1
|
Abeydeera ND, Egli M, Cox N, Mercier K, Conde JN, Pallan PS, Mizurini DM, Sierant M, Hibti FE, Hassell T, Wang T, Liu FW, Liu HM, Martinez C, Sood AK, Lybrand TP, Frydman C, Monteiro RQ, Gomer RH, Nawrot B, Yang X. Evoking picomolar binding in RNA by a single phosphorodithioate linkage. Nucleic Acids Res 2016; 44:8052-64. [PMID: 27566147 PMCID: PMC5041495 DOI: 10.1093/nar/gkw725] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/02/2016] [Accepted: 08/06/2016] [Indexed: 11/12/2022] Open
Abstract
RNA aptamers are synthetic oligonucleotide-based affinity molecules that utilize unique three-dimensional structures for their affinity and specificity to a target such as a protein. They hold the promise of numerous advantages over biologically produced antibodies; however, the binding affinity and specificity of RNA aptamers are often insufficient for successful implementation in diagnostic assays or as therapeutic agents. Strong binding affinity is important to improve the downstream applications. We report here the use of the phosphorodithioate (PS2) substitution on a single nucleotide of RNA aptamers to dramatically improve target binding affinity by ∼1000-fold (from nanomolar to picomolar). An X-ray co-crystal structure of the α-thrombin:PS2-aptamer complex reveals a localized induced-fit rearrangement of the PS2-containing nucleotide which leads to enhanced target interaction. High-level quantum mechanical calculations for model systems that mimic the PS2 moiety and phenylalanine demonstrate that an edge-on interaction between sulfur and the aromatic ring is quite favorable, and also confirm that the sulfur analogs are much more polarizable than the corresponding phosphates. This favorable interaction involving the sulfur atom is likely even more significant in the full aptamer-protein complexes than in the model systems.
Collapse
Affiliation(s)
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Nehemiah Cox
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Karen Mercier
- Biointeractions Division, Horiba Scientific, Avenue de la Vauve - Passage JobinYvon CS 45002 Palaiseau, France
| | - Jonas Nascimento Conde
- Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941, Brazil
| | - Pradeep S Pallan
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | - Daniella M Mizurini
- Instituto de Bioquimica Médica Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941, Brazil
| | - Malgorzata Sierant
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Sienkiewicza 112, Poland
| | - Fatima-Ezzahra Hibti
- Biointeractions Division, Horiba Scientific, Avenue de la Vauve - Passage JobinYvon CS 45002 Palaiseau, France
| | - Tom Hassell
- MilliporeSigma, 9186 Six Pines, The Woodlands, TX 77380, USA
| | - Tianzhi Wang
- The Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Feng-Wu Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Science Avenue 100, Zhengzhou 450001, Henan, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Science Avenue 100, Zhengzhou 450001, Henan, China
| | - Carlos Martinez
- MilliporeSigma, 9186 Six Pines, The Woodlands, TX 77380, USA
| | - Anil K Sood
- Departments of Gynecologic Oncology and Cancer Biology, and Center for RNAi and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Terry P Lybrand
- Departments of Chemistry and Pharmacology, and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Chiraz Frydman
- Biointeractions Division, Horiba Scientific, Avenue de la Vauve - Passage JobinYvon CS 45002 Palaiseau, France
| | - Robson Q Monteiro
- Instituto de Bioquimica Médica Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941, Brazil
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Barbara Nawrot
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Sienkiewicza 112, Poland
| | - Xianbin Yang
- AM Biotechnologies, LLC, 12521 Gulf Freeway, Houston, TX 77034, USA
| |
Collapse
|
2
|
Li NS, Frederiksen JK, Piccirilli JA. Automated solid-phase synthesis of RNA oligonucleotides containing a nonbridging phosphorodithioate linkage via phosphorothioamidites. J Org Chem 2012; 77:9889-92. [PMID: 23050987 DOI: 10.1021/jo301834p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This work describes a general method for the synthesis of oligoribonucleotides containing a site-specific nonbridging phosphorodithioate linkage via automated solid-phase synthesis using 5'-O-DMTr-2'-O-TBS-ribonucleoside 3'-N,N-dimethyl-S-(2,4-dichlorobenzyl) phosphorothioamidites (2a-2d). The 3'-phosphorothioamidites (2a-2d) can be conveniently prepared in good yields (86-99%) via a one-pot reaction from the corresponding 5'-O-DMTr-2'-O-TBS-ribonucleosides (1a-1d).
