1
|
Kadouri N, Givony T, Nevo S, Hey J, Ben Dor S, Damari G, Dassa B, Dobes J, Weichenhan D, Bähr M, Paulsen M, Haffner-Krausz R, Mall MA, Plass C, Goldfarb Y, Abramson J. Transcriptional regulation of the thymus master regulator Foxn1. Sci Immunol 2022; 7:eabn8144. [PMID: 36026441 DOI: 10.1126/sciimmunol.abn8144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
FOXN1 is a transcription factor critical for the development of both thymic epithelial cell (TEC) and hair follicle cell (HFC) compartments. However, mechanisms controlling its expression remain poorly understood. To address this question, we performed thorough analyses of the evolutionary conservation and chromatin status of the Foxn1 locus in different tissues and states and identified several putative cis-regulatory regions unique to TECs versus HFCs. Furthermore, experiments using genetically modified mice with specific deletions in the Foxn1 locus and additional bioinformatic analyses helped us identify key regions and transcription factors involved in either positive or negative regulation of Foxn1 in both TECs and HFCs. Specifically, we identified SIX1 and FOXN1 itself as key factors inducing Foxn1 expression in embryonic and neonatal TECs. Together, our data provide important mechanistic insights into the transcriptional regulation of the Foxn1 gene in TEC versus HFC and highlight the role of FOXN1 in its autoregulation.
Collapse
Affiliation(s)
- Noam Kadouri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Givony
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shir Nevo
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Shifra Ben Dor
- Bioinformatics Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Golda Damari
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Jan Dobes
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marion Bähr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michelle Paulsen
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany
| | | | - Marcus A Mall
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany.,Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yael Goldfarb
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
2
|
Master control: transcriptional regulation of mammalian Myod. J Muscle Res Cell Motil 2019; 40:211-226. [PMID: 31301002 PMCID: PMC6726840 DOI: 10.1007/s10974-019-09538-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022]
Abstract
MYOD is a master regulator of the skeletal myogenic program. But what regulates expression of Myod? More than 20 years ago, studies established that Myod expression is largely controlled by just two enhancer regions located within a region 24 kb upstream of the transcription start site in mammals, which regulate Myod expression in the embryo, fetus and adult. Despite this apparently simple arrangement, Myod regulation is complex, with different combinations of transcription factors acting on these enhancers in different muscle progenitor cells and phases of differentiation. A range of epigenetic modifications in the Myod upstream region also play a part in activating and repressing Myod expression during development and regeneration. Here the evidence for this binding at Myod control regions is summarized, giving an overview of our current understanding of Myod expression regulation in mammals.
Collapse
|
3
|
Tsukamoto S, Shibasaki A, Naka A, Saito H, Iida K. Lactate Promotes Myoblast Differentiation and Myotube Hypertrophy via a Pathway Involving MyoD In Vitro and Enhances Muscle Regeneration In Vivo. Int J Mol Sci 2018; 19:ijms19113649. [PMID: 30463265 PMCID: PMC6274869 DOI: 10.3390/ijms19113649] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
Lactate is a metabolic substrate mainly produced in muscles, especially during exercise. Recently, it was reported that lactate affects myoblast differentiation; however, the obtained results are inconsistent and the in vivo effect of lactate remains unclear. Our study thus aimed to evaluate the effects of lactate on myogenic differentiation and its underlying mechanism. The differentiation of C2C12 murine myogenic cells was accelerated in the presence of lactate and, consequently, myotube hypertrophy was achieved. Gene expression analysis of myogenic regulatory factors showed significantly increased myogenic determination protein (MyoD) gene expression in lactate-treated cells compared with that in untreated ones. Moreover, lactate enhanced gene and protein expression of myosin heavy chain (MHC). In particular, lactate increased gene expression of specific MHC isotypes, MHCIIb and IId/x, in a dose-dependent manner. Using a reporter assay, we showed that lactate increased promoter activity of the MHCIIb gene and that a MyoD binding site in the promoter region was necessary for the lactate-induced increase in activity. Finally, peritoneal injection of lactate in mice resulted in enhanced regeneration and fiber hypertrophy in glycerol-induced regenerating muscles. In conclusion, physiologically high lactate concentrations modulated muscle differentiation by regulating MyoD-associated networks, thereby enhancing MHC expression and myotube hypertrophy in vitro and, potentially, in vivo.
Collapse
Affiliation(s)
- Sakuka Tsukamoto
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan.
| | - Ayako Shibasaki
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan.
| | - Ayano Naka
- Laboratory of Applied Nutrition, Faculty of Human Life and Environmental Sciences, Ochanomizu University, Tokyo 112-8610, Japan..
| | - Hazuki Saito
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan.
| | - Kaoruko Iida
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan.
- The Institute for Human Life Innovation, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.
| |
Collapse
|
4
|
Role of PRDM16 and its PR domain in the epigenetic regulation of myogenic and adipogenic genes during transdifferentiation of C2C12 cells. Gene 2015; 570:191-8. [DOI: 10.1016/j.gene.2015.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/02/2015] [Accepted: 06/05/2015] [Indexed: 12/18/2022]
|
5
|
Wnt3a signal pathways activate MyoD expression by targeting cis-elements inside and outside its distal enhancer. Biosci Rep 2015; 35:BSR20140177. [PMID: 25651906 PMCID: PMC4370097 DOI: 10.1042/bsr20140177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Wnt proteins are secreted cytokines and several Wnts are expressed in the developing somites and surrounding tissues. Without proper Wnt stimulation, the organization of the dermomyotome and myotome can become defective. These Wnt signals received by somitic cells can lead to activation of Pax3/Pax7 and myogenic regulatory factors (MRFs), especially Myf5 and MyoD. However, it is currently unknown whether Wnts activate Myf5 and MyoD through direct targeting of their cis-regulatory elements or via indirect pathways. To clarify this issue, in the present study, we tested the regulation of MyoD cis-regulatory elements by Wnt3a secreted from human embryonic kidney (HEK)-293T cells. We found that Wnt3a activated the MyoD proximal 6.0k promoter (P6P) only marginally, but highly enhanced the activity of the composite P6P plus distal enhancer (DE) reporter through canonical and non-canonical pathways. Further screening of the intervening fragments between the DE and the P6P identified a strong Wnt-response element (WRE) in the upstream −8 to −9k region (L fragment) that acted independently of the DE, but was dependent on the P6P. Deletion of a Pax3/Pax7-targeted site in the L fragment significantly reduced its response to Wnt3a, implying that Wnt3a activates the L fragment partially through Pax3/Pax7 action. Binding of β-catenin and Pax7 to their target sites in the DE and the L fragment respectively was also demonstrated by ChIP. These observations demonstrated the first time that Wnt3a can directly activate MyoD expression through targeting cis-elements in the DE and the L fragment. We found that Wnt3a can directly activate MyoD expression through targeting cis-elements in the distal enhancer and in the upstream −8 to −9k region. A novel Pax3/Pax7-involved pathway and both canonical and non-canonical Wnt pathways are involved in this activation.
Collapse
|
6
|
Cattenoz PB, Giangrande A. New insights in the clockwork mechanism regulating lineage specification: Lessons from the Drosophila nervous system. Dev Dyn 2014; 244:332-41. [PMID: 25399853 DOI: 10.1002/dvdy.24228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Powerful transcription factors called fate determinants induce robust differentiation programs in multipotent cells and trigger lineage specification. These factors guarantee the differentiation of specific tissues/organs/cells at the right place and the right moment to form a fully functional organism. Fate determinants are activated by temporal, positional, epigenetic, and post-transcriptional cues, hence integrating complex and dynamic developmental networks. In turn, they activate specific transcriptional/epigenetic programs that secure novel molecular landscapes. RESULTS In this review, we use the Drosophila Gcm glial determinant as a model to discuss the mechanisms that allow lineage specification in the nervous system. The dynamic regulation of Gcm via interlocked loops has recently emerged as a key event in the establishment of stable identity. Gcm induces gliogenesis while triggering its own extinction, thus preventing the appearance of metastable states and neoplastic processes. CONCLUSIONS Using simple animal models that allow in vivo manipulations provides a key tool to disentangle the complex regulation of cell fate determinants.
