia Di Cristina
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy.,Institute of Zoology, University of Cologne, Cologne, Germany
| | - Sara Finaurini
- Neurobiology Sector, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136, Trieste, Italy
| | - Monia T Russo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy
| | - Swaraj Basu
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy.,Strand Life Sciences, Bengaluru, India
| | - Francesco Musacchia
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy
| | - Filomena Ristoratore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy
| | - Dinko Pavlinic
- Scientific Core Facilities & Technologies, GeneCore, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Vladimir Benes
- Scientific Core Facilities & Technologies, GeneCore, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Maria I Ferrante
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy
| | | | - Oleg Simakov
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 9040495, Japan.,Department of Molecular Evolution and Development, Wien University, Althanstraße 14 (UZA I), 1090, Wien, Austria
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Via Enrico Melen 83, 16152, Genova, Italy.,Neurobiology Sector, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136, Trieste, Italy
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy.
| | - Remo Sanges
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy. .,Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Via Enrico Melen 83, 16152, Genova, Italy. .,Neurobiology Sector, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
| |
Collapse
|
2
|
Kojima KK, Seto Y, Fujiwara H. The Wide Distribution and Change of Target Specificity of R2 Non-LTR Retrotransposons in Animals. PLoS One 2016; 11:e0163496. [PMID: 27662593 PMCID: PMC5035012 DOI: 10.1371/journal.pone.0163496] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/09/2016] [Indexed: 12/23/2022] Open
Abstract
Transposons, or transposable elements, are the major components of genomes in most eukaryotes. Some groups of transposons have developed target specificity that limits the integration sites to a specific nonessential sequence or a genomic region to avoid gene disruption caused by insertion into an essential gene. R2 is one of the most intensively investigated groups of sequence-specific non-LTR retrotransposons and is inserted at a specific site inside of 28S ribosomal RNA (rRNA) genes. R2 is known to be distributed among at least six animal phyla even though its occurrence is reported to be patchy. Here, in order to obtain a more detailed picture of the distribution of R2, we surveyed R2 using both in silico screening and degenerate PCR, particularly focusing on actinopterygian fish. We found two families of the R2C lineage from vertebrates, although it has previously only been found in platyhelminthes. We also revealed the apparent movement of insertion sites of a lineage of actinopterygian R2, which was likely concurrent with the acquisition of a 28S rRNA-derived sequence in their 3' UTR. Outside of actinopterygian fish, we revealed the maintenance of a single R2 lineage in birds; the co-existence of four lineages of R2 in the leafcutter bee Megachile rotundata; the first examples of R2 in Ctenophora, Mollusca, and Hemichordata; and two families of R2 showing no target specificity. These findings indicate that R2 is relatively stable and universal, while differences in the distribution and maintenance of R2 lineages probably reflect characteristics of some combination of both R2 lineages and host organisms.
Collapse
Affiliation(s)
- Kenji K. Kojima
- Genetic Information Research Institute, Mountain View, CA, 94043, United States of America
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277–8562, Japan
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
- * E-mail:
| | - Yosuke Seto
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277–8562, Japan
| | - Haruhiko Fujiwara
- Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, 277–8562, Japan
| |
Collapse
|
3
|
Abstract
Although most of non-long terminal repeat (non-LTR) retrotransposons are incorporated in the host genome almost randomly, some non-LTR retrotransposons are incorporated into specific sequences within a target site. On the basis of structural and phylogenetic features, non-LTR retrotransposons are classified into two large groups, restriction enzyme-like endonuclease (RLE)-encoding elements and apurinic/apyrimidinic endonuclease (APE)-encoding elements. All clades of RLE-encoding non-LTR retrotransposons include site-specific elements. However, only two of more than 20 APE-encoding clades, Tx1 and R1, contain site-specific non-LTR elements. Site-specific non-LTR retrotransposons usually target within multi-copy RNA genes, such as rRNA gene (rDNA) clusters, or repetitive genomic sequences, such as telomeric repeats; this behavior may be a symbiotic strategy to reduce the damage to the host genome. Site- and sequence-specificity are variable even among closely related non-LTR elements and appeared to have changed during evolution. In the APE-encoding elements, the primary determinant of the sequence- specific integration is APE itself, which nicks one strand of the target DNA during the initiation of target primed reverse transcription (TPRT). However, other factors, such as interaction between mRNA and the target DNA, and access to the target region in the nuclei also affect the sequence-specificity. In contrast, in the RLE-encoding elements, DNA-binding motifs appear to affect their sequence-specificity, rather than the RLE domain itself. Highly specific integration properties of these site-specific non-LTR elements make them ideal alternative tools for sequence-specific gene delivery, particularly for therapeutic purposes in human diseases.