Collapse
Affiliation(s)
- Nan-Sheng Li
- Department of Biochemistry & Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States.
| | | | | |
Collapse
|
4
|
Olesiak M, Stec WJ, Okruszek A. The synthesis of di- and oligo-nucleotides containing a phosphorodithioate internucleotide linkage with one of the sulfur atoms in a 5'-bridging position. Org Biomol Chem 2009; 7:2162-9. [PMID: 19421455 DOI: 10.1039/b901791g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new type of internucleotide phosphorodithioate linkage is described, wherein one of the sulfur atoms occupies a 5'-bridging position. Representative dinucleotides possessing such a bond were synthesized by S-alkylation of nucleoside-3'-O-phosphorodithioates with 5'-halogeno-5'-deoxy-nucleosides. A fully protected dithymidylate containing internucleotide 5'-S-phosphorodithioate linkage was converted into a 3'-O-phosphoramidite derivative and employed for introduction of a modified dinucleotide into a predetermined position of the oligonucleotide sequence. The 5'-S-phosphorodithioate linkage in dinucleotide analogues was found to be resistant toward nucleolytic degradation with snake venom PDE and nuclease P1. However, P-stereoselective degradation was observed for diastereomers of 5'-S-phosphorodithioate dithymidine analogs under treatment with calf spleen PDE. The new 5'-S-phosphorodithioate linkage was readily degraded by iodine solutions in the presence of water. It was also found that oligothymidylates containing a single 5'-S-phosphorodithioate linkage form much weaker duplexes with their complementary sequences.
Collapse
Affiliation(s)
- Magdalena Olesiak
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | | | | |
Collapse
|
5
|
Capaldi DC, Cole DL, Ravikumar VT. Highly efficient solid phase synthesis of oligonucleotide analogs containing phosphorodithioate linkages. Nucleic Acids Res 2000; 28:E40. [PMID: 10756207 PMCID: PMC103313 DOI: 10.1093/nar/28.9.e40] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A triester method for the synthesis of deoxynucleoside phosphorodithioate dimers is described. The phosphorodithioate linkage is introduced using a new dithiophosphorylating reagent DPSE-SP(S)Cl(2)where DPSE = 2-diphenylmethylsilylethyl. This group is removed quickly using tetra-butylammonium fluoride leading to the quantitative formation of phosphorodithioate diesters uncontaminated with the corresponding phosphorothioates. The utility of this group is demonstrated by the synthesis of a penta-decathymidylic acid, [T(PS(2))T(PO(2))](7)T, which contains alternating phosphorodithioate/phosphate diester internucleotide linkages.
Collapse
Affiliation(s)
- D C Capaldi
- Isis Pharmaceuticals, 2292 Faraday Avenue, Carlsbad, CA 92008, USA
| | | | | |
Collapse
|
6
|
Yang X, Fennewald S, Luxon BA, Aronson J, Herzog NK, Gorenstein DG. Aptamers containing thymidine 3'-O-phosphorodithioates: synthesis and binding to nuclear factor-kappaB. Bioorg Med Chem Lett 1999; 9:3357-62. [PMID: 10612599 DOI: 10.1016/s0960-894x(99)00600-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aptamers targeting NF-kappaB containing thymidine 3'-O-phosphorodithioates in selected positions of an oligonucleotide duplex were synthesized. Binding affinities to NF-kappaB varied with the number and positions of the dithioate backbone substitutions. One of the aptamers showed specific binding to a single NF-kappaB dimer in cell culture extracts.
Collapse
Affiliation(s)
- X Yang
- Sealy Center for Structural Biology, Department of Human Biological Chemistry & Genetics, The University of Texas Medical Branch at Galveston, 77555-1157, USA
| | | | | | | | | | | |
Collapse
|
9
|
Zain R, Stawinski J. Nucleoside H-Phosphonates. 17. Synthetic and (31)P NMR Studies on the Preparation of Dinucleoside H-Phosphonothioates. J Org Chem 1996; 61:6617-6622. [PMID: 11667530 DOI: 10.1021/jo960810m] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Formation of H-phosphonothioate diesters via condensation of H-phosphonate monoesters with a hydroxylic component in the presence of various coupling agents and possible side reactions that may accompany this process were studied using (31)P NMR spectroscopy. Optimal reaction conditions, which eliminate or significantly suppress the side reactions, have been designed and assessed in syntheses of dinucleoside H-phosphonothioate diesters.
Collapse
Affiliation(s)
- Rula Zain
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | | |
Collapse
|
12
|
Virnekäs B, Ge L, Plückthun A, Schneider KC, Wellnhofer G, Moroney SE. Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucleic Acids Res 1994; 22:5600-7. [PMID: 7838712 PMCID: PMC310122 DOI: 10.1093/nar/22.25.5600] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Trinucleotide phosphoramidites representing codons for all 20 amino acids have been prepared and used in automated, solid-phase DNA synthesis. In contrast to an earlier report, we show that these substances can be used to introduce entire codons into oligonucleotides in excess of 98% yield, and are ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis.
Collapse
|