Collapse
Affiliation(s)
- Pierre B Cattenoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
7
|
Chakraborty S, Ji H, Kabadi AM, Gersbach CA, Christoforou N, Leong KW. A CRISPR/Cas9-based system for reprogramming cell lineage specification. Stem Cell Reports 2014; 3:940-7. [PMID: 25448066 PMCID: PMC4264059 DOI: 10.1016/j.stemcr.2014.09.013] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 12/12/2022] Open
Abstract
Gene activation by the CRISPR/Cas9 system has the potential to enable new approaches to science and medicine, but the technology must be enhanced to robustly control cell behavior. We show that the fusion of two transactivation domains to Cas9 dramatically enhances gene activation to a level that is necessary to reprogram cell phenotype. Targeted activation of the endogenous Myod1 gene locus with this system led to stable and sustained reprogramming of mouse embryonic fibroblasts into skeletal myocytes. The levels of myogenic marker expression obtained by the activation of endogenous Myod1 gene were comparable to that achieved by overexpression of lentivirally delivered MYOD1 transcription factor. RNA-guided VP64dCas9-BFPVP64 fusion protein robustly activates endogenous Myod1 Transactivated Myod1 can reprogram mouse embryonic fibroblasts to skeletal myocytes VP64 fusion to both the N and C terminus of dCas9-BFP facilitates reprogramming Myogenic gene expression is comparable to MYOD1 overexpression-based reprogramming
Collapse
Affiliation(s)
- Syandan Chakraborty
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - HaYeun Ji
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Ami M Kabadi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA; Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27708, USA
| | - Nicolas Christoforou
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Biomedical Engineering, Khalifa University, Abu Dhabi 127788, UAE
| | - Kam W Leong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
8
|
Zhang Q, Bhattacharya S, Andersen ME. Ultrasensitive response motifs: basic amplifiers in molecular signalling networks. Open Biol 2013; 3:130031. [PMID: 23615029 PMCID: PMC3718334 DOI: 10.1098/rsob.130031] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multi-component signal transduction pathways and gene regulatory circuits underpin integrated cellular responses to perturbations. A recurring set of network motifs serve as the basic building blocks of these molecular signalling networks. This review focuses on ultrasensitive response motifs (URMs) that amplify small percentage changes in the input signal into larger percentage changes in the output response. URMs generally possess a sigmoid input–output relationship that is steeper than the Michaelis–Menten type of response and is often approximated by the Hill function. Six types of URMs can be commonly found in intracellular molecular networks and each has a distinct kinetic mechanism for signal amplification. These URMs are: (i) positive cooperative binding, (ii) homo-multimerization, (iii) multistep signalling, (iv) molecular titration, (v) zero-order covalent modification cycle and (vi) positive feedback. Multiple URMs can be combined to generate highly switch-like responses. Serving as basic signal amplifiers, these URMs are essential for molecular circuits to produce complex nonlinear dynamics, including multistability, robust adaptation and oscillation. These dynamic properties are in turn responsible for higher-level cellular behaviours, such as cell fate determination, homeostasis and biological rhythm.
Collapse
Affiliation(s)
- Qiang Zhang
- Center for Dose Response Modeling, Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
9
|
Ejarque M, Cervantes S, Pujadas G, Tutusaus A, Sanchez L, Gasa R. Neurogenin3 cooperates with Foxa2 to autoactivate its own expression. J Biol Chem 2013; 288:11705-17. [PMID: 23471965 DOI: 10.1074/jbc.m112.388173] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transcription factor Neurogenin3 functions as a master regulator of endocrine pancreas formation, and its deficiency leads to the development of diabetes in humans and mice. In the embryonic pancreas, Neurogenin3 is transiently expressed at high levels for a narrow time window to initiate endocrine differentiation in scattered progenitor cells. The mechanisms controlling these rapid and robust changes in Neurogenin3 expression are poorly understood. In this study, we characterize a Neurogenin3 positive autoregulatory loop whereby this factor may rapidly induce its own levels. We show that Neurogenin3 binds to a conserved upstream fragment of its own gene, inducing deposition of active chromatin marks and the activation of Neurog3 transcription. Additionally, we show that the broadly expressed endodermal forkhead factors Foxa1 and Foxa2 can cooperate synergistically to amplify Neurogenin3 autoregulation in vitro. However, only Foxa2 colocalizes with Neurogenin3 in pancreatic progenitors, thus indicating a primary role for this factor in regulating Neurogenin3 expression in vivo. Furthermore, in addition to decreasing Neurog3 autoregulation, inhibition of Foxa2 by RNA interference attenuates Neurogenin3-dependent activation of the endocrine developmental program in cultured duct mPAC cells. Hence, these data uncover the potential functional cooperation between the endocrine lineage-determining factor Neurogenin3 and the widespread endoderm progenitor factor Foxa2 in the implementation of the endocrine developmental program in the pancreas.
Collapse
Affiliation(s)
- Miriam Ejarque
- Diabetes and Obesity Laboratory, Institut D'Investigacions Biomèdiques August Pi i Sunyer-Hospital Clínic, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Tsumagari K, Baribault C, Terragni J, Varley KE, Gertz J, Pradhan S, Badoo M, Crain CM, Song L, Crawford GE, Myers RM, Lacey M, Ehrlich M. Early de novo DNA methylation and prolonged demethylation in the muscle lineage. Epigenetics 2013; 8:317-32. [PMID: 23417056 PMCID: PMC3669123 DOI: 10.4161/epi.23989] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 12/31/2022] Open
Abstract
Myogenic cell cultures derived from muscle biopsies are excellent models for human cell differentiation. We report the first comprehensive analysis of myogenesis-specific DNA hyper- and hypo-methylation throughout the genome for human muscle progenitor cells (both myoblasts and myotubes) and skeletal muscle tissue vs. 30 non-muscle samples using reduced representation bisulfite sequencing. We also focused on four genes with extensive hyper- or hypo-methylation in the muscle lineage (PAX3, TBX1, MYH7B/MIR499 and OBSCN) to compare DNA methylation, DNaseI hypersensitivity, histone modification, and CTCF binding profiles. We found that myogenic hypermethylation was strongly associated with homeobox or T-box genes and muscle hypomethylation with contractile fiber genes. Nonetheless, there was no simple relationship between differential gene expression and myogenic differential methylation, rather only for subsets of these genes, such as contractile fiber genes. Skeletal muscle retained ~30% of the hypomethylated sites but only ~3% of hypermethylated sites seen in myogenic progenitor cells. By enzymatic assays, skeletal muscle was 2-fold enriched globally in genomic 5-hydroxymethylcytosine (5-hmC) vs. myoblasts or myotubes and was the only sample type enriched in 5-hmC at tested myogenic hypermethylated sites in PAX3/CCDC140 andTBX1. TET1 and TET2 RNAs, which are involved in generation of 5-hmC and DNA demethylation, were strongly upregulated in myoblasts and myotubes. Our findings implicate de novo methylation predominantly before the myoblast stage and demethylation before and after the myotube stage in control of transcription and co-transcriptional RNA processing. They also suggest that, in muscle, TET1 or TET2 are involved in active demethylation and in formation of stable 5-hmC residues.