Collapse
|
4
|
Kojima KK, Jurka J. Ancient Origin of the U2 Small Nuclear RNA Gene-Targeting Non-LTR Retrotransposons Utopia. PLoS One 2015; 10:e0140084. [PMID: 26556480 PMCID: PMC4640811 DOI: 10.1371/journal.pone.0140084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/21/2015] [Indexed: 11/22/2022] Open
Abstract
Most non-long terminal repeat (non-LTR) retrotransposons encoding a restriction-like endonuclease show target-specific integration into repetitive sequences such as ribosomal RNA genes and microsatellites. However, only a few target-specific lineages of non-LTR retrotransposons are distributed widely and no lineage is found across the eukaryotic kingdoms. Here we report the most widely distributed lineage of target sequence-specific non-LTR retrotransposons, designated Utopia. Utopia is found in three supergroups of eukaryotes: Amoebozoa, SAR, and Opisthokonta. Utopia is inserted into a specific site of U2 small nuclear RNA genes with different strength of specificity for each family. Utopia families from oomycetes and wasps show strong target specificity while only a small number of Utopia copies from reptiles are flanked with U2 snRNA genes. Oomycete Utopia families contain an “archaeal” RNase H domain upstream of reverse transcriptase (RT), which likely originated from a plant RNase H gene. Analysis of Utopia from oomycetes indicates that multiple lineages of Utopia have been maintained inside of U2 genes with few copy numbers. Phylogenetic analysis of RT suggests the monophyly of Utopia, and it likely dates back to the early evolution of eukaryotes.
Collapse
Affiliation(s)
- Kenji K. Kojima
- Genetic Information Research Institute, Los Altos, California, United States of America
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail:
| | - Jerzy Jurka
- Genetic Information Research Institute, Los Altos, California, United States of America
| |
Collapse
|
5
|
Biedler JK, Chen X, Tu Z. Horizontal transmission of an R4 clade non-long terminal repeat retrotransposon between the divergent Aedes and Anopheles mosquito genera. INSECT MOLECULAR BIOLOGY 2015; 24:331-337. [PMID: 25615532 PMCID: PMC4400214 DOI: 10.1111/imb.12160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
AaegR4_1 and AgamR4_1 are the sole R4 clade non-long terminal repeat (non-LTR) retrotransposons in Aedes aegypti and Anopheles gambiae, two species that diverged approximately 145-200 million years ago. Twelve full-length copies were found in Ae. aegypti and have less than 1% nucleotide (nt) divergence, suggesting recent activity on an evolutionary time scale. Five of these copies have intact open reading frames and the 3.6 kb open reading frame of AaegR4_1.1 has 78% nt identity to AgamR4_1.1. No intact copies were found in An. gambiae. Searches of 25 genomic databases for 22 mosquito species from three genera revealed R4 clade representatives in Aedes and Anopheles genera but not in Culex. Interestingly, these elements are present in all six species of the An. gambiae species complex that were searched but not in 13 other anopheline species. These results combined with divergence vs. age analysis suggest that horizontal transfer is the most likely explanation for the low divergence between R4 clade retrotransposon sequences of the divergent mosquito species from the Aedes and Anopheles genera. This is the first report of the horizontal transfer of an R4 clade non-LTR retrotransposon and the first report of the horizontal transfer of a non-LTR retrotransposon in mosquitoes.
Collapse
Affiliation(s)
- James K. Biedler
- Department of Biochemistry, Virginia Polytechnic Institute
and State University, Blacksburg, VA 24061
| | - Xiaoguang Chen
- Department of Pathogen Biology, School of Public Health and
Tropical Medicine, Southern Medical University, Guang Zhou, Guang Dong 510515 P.R.
China
| | - Zhijian Tu
- Department of Biochemistry, Virginia Polytechnic Institute
and State University, Blacksburg, VA 24061
| |
Collapse
|
6
|
Eickbush DG, Burke WD, Eickbush TH. Evolution of the R2 retrotransposon ribozyme and its self-cleavage site. PLoS One 2013; 8:e66441. [PMID: 24066021 PMCID: PMC3774820 DOI: 10.1371/journal.pone.0066441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/07/2013] [Indexed: 12/23/2022] Open
Abstract
R2 is a non-long terminal repeat retrotransposon that inserts site-specifically in the tandem 28S rRNA genes of many animals. Previously, R2 RNA from various species of Drosophila was shown to self-cleave from the 28S rRNA/R2 co-transcript by a hepatitis D virus (HDV)-like ribozyme encoded at its 5' end. RNA cleavage was at the precise 5' junction of the element with the 28S gene. Here we report that RNAs encompassing the 5' ends of R2 elements from throughout its species range fold into HDV-like ribozymes. In vitro assays of RNA self-cleavage conducted in many R2 lineages confirmed activity. For many R2s, RNA self-cleavage was not at the 5' end of the element but at 28S rRNA sequences up to 36 nucleotides upstream of the junction. The location of cleavage correlated well with the types of endogenous R2 5' junctions from different species. R2 5' junctions were uniform for most R2s in which RNA cleavage was upstream in the rRNA sequences. The 28S sequences remaining on the first DNA strand synthesized during retrotransposition are postulated to anneal to the target site and uniformly prime second strand DNA synthesis. In species where RNA cleavage occurred at the R2 5' end, the 5' junctions were variable. This junction variation is postulated to result from the priming of second strand DNA synthesis by chance microhomologies between the target site and the first DNA strand. Finally, features of R2 ribozyme evolution, especially changes in cleavage site and convergence on the same active site sequences, are discussed.