Collapse
MESH Headings
- 5-Methylcytosine/analogs & derivatives
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- CCCTC-Binding Factor
- Cardiac Myosins/genetics
- Cardiac Myosins/metabolism
- Case-Control Studies
- Cell Lineage/genetics
- Child
- Cytosine/analogs & derivatives
- Cytosine/metabolism
- DNA Methylation
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dioxygenases
- Epigenesis, Genetic
- Female
- Gene Expression Regulation, Developmental
- Genes, Homeobox
- Genome, Human
- Guanine Nucleotide Exchange Factors/genetics
- Guanine Nucleotide Exchange Factors/metabolism
- Histones/metabolism
- Humans
- Infant, Newborn
- Male
- Middle Aged
- Mixed Function Oxygenases
- Muscle Development/genetics
- Muscle Fibers, Skeletal/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscular Dystrophy, Facioscapulohumeral/genetics
- Muscular Dystrophy, Facioscapulohumeral/metabolism
- Myoblasts/metabolism
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- PAX3 Transcription Factor
- Paired Box Transcription Factors/genetics
- Paired Box Transcription Factors/metabolism
- Protein Serine-Threonine Kinases
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Repressor Proteins/metabolism
- Rho Guanine Nucleotide Exchange Factors
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Koji Tsumagari
- Program in Human Genetics and Tulane Cancer Center; Tulane Health Sciences Center; New Orleans, LA USA
| | - Carl Baribault
- Tulane Cancer Center and Department of Mathematics; Tulane Health Sciences Center and Tulane University; New Orleans, LA USA
| | | | | | - Jason Gertz
- HudsonAlpha Institute for Biotechnology; Huntsville, AL USA
| | | | - Melody Badoo
- Department of Pathology and Tulane Cancer Center; Tulane Health Sciences Center; New Orleans, LA USA
| | - Charlene M. Crain
- Center for Stem Cell Research and Regenerative Medicine; Tulane Health Sciences Center; New Orleans, LA USA
| | - Lingyun Song
- Institute for Genome Sciences & Policy; Duke University; Durham, NC USA
| | | | | | - Michelle Lacey
- Tulane Cancer Center and Department of Mathematics; Tulane Health Sciences Center and Tulane University; New Orleans, LA USA
| | - Melanie Ehrlich
- Program in Human Genetics; Tulane Cancer Center and Center for Bioinformatics and Genomics; Tulane Health Sciences Center; New Orleans, LA USA
| |
Collapse
|
11
|
Mead TJ, Wang Q, Bhattaram P, Dy P, Afelik S, Jensen J, Lefebvre V. A far-upstream (-70 kb) enhancer mediates Sox9 auto-regulation in somatic tissues during development and adult regeneration. Nucleic Acids Res 2013; 41:4459-69. [PMID: 23449223 PMCID: PMC3632127 DOI: 10.1093/nar/gkt140] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
SOX9 encodes a transcription factor that presides over the specification and differentiation of numerous progenitor and differentiated cell types, and although SOX9 haploinsufficiency and overexpression cause severe diseases in humans, including campomelic dysplasia, sex reversal and cancer, the mechanisms underlying SOX9 transcription remain largely unsolved. We identify here an evolutionarily conserved enhancer located 70-kb upstream of mouse Sox9 and call it SOM because it specifically activates a Sox9 promoter reporter in most Sox9-expressing somatic tissues in transgenic mice. Moreover, SOM-null fetuses and pups reduce Sox9 expression by 18–37% in the pancreas, lung, kidney, salivary gland, gut and liver. Weanlings exhibit half-size pancreatic islets and underproduce insulin and glucagon, and adults slowly recover from acute pancreatitis due to a 2-fold impairment in Sox9 upregulation. Molecular and genetic experiments reveal that Sox9 protein dimers bind to multiple recognition sites in the SOM sequence and are thereby both necessary and sufficient for enhancer activity. These findings thus uncover that Sox9 directly enhances its functions in somatic tissue development and adult regeneration through SOM-mediated positive auto-regulation. They provide thereby novel insights on molecular mechanisms controlling developmental and disease processes and suggest new strategies to improve disease treatments.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Cellular and Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Epigenetic modification of the repair donor regulates targeted gene correction. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e49. [PMID: 23344649 PMCID: PMC3499697 DOI: 10.1038/mtna.2012.42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optimizing design of vectors is critical to effective gene therapy. In targeted gene correction (TGC), cleavage of chromosomal DNA near a mutation stimulates homology-directed repair of a target gene using a donor provided in trans. We have systematically addressed epigenetic parameters of donor design, using a flow-based assay to quantify correction frequencies and expression levels of a green fluorescent protein (GFP) reporter gene in a human cell line. We show that active transcription of the donor increased correction frequency by threefold, establishing that a proximal promoter enhances donor use. Conversely, CpG methylation of the donor diminished correction frequency and reduced expression of the repaired gene. However, bisulfite sequencing of the target revealed no transfer of methylation marks during repair with a methylated donor. Treatment with histone deacetylase (HDAC) inhibitors can partially compensate for epigenetic inactivation, suggesting a role for class I and II HDACs in regulation of donor use. These results establish that epigenetic status of a trans-donor determines both the efficiency and outcome of gene correction, and identify and clarify parameters that should guide donor design for targeted gene therapy.Molecular Therapy - Nucleic Acids (2012) 1, e49; doi:10.1038/mtna.2012.42; published online 23 October 2012.
Collapse
|
13
|
Tsumagari K, Chang SC, Lacey M, Baribault C, Chittur SV, Sowden J, Tawil R, Crawford GE, Ehrlich M. Gene expression during normal and FSHD myogenesis. BMC Med Genomics 2011; 4:67. [PMID: 21951698 PMCID: PMC3204225 DOI: 10.1186/1755-8794-4-67] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/27/2011] [Indexed: 01/31/2023] Open
Abstract
Background Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contraction of an array of tandem 3.3-kb repeats (D4Z4) at 4q35. Within each repeat unit is a gene, DUX4, that can encode a protein containing two homeodomains. A DUX4 transcript derived from the last repeat unit in a contracted array is associated with pathogenesis but it is unclear how. Methods Using exon-based microarrays, the expression profiles of myogenic precursor cells were determined. Both undifferentiated myoblasts and myoblasts differentiated to myotubes derived from FSHD patients and controls were studied after immunocytochemical verification of the quality of the cultures. To further our understanding of FSHD and normal myogenesis, the expression profiles obtained were compared to those of 19 non-muscle cell types analyzed by identical methods. Results Many of the ~17,000 examined genes were differentially expressed (> 2-fold, p < 0.01) in control myoblasts or myotubes vs. non-muscle cells (2185 and 3006, respectively) or in FSHD vs. control myoblasts or myotubes (295 and 797, respectively). Surprisingly, despite the morphologically normal differentiation of FSHD myoblasts to myotubes, most of the disease-related dysregulation was seen as dampening of normal myogenesis-specific expression changes, including in genes for muscle structure, mitochondrial function, stress responses, and signal transduction. Other classes of genes, including those encoding extracellular matrix or pro-inflammatory proteins, were upregulated in FSHD myogenic cells independent of an inverse myogenesis association. Importantly, the disease-linked DUX4 RNA isoform was detected by RT-PCR in FSHD myoblast and myotube preparations only at extremely low levels. Unique insights into myogenesis-specific gene expression were also obtained. For example, all four Argonaute genes involved in RNA-silencing were significantly upregulated during normal (but not FSHD) myogenesis relative to non-muscle cell types. Conclusions DUX4's pathogenic effect in FSHD may occur transiently at or before the stage of myoblast formation to establish a cascade of gene dysregulation. This contrasts with the current emphasis on toxic effects of experimentally upregulated DUX4 expression at the myoblast or myotube stages. Our model could explain why DUX4's inappropriate expression was barely detectable in myoblasts and myotubes but nonetheless linked to FSHD.
Collapse
Affiliation(s)
- Koji Tsumagari
- Human Genetics Program, Tulane Medical School, New Orleans, LA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nishino K, Toyoda M, Yamazaki-Inoue M, Fukawatase Y, Chikazawa E, Sakaguchi H, Akutsu H, Umezawa A. DNA methylation dynamics in human induced pluripotent stem cells over time. PLoS Genet 2011; 7:e1002085. [PMID: 21637780 PMCID: PMC3102737 DOI: 10.1371/journal.pgen.1002085] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/01/2011] [Indexed: 01/23/2023] Open
Abstract
Epigenetic reprogramming is a critical event in the generation of induced pluripotent stem cells (iPSCs). Here, we determined the DNA methylation profiles of 22 human iPSC lines derived from five different cell types (human endometrium, placental artery endothelium, amnion, fetal lung fibroblast, and menstrual blood cell) and five human embryonic stem cell (ESC) lines, and we followed the aberrant methylation sites in iPSCs for up to 42 weeks. The iPSCs exhibited distinct epigenetic differences from ESCs, which were caused by aberrant methylation at early passages. Multiple appearances and then disappearances of random aberrant methylation were detected throughout iPSC reprogramming. Continuous passaging of the iPSCs diminished the differences between iPSCs and ESCs, implying that iPSCs lose the characteristics inherited from the parent cells and adapt to very closely resemble ESCs over time. Human iPSCs were gradually reprogrammed through the "convergence" of aberrant hyper-methylation events that continuously appeared in a de novo manner. This iPS reprogramming consisted of stochastic de novo methylation and selection/fixation of methylation in an environment suitable for ESCs. Taken together, random methylation and convergence are driving forces for long-term reprogramming of iPSCs to ESCs.
Collapse
Affiliation(s)
- Koichiro Nishino
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Masashi Toyoda
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Mayu Yamazaki-Inoue
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Yoshihiro Fukawatase
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Emi Chikazawa
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Hironari Sakaguchi
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Hidenori Akutsu
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
15
|
Matsakas A, Otto A, Elashry MI, Brown SC, Patel K. Altered primary and secondary myogenesis in the myostatin-null mouse. Rejuvenation Res 2011; 13:717-27. [PMID: 21204650 DOI: 10.1089/rej.2010.1065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle fiber generation occurs principally in two myogenic phases: (1) Primary (embryonic) myogenesis when myoblasts proliferate and fuse to form primary myotubes and (2) secondary (fetal) myogenesis when successive waves of myoblasts fuse along the surface of the primary myotubes, giving rise to a population of smaller and more numerous secondary myotubes. This sequence of events determines fiber number and is completed at or soon after birth in most muscles of the mouse. The adult myostatin null mouse (MSTN(-/-)) displays both an increase in fiber number and size relative to wild type (MSTN(+/+)), suggesting a developmental origin for the hypermuscular phenotype. The focus of the present study was to determine at which point during myogenesis do MSTN(-/-) animals diverge from MSTN(+/+). To achieve this, we focused on the extensor digitorum longus (EDL) muscle and evaluated primary myotube number at embryonic day (E) 13.0 and E14.5 and secondary to primary myotube ratios at E18.5. We show that primary myotube number and size were significantly increased in the MSTN(-/-) mice by E14.5 and the secondary to primary myotube ratio increased at E18.5. This increase in the rate of fiber formation resulted in MSTN(-/-) mice harboring 87% of their final adult fiber number at E18.5, compared to only 73% in MSTN(+/+). An accelerated myogenic program in the MSTN(-/-) mice was further confirmed by our finding of an initial expansion in the myogenic stem cell (identified through Pax7 expression) and myoblast (identified through myogenin expression) cell pools at E14.5 in the EDL muscle of these animals that was, however, followed by a reduction of both populations of cells at E18.5 relative to MSTN(+/+). Overall these data suggest that the genetic loss of myostatin accelerates the developmental myogenic program of primary and secondary skeletal myogenesis.
Collapse
Affiliation(s)
- Antonios Matsakas
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | | | | | | | | |
Collapse
|
16
|
Defining hypo-methylated regions of stem cell-specific promoters in human iPS cells derived from extra-embryonic amnions and lung fibroblasts. PLoS One 2010; 5:e13017. [PMID: 20885964 PMCID: PMC2946409 DOI: 10.1371/journal.pone.0013017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 09/06/2010] [Indexed: 11/28/2022] Open
Abstract
Background Human induced pluripotent stem (iPS) cells are currently used as powerful resources in regenerative medicine. During very early developmental stages, DNA methylation decreases to an overall low level at the blastocyst stage, from which embryonic stem cells are derived.Therefore, pluripotent stem cells, such as ES and iPS cells, are considered to have hypo-methylated status compared to differentiated cells. However, epigenetic mechanisms of “stemness” remain unknown in iPS cells derived from extra-embryonic and embryonic cells. Methodology/Principal Findings We examined genome-wide DNA methylation (24,949 CpG sites covering 1,3862 genes, mostly selected from promoter regions) with six human iPS cell lines derived from human amniotic cells and fetal lung fibroblasts as well as two human ES cell lines, and eight human differentiated cell lines using Illumina's Infinium HumanMethylation27. A considerable fraction (807 sites) exhibited a distinct difference in the methylation level between the iPS/ES cells and differentiated cells, with 87.6% hyper-methylation seen in iPS/ES cells. However, a limited fraction of CpG sites with hypo-methylation was found in promoters of genes encoding transcription factors. Thus, a group of genes becomes active through a decrease of methylation in their promoters. Twenty-three genes including SOX15, SALL4, TDGF1, PPP1R16B and SOX10 as well as POU5F1 were defined as genes with hypo-methylated SS-DMR (Stem cell-Specific Differentially Methylated Region) and highly expression in iPS/ES cells. Conclusions/Significance We show that DNA methylation profile of human amniotic iPS cells as well as fibroblast iPS cells, and defined the SS-DMRs. Knowledge of epigenetic information across iPS cells derived from different cell types can be used as a signature for “stemness” and may allow us to screen for optimum iPS/ES cells and to validate and monitor iPS/ES cell derivatives for human therapeutic applications.
Collapse
|
17
|
Takagi H, Tajima S, Asano A. Overexpression of DNA Methyltransferase in Myoblast Cells Accelerates Myotube Formation. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.0282e.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Hauser J, Saarikettu J, Grundström T. Calcium regulation of myogenesis by differential calmodulin inhibition of basic helix-loop-helix transcription factors. Mol Biol Cell 2008; 19:2509-19. [PMID: 18353974 DOI: 10.1091/mbc.e07-09-0886] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The members of the MyoD family of basic helix-loop-helix (bHLH) transcription factors are critical regulators of skeletal muscle differentiation that function as heterodimers with ubiquitously expressed E-protein bHLH transcription factors. These heterodimers must compete successfully with homodimers of E12 and other E-proteins to enable myogenesis. Here, we show that E12 mutants resistant to Ca(2+)-loaded calmodulin (CaM) inhibit MyoD-initiated myogenic conversion of transfected fibroblasts. Ca(2+) channel blockers reduce, and Ca(2+) stimulation increases, transcription by coexpressed MyoD and wild-type E12 but not CaM-resistant mutant E12. Furthermore, CaM-resistant E12 gives lower MyoD binding and higher E12 binding to a MyoD-responsive promoter in vivo and cannot rescue myogenic differentiation that has been inhibited by siRNA against E12 and E47. Our data support the concept that Ca(2+)-loaded CaM enables myogenesis by inhibiting DNA binding of E-protein homodimers, thereby promoting occupancy of myogenic bHLH protein/E-protein heterodimers on promoters of myogenic target genes.
Collapse
Affiliation(s)
- Jannek Hauser
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | |
Collapse
|
19
|
Esumi N, Kachi S, Campochiaro PA, Zack DJ. VMD2 promoter requires two proximal E-box sites for its activity in vivo and is regulated by the MITF-TFE family. J Biol Chem 2006; 282:1838-50. [PMID: 17085443 DOI: 10.1074/jbc.m609517200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinal pigment epithelium (RPE) is crucial for the function and survival of retinal photoreceptors. VMD2 encodes bestrophin, an oligomeric chloride channel that is preferentially expressed in the RPE and, when mutated, causes Best macular dystrophy. Previously, we defined the VMD2 upstream region from -253 to +38 bp as being sufficient to direct RPE-specific expression in the eye, and we suggested microphthalmia-associated transcription factor (MITF) as a possible positive regulator. Here we show that in transgenic mice the -154 to +38 bp region is sufficient for RPE expression, and mutation of two E-boxes, 1 and 2, within this region leads to loss of promoter activity. A yeast one-hybrid screen using bait containing E-box 1 identified clones encoding MITF, TFE3, and TFEB, and chromatin immunoprecipitation with antibodies against these proteins enriched the VMD2 proximal promoter. Analysis using in vivo electroporation with constructs containing mutation of each E-box indicated that expression in native RPE requires both E-boxes, yet in vitro DNA binding studies suggested that MITF binds well to E-box 1 but only minimally to E-box 2. MITF knockdown by small interfering RNA (siRNA) in cell culture revealed a strong correlation between MITF and VMD2 mRNA levels. Sequential transfection of a luciferase construct with expression vectors following MITF siRNA revealed that TFE3 and TFEB can also transactivate the VMD2 promoter. Taken together, we suggest that VMD2 is regulated by the MITF-TFE family through two E-boxes, with E-box 1 required for a direct interaction of MITF-TFE factors and E-box 2 for binding of the as yet unidentified factor(s).