Collapse
Affiliation(s)
- Danna G. Eickbush
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - William D. Burke
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Thomas H. Eickbush
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Schneider CH, Gross MC, Terencio ML, do Carmo EJ, Martins C, Feldberg E. Evolutionary dynamics of retrotransposable elements Rex1, Rex3 and Rex6 in neotropical cichlid genomes. BMC Evol Biol 2013; 13:152. [PMID: 23865932 PMCID: PMC3728117 DOI: 10.1186/1471-2148-13-152] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 07/15/2013] [Indexed: 01/27/2023] Open
Abstract
Background Transposable elements (TEs) have the potential to produce broad changes in the genomes of their hosts, acting as a type of evolutionary toolbox and generating a collection of new regulatory and coding sequences. Several TE classes have been studied in Neotropical cichlids; however, the information gained from these studies is restricted to the physical chromosome mapping, whereas the genetic diversity of the TEs remains unknown. Therefore, the genomic organization of the non-LTR retrotransposons Rex1, Rex3, and Rex6 in five Amazonian cichlid species was evaluated using physical chromosome mapping and DNA sequencing to provide information about the role of TEs in the evolution of cichlid genomes. Results Physical mapping revealed abundant TE clusters dispersed throughout the chromosomes. Furthermore, several species showed conspicuous clusters accumulation in the centromeric and terminal portions of the chromosomes. These TE chromosomal sites are associated with both heterochromatic and euchromatic regions. A higher number of Rex1 clusters were observed among the derived species. The Rex1 and Rex3 nucleotide sequences were more conserved in the basal species than in the derived species; however, this pattern was not observed in Rex6. In addition, it was possible to observe conserved blocks corresponding to the reverse transcriptase fragment of the Rex1 and Rex3 clones and to the endonuclease of Rex6. Conclusion Our data showed no congruence between the Bayesian trees generated for Rex1, Rex3 and Rex6 of cichlid species and phylogenetic hypothesis described for the group. Rex1 and Rex3 nucleotide sequences were more conserved in the basal species whereas Rex6 exhibited high substitution rates in both basal and derived species. The distribution of Rex elements in cichlid genomes suggests that such elements are under the action of evolutionary mechanisms that lead to their accumulation in particular chromosome regions, mostly in heterochromatins.
Collapse
Affiliation(s)
- Carlos Henrique Schneider
- Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Petrópolis, 69011-970, Manaus, Amazonas, Brazil.
| | | | | | | | | | | |
Collapse
|
8
|
Grandi FC, An W. Non-LTR retrotransposons and microsatellites: Partners in genomic variation. Mob Genet Elements 2013; 3:e25674. [PMID: 24195012 PMCID: PMC3812793 DOI: 10.4161/mge.25674] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/07/2013] [Accepted: 07/09/2013] [Indexed: 01/10/2023] Open
Abstract
The human genome is laden with both non-LTR (long-terminal repeat) retrotransposons and microsatellite repeats. Both types of sequences are able to, either actively or passively, mutagenize the genomes of human individuals and are therefore poised to dynamically alter the human genomic landscape across generations. Non-LTR retrotransposons, such as L1 and Alu, are a major source of new microsatellites, which are born both concurrently and subsequently to L1 and Alu integration into the genome. Likewise, the mutation dynamics of microsatellite repeats have a direct impact on the fitness of their non-LTR retrotransposon parent owing to microsatellite expansion and contraction. This review explores the interactions and dynamics between non-LTR retrotransposons and microsatellites in the context of genomic variation and evolution.