Collapse
Affiliation(s)
- Noriko Esumi
- The Guerrieri Center for Genetic Engineering and Molecular Ophthalmology, The Wilmer Eye Institute, the Departments of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-9289, USA.
| | | | | | | |
Collapse
|
20
|
Bishop A, Kambadur R, Sharma M. The therapeutic potential of agents that inactivate myostatin. Expert Opin Investig Drugs 2006; 14:1099-106. [PMID: 16144494 DOI: 10.1517/13543784.14.9.1099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Myostatin is a member of the TGF-beta superfamily of secreted growth factors. A lack of functional myostatin or inhibition of the normal myostatin function results in an increased muscling phenotype and, conversely, the systemic administration of myostatin results in muscle wasting. Thus, myostatin is well established as a negative regulator of skeletal muscle mass. Myostatin binds to cell-surface receptors to inhibit both the proliferation and differentiation of myoblasts. Moreover, it functions to regulate both embryonic and post-natal musculature. Thus, potential antagonists to myostatin, whether targeting myostatin synthesis, secretion or receptor binding, show great promise as therapies against muscle-wasting diseases. This review provides an expert opinion on the biology and potential of myostatin antagonists in the treatment of muscle-wasting disorders.
Collapse
Affiliation(s)
- Amy Bishop
- AgResearch, East Street, Private Bag 3123, Hamilton, New Zealand
| | | | | |
Collapse
|
21
|
Zhao P, Hoffman EP. Musculin isoforms and repression of MyoD in muscle regeneration. Biochem Biophys Res Commun 2006; 342:835-42. [PMID: 16500621 DOI: 10.1016/j.bbrc.2006.01.188] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 01/23/2006] [Indexed: 11/16/2022]
Abstract
We studied possible negative regulators of MyoD using a 27 time point muscle regeneration series in vivo and identified Musculin as a key candidate for transcriptional repression of MyoD. Characterization of Musculin proteins showed two isoforms: the previously characterized 201 aa protein (1a) and a novel 180 aa isoform (1b). We show that the Musculin 1b isoform is equally effective at blocking MyoD-induced transcription as the 1a isoform. Our data narrow the likely repressor domain to between position 158 and 173 in the Musculin protein sequence, and suggest that the induction of Musculin is responsible for the rapid down-regulation of MyoD at 4-5 days during staged regeneration.
Collapse
Affiliation(s)
- Po Zhao
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | | |
Collapse
|
22
|
Esumi N, Oshima Y, Li Y, Campochiaro PA, Zack DJ. Analysis of the VMD2 Promoter and Implication of E-box Binding Factors in Its Regulation. J Biol Chem 2004; 279:19064-73. [PMID: 14982938 DOI: 10.1074/jbc.m309881200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinal pigment epithelium (RPE) is crucial for the normal development and function of retinal photo-receptors, and mutations in several genes that are preferentially expressed in the RPE have been shown to cause retinal degeneration. We analyzed the 5'-up-stream region of human VMD2, a gene that is preferentially expressed in the RPE and, when mutated, causes Best macular dystrophy. Transgenic mouse studies with VMD2 promoter/lacZ constructs demonstrated that a-253 to +38 bp fragment is sufficient to direct RPE-specific expression in the eye. Transient transfection assays using the D407 human RPE cell line with VMD2 promoter/luciferase reporter constructs identified two positive regulatory regions, -585 to -541 bp for high level expression and -56 to -42 bp for low level expression. Mutation of a canonical E-box located in the -56 to -42 bp region greatly diminished luciferase expression in D407 cells and abolished the bands shifted with bovine RPE nuclear extract in electrophoretic mobility shift assays. Independently a candidate approach was used to select microphthalmia-associated transcription factor (MITF) for testing because it is expressed in the RPE and associated with RPE abnormalities when mutated. MITF-M significantly increased luciferase expression in D407 cells in an E-box-dependent manner. These studies define the VMD2 promoter region sufficient to drive RPE-specific expression in the eye, identify positive regulatory regions in vitro, and suggest that MITF as well as other E-box binding factors may act as positive regulators of VMD2 expression.
Collapse
Affiliation(s)
- Noriko Esumi
- The Guerrieri Center for Genetic Engineering and Molecular Ophthalmology, Wilmer Eye Institute, and Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-9289, USA.
| | | | | | | | | |
Collapse
|
23
|
Vasicek R, Meinhardt G, Haidweger E, Rotheneder H, Husslein P, Knöfler M. Expression of the human Hand1 gene in trophoblastic cells is transcriptionally regulated by activating and repressing specificity protein (Sp)-elements. Gene 2003; 302:115-27. [PMID: 12527202 DOI: 10.1016/s0378-1119(02)01096-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The tissue-specific basic helix-loop-helix protein Hand1 is essential for the formation of trophoblast giant cells of the murine placenta. In humans, Hand1 is detectable in trophoblastic tumour cells suggesting an equivalent role in trophoblast differentiation. To understand its mode of expression we have cloned and characterized the human Hand1 gene promoter. Primer extension analyses suggest that transcription initiates 19 nucleotides downstream of the TATA element of the proximal 5' flanking region. Expression of luciferase reporter constructs harboring deletions of the 9.5 kb Hand1 5' flanking sequence defines a promoter region within 274 bp upstream of the transcriptional start site. Compared to a reporter bearing only the TATA box, the proximal promoter activates transcription up to 30-fold. However, transcriptional activity of the region was observed in both Hand1-expressing and non-expressing cell lines. Sequencing, DNAseI footprint analyses and electrophoretic mobility shift assays reveal the presence of four GC-rich sequences, which show different affinities to the endogenous specificity proteins (Sp), and a CCAAT box. In vitro, the Sp-elements mainly interact with Sp1 and Sp3 while the CCAAT element is recognized by the alpha CAAT binding factor protein. Mutant luciferase reporters bearing single active or inactive recognition sites demonstrate that two of the four Sp-binding sites (I and IV) contribute little to the overall transcription rate. The two other Sp-cognate sequences, II and III, downregulate and activate reporter expression 2.3- and 2.6-fold, respectively. Co-transfections of Sp1/Sp3 expression vectors and mutated reporter constructs in Sp-deficient SL2 cells indicate that the Sp-binding site II and III indeed function as repressing and activating enhancer sequences. In summary, the data suggest that constitutive expression of the Hand1 gene in cultured cells is regulated by a complex interplay of Sp-proteins interacting with activator and repressor elements.
Collapse
Affiliation(s)
- Richard Vasicek
- Department of Obstetrics and Gynecology, University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
24
|
Narimatsu M, Maeda H, Itoh S, Atsumi T, Ohtani T, Nishida K, Itoh M, Kamimura D, Park SJ, Mizuno K, Miyazaki J, Hibi M, Ishihara K, Nakajima K, Hirano T. Tissue-specific autoregulation of the stat3 gene and its role in interleukin-6-induced survival signals in T cells. Mol Cell Biol 2001; 21:6615-25. [PMID: 11533249 PMCID: PMC99807 DOI: 10.1128/mcb.21.19.6615-6625.2001] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2001] [Accepted: 07/02/2001] [Indexed: 11/20/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) mediates signals of various growth factors and cytokines, including interleukin-6 (IL-6). In certain IL-6-responsive cell lines, the stat3 gene is autoregulated by STAT3 through a composite IL-6 response element in its promoter that contains a STAT3-binding element (SBE) and a cyclic AMP-responsive element. To reveal the nature and roles of the stat3 autoregulation in vivo, we generated mice that harbor a mutation in the SBE (stat3(mSBE)). The intact SBE was crucial for IL-6-induced stat3 gene activation in the spleen, especially in the red pulp region, the kidney, and both mature and immature T lymphocytes. The SBE was not required, however, for IL-6-induced stat3 gene activation in hepatocytes. T lymphocytes from the stat3(mSBE/mSBE) mice were more susceptible to apoptosis despite the presence of IL-6 than those from wild-type mice. Consistent with this, IL-6-dependent activation of the Pim-1 and junB genes, direct target genes for STAT3, was attenuated in T lymphocytes of the stat3(mSBE/mSBE) mice. Thus, the tissue-specific autoregulation of the stat3 gene operates in vivo and plays a role in IL-6-induced antiapoptotic signaling in T cells.