Collapse
Affiliation(s)
- Fiorella C Grandi
- School of Molecular Biosciences and Center for Reproductive Biology; Washington State University; Pullman, WA USA
| | | |
Collapse
|
9
|
Mirhoseini SZ, Rabiei B, Potki P, Dalirsefat SB. Amplified fragment length polymorphism mapping of quantitative trait loci for economically important traits in the silkworm, Bombyx mori. JOURNAL OF INSECT SCIENCE (ONLINE) 2010; 10:153. [PMID: 21070171 PMCID: PMC3016937 DOI: 10.1673/031.010.14113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 05/02/2010] [Indexed: 05/30/2023]
Abstract
Cocoon related characteristics are economically important traits in the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). In this study a genetic linkage map was developed that identified QTL controlling the cocoon weight, cocoon shell weight, and cocoon shell percentage using 161 amplified fragment length polymorphism (AFLP) markers. Twenty PstI/TaqI primer combinations were employed to genotype 78 F(2) progenies derived from a cross between P107 Japanese inbred line and Khorasan Lemon Iranian native strain. Among polymorphic markers, 159 AFLP markers were assigned to 24 linkage groups at the LOD threshold of 2.5 that varied in length from 4 to 299 cM. The total length of the linkage map was 2747 cM, giving an average marker resolution of 19.31 cM. A total of 21 AFLP markers were identified that were distributed over the ten linkage groups linked to the three studied traits using the composite interval mapping method. The explained variation rate by QTL controlling cocoon weight, cocoon shell weight, and cocoon shell percentage ranged from 0.02% to 64.85%, 0.2% to 49.11%, and 0.04% to 84.20%, respectively. These QTL controlled by different actions as well as under dominance, additive, partial dominance, dominance, and over dominance.
Collapse
Affiliation(s)
- Seyed Z Mirhoseini
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, PO Box 41635-13 14, Rasht, Guilan, Iran
| | - Babak Rabiei
- Department of Agronomy & Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, PO Box 41635-1314, Rasht, Guilan, Iran
| | - Payam Potki
- Department of Genomics, Agricultural Biotechnology Research Institute of Iran (Rasht), PO Box 41635-41 15, Rasht, Guilan, Iran
| | - Seyed B Dalirsefat
- Department of Sericulture, Faculty of Agricultural Sciences, University of Guilan, PO Box 41635-13 14, Rasht, Guilan, Iran
| |
Collapse
|
10
|
Novikova OS, Blinov AG. Origin, evolution, and distribution of different groups of non-LTR retrotransposons among eukaryotes. RUSS J GENET+ 2009. [DOI: 10.1134/s102279540902001x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Piskurek O, Nishihara H, Okada N. The evolution of two partner LINE/SINE families and a full-length chromodomain-containing Ty3/Gypsy LTR element in the first reptilian genome of Anolis carolinensis. Gene 2008; 441:111-8. [PMID: 19118606 DOI: 10.1016/j.gene.2008.11.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 11/18/2008] [Accepted: 11/25/2008] [Indexed: 02/01/2023]
Abstract
Transposable elements have been characterized in a number of vertebrates, including whole genomes of mammals, birds, and fishes. The Anolis carolinensis draft assembly provides the first opportunity to study retroposons in a reptilian genome. Here, we identified and reconstructed a number of retroposons based on database searches: Five Sauria short interspersed element (SINE) subfamilies, 5S-Sauria SINE chimeras, Anolis Bov-B long interspersed element (LINE), Anolis SINE 2, Anolis LINE 2, Anolis LINE 1, Anolis CR 1, and a chromodomain-containing Ty3/Gypsy LTR element. We focused on two SINE families (Anolis Sauria SINE and Anolis SINE 2) and their partner LINE families (Anolis Bov-B LINE and Anolis LINE 2). We demonstrate that each SINE/LINE pair is distributed similarly and predict that the retrotransposition of evolutionarily younger Sauria SINE members is via younger Bov-B LINE members while a correlation also exists between their respective evolutionarily older SINE/LINE members. The evolutionarily youngest Sauria SINE sequences evolved as part of novel rolling-circle transposons. The evolutionary time frame when Bov-B LINEs and Sauria SINEs were less active in their retrotransposition is characterized by a high retrotransposition burst of Anolis SINE 2 and Anolis LINE 2 elements. We also characterized the first full-length chromoviral LTR element in amniotes (Amn-ichi). This newly identified chromovirus is widespread in the Anolis genome and has been very well preserved, indicating that it is still active. Transposable elements in the Anolis genome account for approximately 20% of the total DNA sequence, whereas the proportion is more than double that in many mammalian genomes in which such elements have important biological functions. Nevertheless, 20% transposable element coverage is sufficient to predict that Anolis retroposons and other mobile elements also may have biologically and evolutionarily relevant functions. The new SINEs and LINEs and other ubiquitous genomic elements characterized in the Anolis genome will prove very useful for studies in comparative genomics, phylogenetics, and functional genetics.
Collapse
Affiliation(s)
- Oliver Piskurek
- Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B21 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
12
|
Osanai-Futahashi M, Suetsugu Y, Mita K, Fujiwara H. Genome-wide screening and characterization of transposable elements and their distribution analysis in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:1046-1057. [PMID: 19280695 DOI: 10.1016/j.ibmb.2008.05.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To elucidate the contribution of transposable elements (TEs) to the silkworm genome structure and evolution, we have conducted genome-wide analysis of TEs using the newly released genome assembly. The TEs made up 35% of the genome and contributed greatly to the genome size. Non-long terminal repeat retrotransposons (non-LTRs) and short interspersed nuclear elements (SINEs) were the predominant TE classes. From characterization of the TE distribution in the genome, it was revealed that non-LTRs, especially R1 clade elements, are frequently inserted into GC-rich regions. The GC content of non-LTRs themselves was over 40%, which indicate their contribution to the GC content of the insertion region. TEs accumulated in regions with low gene density, and there were relatively strong positive correlations between TE density and chromosomal recombination rate. We also characterized the clade distribution of the non-LTRs. The silkworm non-LTRs represented 10 of the 16 previously defined clades, which had the most variety than that reported for other genomes. Two partial CRE clade elements were found, which is one of the most ancient lineages of non-LTRs, and have been only found in Trypanosoma and fungi before. This analysis suggests that Bombyx genome is influenced by numerous amounts and variety of TEs.
Collapse
Affiliation(s)
- Mizuko Osanai-Futahashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | | | | | | |
Collapse
|
13
|
Drezen JM, Bézier A, Lesobre J, Huguet E, Cattolico L, Periquet G, Dupuy C. The few virus-like genes of Cotesia congregata bracovirus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 61:110-22. [PMID: 16482582 DOI: 10.1002/arch.20108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The origin of the symbiotic association between parasitoid wasps and bracoviruses is still unknown. From phylogenetic analyses, bracovirus-associated wasp species constitute a monophyletic group, the microgastroid complex. Thus all wasp-bracovirus associations could have originated from the integration of an ancestral virus in the genome of the ancestor of the microgastroids. In an effort to identify a set of virus genes that would give clues on the nature of the ancestral virus, we have recently performed the complete sequencing of the genome of CcBV, the bracovirus of the wasp Cotesia congregata. We describe here the putative proteins encoded by CcBV genome having significant similarities with sequences from known viruses and mobile elements. The analysis of CcBV gene content does not lend support to the hypothesis that bracoviruses originated from a baculovirus. Moreover, no consistent homology was found between CcBV genes and any set of genes constituting the core genome of a known free-living virus. We discuss the significance of the scarce homology found between proteins from CcBV and other viruses or mobile elements.
Collapse
Affiliation(s)
- J-M Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 6035, Université F. Rabelais, Tours, France.
| | | | | | | | | | | | | |
Collapse
|
14
|
Mandal PK, Bagchi A, Bhattacharya A, Bhattacharya S. An Entamoeba histolytica LINE/SINE pair inserts at common target sites cleaved by the restriction enzyme-like LINE-encoded endonuclease. EUKARYOTIC CELL 2004; 3:170-9. [PMID: 14871947 PMCID: PMC329514 DOI: 10.1128/ec.3.1.170-179.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The non-long-terminal-repeat (non-LTR) retrotransposons (also called long interspersed repetitive elements [LINEs]) are among the oldest retroelements. Here we describe the properties of such an element from a primitive protozoan parasite, Entamoeba histolytica, that infects the human gut. This 4.8-kb element, called EhLINE1, is present in about 140 copies dispersed throughout the genome. The element belongs to the R4 clade of non-LTR elements. It has a centrally located reverse transcriptase domain and a restriction enzyme-like endonuclease (EN) domain at the carboxy terminus. We have cloned and expressed a 794-bp fragment containing the EN domain in Escherichia coli. The purified protein could nick supercoiled pBluescript DNA to yield open circular and linear DNAs. The conserved PDX(12-14)D motif was required for activity. Genomic sequences flanking the sites of insertion of EhLINE1 and the putative partner short interspersed repetitive element (SINE), EhSINE1, were analyzed. Both elements resulted in short target site duplications (TSD) upon insertion. A common feature was the presence of a short T-rich stretch just upstream of the TSD in most insertion sites. By sequence analysis an empty target site in the E. histolytica genome, known to be occupied by EhSINE1, was identified. When a 176-bp fragment containing the empty site was used as a substrate for EN, it was prominently nicked on the bottom strand at the precise point of insertion of EhSINE1, showing that this SINE could use the LINE-encoded endonuclease for its insertion. The nick on the bottom strand was toward the right of the TSD, which is uncommon. The lack of strict target site-specificity of the restriction enzyme-like EN encoded by EhLINE1 is also exceptional. A model for retrotransposition of EhLINE1/SINE1 is presented.