Collapse
Affiliation(s)
- M Narimatsu
- Department of Molecular Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lucarelli M, Fuso A, Strom R, Scarpa S. The dynamics of myogenin site-specific demethylation is strongly correlated with its expression and with muscle differentiation. J Biol Chem 2001; 276:7500-6. [PMID: 11096088 DOI: 10.1074/jbc.m008234200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The molecular mechanisms underlying the activation of tissue-specific genes have not yet been fully clarified. We analyzed the methylation status of specific CCGG sites in the 5'-flanking region and exon 1 of myogenin gene, a very important myogenic differentiation factor. We demonstrated a loss of methylation, at the onset of C2C12 muscle cell line differentiation, limited to the CCGG site of myogenin 5'-flanking region, which was strongly correlated with the transcriptional activation of this gene and with myogenic differentiation. The same CCGG site was also found to be hypomethylated, in vivo, in embryonic mouse muscle (a myogenin-expressing tissue), as opposed to nonmuscle (nonexpressing) tissues that had a fully methylated site. In a C2C12-derived clone with enhanced myogenic ability, demethylation occurred within 2 h of induction of differentiation, suggesting the involvement of some active demethylation mechanism(s) that occur in the absence of DNA replication. Exposure to drugs that inhibit DNA methylation by acting on the S-adenosylmethionine metabolism produced a further reduction, to a few minutes, in the duration of the demethylation dynamics. These effects suggest that the final site-specific DNA methylation pattern of tissue-specific genes is defined through a continuous, relatively fast interplay between active DNA demethylation and re-methylation mechanisms.
Collapse
Affiliation(s)
- M Lucarelli
- Department of Cellular Biotechnologies and Hematology and I Department of Surgery, University of Rome "La Sapienza," Rome, Italy
| | | | | | | |
Collapse
|
26
|
Abstract
Mash1, a neural-specific bHLH transcription factor, is essential for the formation of multiple CNS and PNS neural lineages. Transcription from the Mash1 locus is elevated in mice null for Mash1, suggesting that MASH1 normally acts to repress its own transcription. This activity is contrary to the positive autoregulation of other proneural bHLH proteins. To investigate the mechanisms involved in this process, sequences flanking the Mash1 gene were tested for the ability to mediate negative autoregulation. A Mash1/lacZ transgene containing 36 kb of cis-regulatory sequence exhibits an increase in lacZ expression in the Mash1 mutant background, which phenocopies the observation of transcriptional autoregulation at the endogenous Mash1 locus. Using Mash1/lacZ lines with progressively less cis-acting sequence, autoregulatory responsive elements were demonstrated to colocalize with a previously characterized 1.2-kb CNS enhancer. Mutations of E-box sites within this enhancer did not result in an apparent loss of autoregulation, suggesting that MASH1 does not directly repress its own transcription. Interestingly, these mutations did not indicate any underlying positive auto- or cross-regulation of Mash1. Furthermore, the loss of autoregulation in the Mash1 mutant background is reminiscent of a loss of lateral inhibitory signaling. However, mutations in HES consensus sites, the likely purveyors of Notch-mediated lateral inhibition, do not support a role for these sites in negative autoregulation. We hypothesize that MASH1 normally inhibits its own expression indirectly, possibly through a HES-mediated repression of positive regulators or through novel HES binding sites.
Collapse
Affiliation(s)
- A Meredith
- Center for Basic Neuroscience, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas, 75235-9111, USA
| | | |
Collapse
|
27
|
Jones G, Chu YX, Schelling D, Jones D. Regulation of the juvenile hormone esterase gene by a composite core promoter. Biochem J 2000; 346 Pt 1:233-40. [PMID: 10657262 PMCID: PMC1220845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Transcription from the core promoter of the juvenile hormone esterase gene (-61 to +28) requires the presence of both an AT-rich motif (TATA box) and an initiator motif for any transcription to occur, when assayed by either transcription in vitro with lepidopteran Sf9 nuclear extracts or by transient-transfection assay in Sf9 cells. Additional gel-shift experiments indicated that at least one additional binding site is essential for transcription to occur. Mutational analysis in the transcription-in vitro and cell-transfection assays demonstrated that a 14-bp region from +13 to +27 relative to the transcription start site is also essential for transcription to occur. Whereas the wild-type core promoter is highly transcriptionally active, inclusion of additional flanking sequences to position -212 reduces that activity approx. 100-fold, and inclusion of the 5' region out to position -500 reduces transcription by 200-fold. The pattern of dependence on both the AT-rich motif and the initiator for detectable transcription, and the high innate activity being repressed by 5'-binding factors, was recapitulated in mosquito C7-10 cells. This study demonstrates that the cellular juvenile hormone esterase gene is organized as a composite core promoter, dependent on both TATA-box and initiator-binding factors, an organization that has been more commonly reported for viral promoters. This highly active composite core promoter is made more complex by the absolute dependence on the presence of a third site shortly downstream from the initiator, which is distinct from the 'downstream promoter element' described from some TATA-less genes. The juvenile hormone esterase gene thus appears to be a model of a cellular composite core promoter with a multipartite, indispensible requirement for not just both the TATA box and initiator, but also for at least a third core element as well.
Collapse
Affiliation(s)
- G Jones
- Cellular and Molecular Biology Section, School of Biological Sciences, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | |
Collapse
|
28
|
O'Rourke JP, Hutt JA, DeWille J. Transcriptional regulation of C/EBPdelta in G(0) growth-arrested mouse mammary epithelial cells. Biochem Biophys Res Commun 1999; 262:696-701. [PMID: 10471388 DOI: 10.1006/bbrc.1999.1256] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little is known about the control of cell cycle exit/G(0) entry, or the regulation of genes that are expressed during G(0). In this report we used primer extension analysis to demonstrate the high level of C/EBPdelta mRNA expression in G(0) growth-arrested HC11 mouse mammary epithelial cells and to identify the C/EBPdelta transcription start site. The C/EBPdelta gene transcription rate and promoter activity are both highly induced in G(0) growth-arrested HC11 cells. The C/EBPdelta gene promoter also exhibits G(0)-specific autoregulation. In contrast, the C/EBPdelta promoter activity decreases in G(0) growth-arrested NIH 3T3 cells. These data indicate that C/EBPdelta is among a relatively small number of genes actively transcribed during G(0) growth arrest. C/EBPdelta may regulate the expression of genes implicated in the initiation or maintenance of mammary epithelial cell G(0) growth arrest.
Collapse
Affiliation(s)
- J P O'Rourke
- Division of Molecular Biology and Cancer Genetics, Ohio State Comprehensive Cancer Center, Columbus, Ohio, 43210, USA
| | | | | |
Collapse
|
29
|
Miyachi T, Maruyama H, Kitamura T, Nakamura S, Kawakami H. Structure and regulation of the human NeuroD (BETA2/BHF1) gene. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 69:223-31. [PMID: 10366743 DOI: 10.1016/s0169-328x(99)00112-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, we isolated and characterized the human NeuroD (BETA2/BHF1) gene. This gene was found to consist of two exons and one intron. The promoter regions were well-conserved compared with the mouse NeuroD gene. Two transcription start points (TSPs) were determined by the oligo-capping method. One TATA box was located at -31 bp from the lower TSP. The results of a transient transfection assay using the human neuroblastoma cell line IMR-32 and hamster insulin tumor cell line HIT-T15 suggested that there are at least three positive regulatory regions in the promoter. In these regions, four E boxes (CANNTG), named the E1 to E4 boxes, and two GC boxes were present. Cotransfection of the NeuroD expression vector into IMR-32 cells enhanced the NeuroD promoter activity by about 4-fold. A deletion and mutation analysis revealed that the E1 and E4 boxes, especially the E1 box, are associated with autoactivation and that E2 and E3 boxes are not associated with autoactivation. As mutation analysis of E3 box showed a decrease in the enhancer activity to the basal level, it showed that the E3 box is important to activate the NeuroD transcription. These results raised the possibility that the NeuroD gene expression is positively regulated through the E box sequence, not only by NeuroD itself but also by another E box binding protein.