Collapse
Affiliation(s)
- Prabhat K Mandal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | |
Collapse
|
15
|
Van Dellen K, Field J, Wang Z, Loftus B, Samuelson J. LINEs and SINE-like elements of the protist Entamoeba histolytica. Gene 2002; 297:229-39. [PMID: 12384304 DOI: 10.1016/s0378-1119(02)00917-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A survey of whole genome shotgun sequences of the protozoan parasite Entamoeba histolytica revealed three families of non-long terminal repeat (LTR) retrotransposons or long interspersed elements (LINEs) (called EhLINEs in this report). The 4.8 kb EhLINEs each had a single open reading frame with a putative nucleic acid binding motif (CCHC) and restriction enzyme-like endonuclease domain located downstream of the reverse transcriptase (RT) domain. Phylogenetic analysis of the RT domain placed the EhLINEs in the R4 clade of non-LTR elements, a mixed clade of non-LTR elements that includes members from nematodes, insects, and vertebrates. EhLINE1 (which was previously identified as HMc and EhRLE) shared a common 3' end with a highly transcribed 0.55 kb short interspersed element (SINE)-like element previously identified as IE or ehapt2 and called EhLSINE1 in this report. Similarly, EhLINE2 shared a common 3' end with a highly transcribed 0.65 kb SINE-like element called EhLSINE2 in this report. The shared 3' end sequences of the EhLINEs and EhLSINEs suggested that EhLINEs are involved in the retrotransposition of the EhLSINEs. EhLSINEs were flanked by target site duplications and contained conserved 5' sequences, which likely regulate their transcription. The EhLSINEs are the first protist SINE-like elements identified that share a common 3' sequence with LINEs, and the first SINE-like elements that have been associated with the R4 clade of non-LTR elements.
Collapse
Affiliation(s)
- Katrina Van Dellen
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
16
|
Tan YD, Wan C, Zhu Y, Lu C, Xiang Z, Deng HW. An amplified fragment length polymorphism map of the silkworm. Genetics 2001; 157:1277-84. [PMID: 11238411 PMCID: PMC1461547 DOI: 10.1093/genetics/157.3.1277] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The silkworm (Bombyx mori L.) is a lepidopteran insect with a long history of significant agricultural value. We have constructed the first amplified fragment length polymorphism (AFLP) genetic linkage map of the silkworm B. mori at a LOD score of 2.5. The mapping AFLP markers were genotyped in 47 progeny from a backcross population of the cross no. 782 x od100. A total of 1248 (60.7%) polymorphic AFLP markers were detected with 35 PstI/TaqI primer combinations. Each of the primer combinations generated an average of 35.7 polymorphic AFLP markers. A total of 545 (44%) polymorphic markers are consistent with the expected segregation ratio of 1:1 at the significance level of P = 0.05. Of the 545 polymorphic markers, 356 were assigned to 30 linkage groups. The number of markers on linkage groups ranged from 4 to 36. There were 21 major linkage groups with 7-36 markers and 9 relatively small linkage groups with 4-6 markers. The 30 linkage groups varied in length from 37.4 to 691.0 cM. The total length of this AFLP linkage map was 6512 cM. Genetic distances between two neighboring markers on the same linkage group ranged from 0.2 to 47 cM with an average of 18.2 cM. The sex-linked gene od was located between the markers P1T3B40 and P3T3B27 at the end of group 3, indicating that AFLP linkage group 3 was the Z (sex) chromosome. This work provides an essential basic map for constructing a denser linkage map and for mapping genes underlying agronomically important traits in the silkworm B. mori L.
Collapse
Affiliation(s)
- Y D Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Science, Hunan Normal University, Changsha 410081, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Chaboissier MC, Finnegan D, Bucheton A. Retrotransposition of the I factor, a non-long terminal repeat retrotransposon of Drosophila, generates tandem repeats at the 3' end. Nucleic Acids Res 2000; 28:2467-72. [PMID: 10871395 PMCID: PMC102713 DOI: 10.1093/nar/28.13.2467] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2000] [Revised: 05/17/2000] [Accepted: 05/17/2000] [Indexed: 11/14/2022] Open
Abstract
Non-long terminal repeat (LTR) retrotransposons or LINEs transpose by reverse transcription of an RNA intermediate and are thought to use the 3' hydroxyl of a chromosomal cleavage to initiate synthesis of the first strand of the cDNA. Many of them terminate in a poly(dA) sequence at the 3' end of the coding strand although some, like the I factor of Drosophila melanogaster, have 3' ends formed by repeats of the trinucleotide TAA. We report results showing that I factor transcripts end a few nucleotides downstream of the TAA repeats and that these extra nucleotides are not integrated into chromosomal DNA during retrotransposition. We also show that the TAA repeats are not required for transposition and that I elements containing mutations affecting the TAA sequences generate transposed copies ending with tandem repeats of various types. Our results suggest that during integration the 3' end of the I factor RNA template can pair with nucleotides at the target site and that tandem duplications are generated by the reverse transcriptase of the I factor in a manner that is reminiscent of the activity of the reverse transcriptases of telomerases. Reverse transcriptases of other non-LTR retrotransposons may function in a similar way.
Collapse
Affiliation(s)
- M C Chaboissier
- Institut de Génétique Humaine, CNRS, Montpellier cedex 5, France
| | | | | |
Collapse
|
18
|
Malik HS, Eickbush TH. NeSL-1, an ancient lineage of site-specific non-LTR retrotransposons from Caenorhabditis elegans. Genetics 2000; 154:193-203. [PMID: 10628980 PMCID: PMC1460889 DOI: 10.1093/genetics/154.1.193] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phylogenetic analyses of non-LTR retrotransposons suggest that all elements can be divided into 11 lineages. The 3 oldest lineages show target site specificity for unique locations in the genome and encode an endonuclease with an active site similar to certain restriction enzymes. The more "modern" non-LTR lineages possess an apurinic endonuclease-like domain and generally lack site specificity. The genome sequence of Caenorhabditis elegans reveals the presence of a non-LTR retrotransposon that resembles the older elements, in that it contains a single open reading frame with a carboxyl-terminal restriction-like endonuclease domain. Located near the N-terminal end of the ORF is a cysteine protease domain not found in any other non-LTR element. The N2 strain of C. elegans appears to contain only one full-length and several 5' truncated copies of this element. The elements specifically insert in the Spliced leader-1 genes; hence the element has been named NeSL-1 (Nematode Spliced Leader-1). Phylogenetic analysis confirms that NeSL-1 branches very early in the non-LTR lineage and that it represents a 12th lineage of non-LTR elements. The target specificity of NeSL-1 for the spliced leader exons and the similarity of its structure to that of R2 elements leads to a simple model for its expression and retrotransposition.
Collapse
Affiliation(s)
- H S Malik
- Department of Biology, University of Rochester, Rochester, New York 14627-0211, USA
| | | |
Collapse
|
19
|
Yang J, Malik HS, Eickbush TH. Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. Proc Natl Acad Sci U S A 1999; 96:7847-52. [PMID: 10393910 PMCID: PMC22150 DOI: 10.1073/pnas.96.14.7847] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The non-long terminal repeat (LTR) retrotransposon, R2, encodes a sequence-specific endonuclease responsible for its insertion at a unique site in the 28S rRNA genes of arthropods. Although most non-LTR retrotransposons encode an apurinic-like endonuclease upstream of a common reverse transcriptase domain, R2 and many other site-specific non-LTR elements do not (CRE1 and 2, SLACS, CZAR, Dong, R4). Sequence comparison of these site-specific elements has revealed that the region downstream of their reverse transcriptase domain is conserved and shares sequence features with various prokaryotic restriction endonucleases. In particular, these non-LTR elements have a Lys/Arg-Pro-Asp-X12-14aa-Asp/Glu motif known to lie near the scissile phosphodiester bonds in the protein-DNA complexes of restriction enzymes. Site-directed mutagenesis of the R2 protein was used to provide evidence that this motif is also part of the active site of the endonuclease encoded by this element. Mutations of this motif eliminate both DNA-cleavage activities of the R2 protein: first-strand cleavage in which the exposed 3' end is used to prime reverse transcription of the RNA template and second-strand cleavage, which occurs after reverse transcription. The general organization of the R2 protein appears similar to the type IIS restriction enzyme, FokI, in which specific DNA binding is controlled by a separate domain located amino terminal to the cleavage domain. Previous phylogenetic analysis of their reverse transcriptase domains has indicated that the non-LTR elements identified here as containing restriction-like endonucleases are the oldest lineages of non-LTR elements, suggesting a scenario for the evolution of non-LTR elements.