Collapse
Affiliation(s)
- T Miyachi
- Third Department of Internal Medicine, Hiroshima University School of Medicine, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | |
Collapse
|
30
|
Qu GZ, Ehrlich M. Demethylation and expression of methylated plasmid DNA stably transfected into HeLa cells. Nucleic Acids Res 1999; 27:2332-8. [PMID: 10325422 PMCID: PMC148799 DOI: 10.1093/nar/27.11.2332] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In vitro methylation at CG dinucleotides (CpGs) in a transfecting plasmid usually greatly inhibits gene expression in mammalian cells. However, we found that in vitro methylation of all CpGs in episomal or non-episomal plasmids containing the SV40 early promoter/enhancer (SV40 Pr/E) driving expression of an antibiotic-resistance gene decreased the formation of antibiotic-resistant colonies by only approximately 30-45% upon stable transfection of HeLa cells. In contrast, when expression of the antibiotic-resistance gene was driven by the Rous sarcoma virus long terminal repeat or the herpes simplex virus thymidine kinase promoter, this methylation decreased the yield of antibiotic-resistant HeLa transfectant colonies approximately 100-fold. The low sensitivity of the SV40 Pr/E to silencing by in vitro methylation was probably due to demethylation upon stable transfection. This demethylation may be targeted to the promoter and extend into the gene. By genomic sequencing, we showed that four out of six of the transfected SV40 Pr/E's adjacent Sp1 sites were hotspots for demethylation in the HeLa transfectants. High frequency demethylation at Sp1 sites was unexpected for a non-embryonal cell line and suggests that DNA demethylation targeted to certain aberrantly methylated regions may function as a repair system for epigenetic mistakes.
Collapse
Affiliation(s)
- G Z Qu
- Department of Biochemistry, Hayward Genetics Center, and Tulane Cancer Center, Tulane Medical School, New Orleans, LA 70122, USA
| | | |
Collapse
|
31
|
Benayoun B, Pelpel K, Solhonne B, Guillier M, Leibovitch SA. Overexpression of Mos(rat) proto-oncogene product enhances the positive autoregulatory loop of MyoD. FEBS Lett 1998; 437:39-43. [PMID: 9804168 DOI: 10.1016/s0014-5793(98)01192-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The myogenic b-HLH transcription factor MyoD activates expression of muscle-specific genes and autoregulates positively its own expression. Various factors such as growth factors and oncogene products repress transcriptional activity of MyoD. The c-mos proto-oncogene product, Mos, is a serine/threonine kinase that can activate myogenic differentiation by specific phosphorylation of MyoD which favors heterodimerization of MyoD and E12 proteins. Here we show that overexpression of Mos enhances the expression level of MyoD protein in myoblasts although phosphorylation of MyoD by Mos does not modify its stability but promotes transcriptional transactivation of the MyoD promoter linked to the luciferase reporter gene. Moreover, co-expression of MyoD with Mos(wt) but not with the kinase-inactive Mos(KM) greatly enhances expression of endogenous MyoD protein and the DNA binding activity of MyoD/E12 heterodimers in 10T1/2 cells. Our data suggest that Mos increases the ability of MyoD to transactivate both muscle-specific genes and its own promoter and could therefore participate in the positive autoregulation loop of MyoD and muscle differentiation.
Collapse
Affiliation(s)
- B Benayoun
- Laboratoire de Génétique Oncologique UMR 1599 CNRS, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | |
Collapse
|
32
|
Shih HH, Tevosian SG, Yee AS. Regulation of differentiation by HBP1, a target of the retinoblastoma protein. Mol Cell Biol 1998; 18:4732-43. [PMID: 9671483 PMCID: PMC109059 DOI: 10.1128/mcb.18.8.4732] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Differentiation is a coordinated process of irreversible cell cycle exit and tissue-specific gene expression. To probe the functions of the retinoblastoma protein (RB) family in cell differentiation, we isolated HBP1 as a specific target of RB and p130. Our previous work showed that HBP1 was a transcriptional repressor and a cell cycle inhibitor. The induction of HBP1, RB, and p130 upon differentiation in the muscle C2C12 cells suggested a coordinated role. Here we report that the expression of HBP1 unexpectedly blocked muscle cell differentiation without interfering with cell cycle exit. Moreover, the expression of MyoD and myogenin, but not Myf5, was inhibited in HBP1-expressing cells. HBP1 inhibited transcriptional activation by the MyoD family members. The inhibition of MyoD family function by HBP1 required binding to RB and/or p130. Since Myf5 might function upstream of MyoD, our data suggested that HBP1 probably blocked differentiation by disrupting Myf5 function, thus preventing expression of MyoD and myogenin. Consistent with this, the expression of each MyoD family member could reverse the inhibition of differentiation by HBP1. Further investigation implicated the relative ratio of RB to HBP1 as a determinant of whether cell cycle exit or full differentiation occurred. At a low RB/HBP1 ratio cell cycle exit occurred but there was no tissue-specific gene expression. At elevated RB/HBP1 ratios full differentiation occurred. Similar changes in the RB/HBP1 ratio have been observed in normal C2 differentiation. Thus, we postulate that the relative ratio of RB to HBP1 may be one signal for activation of the MyoD family. We propose a model in which a checkpoint of positive and negative regulation may coordinate cell cycle exit with MyoD family activation to give fidelity and progression in differentiation.
Collapse
Affiliation(s)
- H H Shih
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
33
|
Neuronal basic helix-loop-helix proteins (NEX, neuroD, NDRF): spatiotemporal expression and targeted disruption of the NEX gene in transgenic mice. J Neurosci 1998. [PMID: 9454850 DOI: 10.1523/jneurosci.18-04-01408.1998] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Basic helix-loop-helix (bHLH) genes have emerged as important regulators of neuronal determination and differentiation in vertebrates. Three putative neuronal differentiation factors [NEX for neuronal helix-loop-helix protein-1 (mammalian atonal homolog-2), neuroD (beta-2), and NDRF for neuroD-related factor (neuroD2)] are highly homologous to each other in the bHLH region and comprise a new bHLH subfamily. To study the role of NEX, the first bHLH protein identified in this group, we have disrupted the NEX gene by homologous recombination. NEX-deficient mice have no obvious developmental defect, and CNS neurons appear fully differentiated. To investigate further whether the absence of NEX is compensated for by neuroD and NDRF, we compared the spatiotemporal expression of all three genes. We demonstrate, by in situ hybridization, that the transcription patterns of NEX, neuroD, and NDRF genes are highly overlapping in the developing CNS of normal rats between embryonic day 12 and adult stages but are not strictly identical. The most prominent transcription of each gene marks the dorsal neuroepithelium of the telencephalon in early development and is sustained in the adult neocortex, hippocampus, and cerebellum. In general, neuroD provides the earliest marker of neuronal differentiation in any given region compared with NDRF or NEX. Whereas a few CNS regions are specific for neuroD, no region was detected in which solely NEX or NDRF is expressed. This suggests that the function of the mutant NEX gene in neuronal differentiation is compensated for by neuroD and NDRF and that, in analogy with myogenic bHLH proteins, neuronal differentiation factors are at least in part equivalent in function.
Collapse
|
34
|
Schwab MH, Druffel-Augustin S, Gass P, Jung M, Klugmann M, Bartholomae A, Rossner MJ, Nave KA. Neuronal basic helix-loop-helix proteins (NEX, neuroD, NDRF): spatiotemporal expression and targeted disruption of the NEX gene in transgenic mice. J Neurosci 1998; 18:1408-18. [PMID: 9454850 PMCID: PMC6792741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/1997] [Revised: 11/17/1997] [Accepted: 11/20/1997] [Indexed: 02/06/2023] Open
Abstract
Basic helix-loop-helix (bHLH) genes have emerged as important regulators of neuronal determination and differentiation in vertebrates. Three putative neuronal differentiation factors [NEX for neuronal helix-loop-helix protein-1 (mammalian atonal homolog-2), neuroD (beta-2), and NDRF for neuroD-related factor (neuroD2)] are highly homologous to each other in the bHLH region and comprise a new bHLH subfamily. To study the role of NEX, the first bHLH protein identified in this group, we have disrupted the NEX gene by homologous recombination. NEX-deficient mice have no obvious developmental defect, and CNS neurons appear fully differentiated. To investigate further whether the absence of NEX is compensated for by neuroD and NDRF, we compared the spatiotemporal expression of all three genes. We demonstrate, by in situ hybridization, that the transcription patterns of NEX, neuroD, and NDRF genes are highly overlapping in the developing CNS of normal rats between embryonic day 12 and adult stages but are not strictly identical. The most prominent transcription of each gene marks the dorsal neuroepithelium of the telencephalon in early development and is sustained in the adult neocortex, hippocampus, and cerebellum. In general, neuroD provides the earliest marker of neuronal differentiation in any given region compared with NDRF or NEX. Whereas a few CNS regions are specific for neuroD, no region was detected in which solely NEX or NDRF is expressed. This suggests that the function of the mutant NEX gene in neuronal differentiation is compensated for by neuroD and NDRF and that, in analogy with myogenic bHLH proteins, neuronal differentiation factors are at least in part equivalent in function.
Collapse
Affiliation(s)
- M H Schwab
- Zentrum für Molekulare Biologie (ZMBH), University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
MRF4 is a muscle-specific transcription factor that is expressed both in embryonic somites and later in fetal and adult muscle fibers. Cis-regulatory elements of the MRF4 gene responsible for its complex expression pattern have not yet been identified, although previous studies of the rat MRF4 gene have demonstrated the presence of enhancer activity located several kilobases 5' to the transcription start site. Using cell transfection assays in vitro, we have now localized one of the regulatory regions of MRF4 to a 590-base-pair sequence between 4 and 5 kilobases upstream from the start site. This sequence region functioned as an enhancer in combination either with the MRF4 promoter or with the viral thymidine kinase (tk) promoter. Deletion analysis of MRF4 indicated the existence of another regulatory region, closer to the promoter, which functioned as an enhancer in combination with the MRF4 promoter but not with the tk promoter.
Collapse
Affiliation(s)
- C M Kerkvliet
- Biomedical Program and Department of Biological Sciences, University of Alaska Anchorage, 99508, USA
| | | |
Collapse
|
36
|
Calkhoven CF, Ab G. Multiple steps in the regulation of transcription-factor level and activity. Biochem J 1996; 317 ( Pt 2):329-42. [PMID: 8713055 PMCID: PMC1217492 DOI: 10.1042/bj3170329] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This review focuses on the regulation of transcription factors, many of which are DNA-binding proteins that recognize cis-regulatory elements of target genes and are the most direct regulators of gene transcription. Transcription factors serve as integration centres of the different signal-transduction pathways affecting a given gene. It is obvious that the regulation of these regulators themselves is of crucial importance for differential gene expression during development and in terminally differentiated cells. Transcription factors can be regulated at two, principally different, levels, namely concentration and activity, each of which can be modulated in a variety of ways. The concentrations of transcription factors, as of intracellular proteins in general, may be regulated at any of the steps leading from DNA to protein, including transcription, RNA processing, mRNA degradation and translation. The activity of a transcription factor is often regulated by (de) phosphorylation, which may affect different functions, e.g. nuclear localization DNA binding and trans-activation. Ligand binding is another mode of transcription-factor activation. It is typical for the large super-family of nuclear hormone receptors. Heterodimerization between transcription factors adds another dimension to the regulatory diversity and signal integration. Finally, non-DNA-binding (accessory) factors may mediate a diverse range of functions, e.g. serving as a bridge between the transcription factor and the basal transcription machinery, stabilizing the DNA-binding complex or changing the specificity of the target sequence recognition. The present review presents an overview of different modes of transcription-factor regulation, each illustrated by typical examples.
Collapse
Affiliation(s)
- C F Calkhoven
- Department of Biochemistry, University of Groningen, The Netherlands
| | | |
Collapse
|
37
|
Huang J, Blackwell TK, Kedes L, Weintraub H. Differences between MyoD DNA binding and activation site requirements revealed by functional random sequence selection. Mol Cell Biol 1996; 16:3893-900. [PMID: 8668207 PMCID: PMC231386 DOI: 10.1128/mcb.16.7.3893] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A method has been developed for selecting functional enhancer/promoter sites from random DNA sequences in higher eukaryotic cells. Of sequences that were thus selected for transcriptional activation by the muscle-specific basic helix-loop-helix protein MyoD, only a subset are similar to the preferred in vitro binding consensus, and in the same promoter context an optimal in vitro binding site was inactive. Other sequences with full transcriptional activity instead exhibit sequence preferences that, remarkably, are generally either identical or very similar to those found in naturally occurring muscle-specific promoters. This first systematic examination of the relation between DNA binding and transcriptional activation by basic helix-loop-helix proteins indicates that binding per se is necessary but not sufficient for transcriptional activation by MyoD and implies a requirement for other DNA sequence-dependent interactions or conformations at its binding site.
Collapse
Affiliation(s)
- J Huang
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | | | | | |
Collapse
|
38
|
Chambers RL, McDermott JC. Molecular basis of skeletal muscle regeneration. CANADIAN JOURNAL OF APPLIED PHYSIOLOGY = REVUE CANADIENNE DE PHYSIOLOGIE APPLIQUEE 1996; 21:155-84. [PMID: 8792022 DOI: 10.1139/h96-014] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Skeletal muscle regeneration is a vital process with important implications for various muscle myopathies and adaptations to physiological overload. Few of the molecular regulatory proteins controlling this process have so far been identified. Several growth factors have defined effects on myogenic precursor cells and appear to also be involved during regeneration. In addition, factors that may be released by cells of the immune system may activate satellite cells during regeneration. Many of these growth factors are associated with signalling cascades which transmit information to the nucleus. The nuclear "receptors" that receive the incoming signals are transcription factors that interact with DNA regulatory sequences in order to modulate gene expression. Of the nuclear factors isolated so far, the immediate-early genes are associated with muscle precursor cell proliferation. This review aims to synthesize the extensive research on myogenic differentiation and relate this to research concerning the molecular regulation of skeletal muscle regeneration.
Collapse
Affiliation(s)
- R L Chambers
- Department of Kinesiology, Faculty of Pure and Applied Science, York University, Toronto, ON
| | | |
Collapse
|
39
|
Takagi H, Tajima S, Asano A. Overexpression of DNA methyltransferase in myoblast cells accelerates myotube formation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 231:282-91. [PMID: 7635139 DOI: 10.1111/j.1432-1033.1995.tb20698.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We overexpressed mouse DNA methyltransferase in murine C2C12 myoblast cells and tested the isolated clones for their ability to differentiate. Significant numbers of the clones showed distinct myotubes 24 h after the isolated transformants had been induced to differentiate, whereas the parent C2C12 cells did not form myotubes at this time point. Transfection of the vacant vector or the plasmid containing the reverse-oriented DNA methyltransferase cDNA did not provide significant numbers of transformants with the accelerated differentiation phenotype, suggesting that the effect is caused by the expression of DNA methyltransferase. The expressions of skeletal muscle myosin and creatine kinase in clones that showed the accelerated differentiation-phenotype were also induced about 24 h earlier and at higher levels relative to the parent C2C12 or the control cells, indicating that the entire process of myogenesis had been accelerated. All the methyltransferase-transfected clones, regardless of their phenotypes, demonstrated about threefold higher DNA methyltransferase activity and higher methylation levels than those of the clones transfected with vector alone or the reverse-oriented plasmid. At the early stage of transfection of the sense-oriented plasmid, high de novo methylation activities were detected. We consider it likely that this high de novo methylation activity is the reason for the high methylation levels and the accelerated myotube formation of the clones transfected with the sense-oriented plasmid. In some transformants which showed the accelerated differentiation phenotype, MyoD1 was already fully expressed under the growth conditions while, in control cells, MyoD1 was expressed at low levels. This elevated level of MyoD1 transcription could account for the accelerated myotube formation observed in the transformants. The methylation state of the HpaII sites in exon 1 through exon 2 of the MyoD1 gene and the expression of the MyoD1 transcript are positively correlated.
Collapse
Affiliation(s)
- H Takagi
- Institute for Protein Research, Osaka University, Japan
| | | | | |
Collapse
|