Collapse
Affiliation(s)
- J Yang
- Department of Biology, University of Rochester, Rochester, NY 14627-0211, USA
| | | | | |
Collapse
|
20
|
|
21
|
Burke WD, Müller F, Eickbush TH. R4, a non-LTR retrotransposon specific to the large subunit rRNA genes of nematodes. Nucleic Acids Res 1995; 23:4628-34. [PMID: 8524653 PMCID: PMC307436 DOI: 10.1093/nar/23.22.4628] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A 4.7 kb sequence-specific insertion in the 26S ribosomal RNA gene of Ascaris lumbricoides, named R4, is shown to be a non-long terminal repeat (non-LTR) retrotransposable element. The R4 element inserts at a site in the large subunit rRNA gene which is midway between two other sequence-specific non-LTR retrotransposable elements, R1 and R2, found in most insect species. Based on the structure of its open reading frame and the sequence of its reverse transcriptase domain, R4 elements do not appear to be a family of R1 or R2 elements that have changed their insertion site. R4 is most similar in structure and in sequence to the element Dong, which is not specialized for insertion into rRNA units. Thus R4 represents a separate non-LTR retrotransposable element that has become specialized for insertion in the rRNA genes of its host. Using oligonucleotide primers directed to a conserved region of the reverse transcriptase encoding domain, insertions in the R4 site were also amplified from Parascaris equorum and Haemonchus contortus. Why several non-LTR retrotransposable elements have become specialized for insertion into a short (87 bp) region of the large subunit rRNA gene is discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Ascaridoidea/genetics
- Ascaris lumbricoides/genetics
- Base Sequence
- Binding Sites
- Cloning, Molecular
- DNA Primers
- DNA, Helminth/genetics
- DNA, Ribosomal/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Haemonchus/genetics
- Molecular Sequence Data
- Mutagenesis, Insertional
- Nematoda/genetics
- Phylogeny
- Polymerase Chain Reaction
- RNA, Helminth/biosynthesis
- RNA, Helminth/genetics
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/genetics
- Repetitive Sequences, Nucleic Acid
- Retroelements
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Species Specificity
Collapse
Affiliation(s)
- W D Burke
- Department of Biology, University of Rochester, NY 14627, USA
| | | | | |
Collapse
|
22
|
Luan DD, Eickbush TH. RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element. Mol Cell Biol 1995; 15:3882-91. [PMID: 7540721 PMCID: PMC230628 DOI: 10.1128/mcb.15.7.3882] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
R2 is a non-long terminal repeat-retrotransposable element that inserts specifically in the 28S rRNA gene of most insects. The single protein encoded by R2 has been shown to contain both site-specific endonuclease and reverse transcriptase activities. Integration of the element involves cleavage of one strand of the 28S target DNA and the utilization of the exposed 3' hydroxyl group to prime the reverse transcription of the R2 RNA transcript. We have characterized the RNA requirement of this target DNA-primed reverse transcription reaction and found that the 250 nucleotides corresponding to the 3' untranslated region of the R2 transcript were necessary and sufficient for the reaction. To investigate the sequence requirements at the site of reverse transcription initiation, a series of RNA templates that contained substitutions and deletions at the extreme 3' end of the RNA were tested. The R2 templates used most efficiently had 3' ends which corresponded to the precise boundary of the R2 element with the 28S gene found in vivo. Transcripts containing short polyadenylated tails (8 nucleotides) were not utilized efficiently. R2 RNAs that were truncated at their 3' ends by 3 to 6 nucleotides were used less efficiently as templates and then only after the R2 reverse transcriptase had added extra, apparently nontemplated, nucleotides to the target DNA. The ability of the reverse transcriptase to add additional nucleotides to the target DNA before engaging the RNA template might be a mechanism for the generation of poly(A) or simple repeat sequences found at the 3' end of most non-long terminal repeat-retrotransposable elements.
Collapse
Affiliation(s)
- D D Luan
- Department of Biology, University of Rochester, New York, USA
| | | |
Collapse
|
23
|
Garel A, Nony P, Prudhomme JC. Structural features of mag, a gypsy-like retrotransposon of Bombyx mori, with unusual short terminal repeats. Genetica 1994; 93:125-37. [PMID: 7813909 DOI: 10.1007/bf01435245] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mag is a retrotransposon found as an insert in the Sericin 2 gene. It is present in a few copies--4 to 15--dispersed in the genome of different strains of Bombyx mori as well as in Bombyx mandarina. Flanked by a 5 bp target sequence with no sequence specificity, it is bordered by direct repeats of 77 nucleotides. Despite their unusual short size, these terminal repeats and their immediately adjacent sequences present all the signals necessary for transcription into genomic RNA and for reverse transcription. Mag contains two overlapping open reading frames which are organized as the gag and pol genes of retroviruses and encode putative nucleic acid binding peptide, protease, reverse transcriptase, RNase H and endonuclease in this order. Sequence comparison of these proteins places mag within the gypsy group of LTR retrotransposons next to the echinoderm element SURL.
Collapse
Affiliation(s)
- A Garel
- Université Claude Bernard, Lyon 1, Centre de Génétique Moléculaire et Cellulaire, UMR 106, Villeurbanne, France
| | | | | |
Collapse
|