1
|
Yu R, Zhang Y, Lu Q, Cui L, Wang Y, Wang X, Cheng G, Liu Z, Dai M, Yuan Z. Differentially expressed genes in response to cyadox in swine liver analyzed by DDRT-PCR. Res Vet Sci 2018; 118:72-78. [DOI: 10.1016/j.rvsc.2018.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 11/24/2022]
|
2
|
Almeida-Dalmet S, Litchfield CD, Gillevet P, Baxter BK. Differential Gene Expression in Response to Salinity and Temperature in a Haloarcula Strain from Great Salt Lake, Utah. Genes (Basel) 2018; 9:genes9010052. [PMID: 29361787 PMCID: PMC5793203 DOI: 10.3390/genes9010052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
Haloarchaea that inhabit Great Salt Lake (GSL), a thalassohaline terminal lake, must respond to the fluctuating climate conditions of the elevated desert of Utah. We investigated how shifting environmental factors, specifically salinity and temperature, affected gene expression in the GSL haloarchaea, NA6-27, which we isolated from the hypersaline north arm of the lake. Combined data from cultivation, microscopy, lipid analysis, antibiotic sensitivity, and 16S rRNA gene alignment, suggest that NA6-27 is a member of the Haloarcula genus. Our prior study demonstrated that archaea in the Haloarcula genus were stable in the GSL microbial community over seasons and years. In this study, RNA arbitrarily primed PCR (RAP-PCR) was used to determine the transcriptional responses of NA6-27 grown under suboptimal salinity and temperature conditions. We observed alteration of the expression of genes related to general stress responses, such as transcription, translation, replication, signal transduction, and energy metabolism. Of the ten genes that were expressed differentially under stress, eight of these genes responded in both conditions, highlighting this general response. We also noted gene regulation specific to salinity and temperature conditions, such as osmoregulation and transport. Taken together, these data indicate that the GSL Haloarcula strain, NA6-27, demonstrates both general and specific responses to salinity and/or temperature stress, and suggest a mechanistic model for homeostasis that may explain the stable presence of this genus in the community as environmental conditions shift.
Collapse
Affiliation(s)
- Swati Almeida-Dalmet
- Department of Environmental Science and Policy, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA.
| | - Carol D Litchfield
- Department of Environmental Science and Policy, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA.
| | - Patrick Gillevet
- Department of Biology, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA.
| | - Bonnie K Baxter
- Great Salt Lake Institute, Westminster College, 1840 South 1300 East, Salt Lake City, UT 84105, USA.
| |
Collapse
|
3
|
Kumar G, Denslow ND. Gene Expression Profiling in Fish Toxicology: A Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 241:1-38. [PMID: 27464848 DOI: 10.1007/398_2016_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this review, we present an overview of transcriptomic responses to chemical exposures in a variety of fish species. We have discussed the use of several molecular approaches such as northern blotting, differential display reverse transcription-polymerase chain reaction (DDRT-PCR), suppression subtractive hybridization (SSH), real time quantitative PCR (RT-qPCR), microarrays, and next-generation sequencing (NGS) for measuring gene expression. These techniques have been mainly used to measure the toxic effects of single compounds or simple mixtures in laboratory conditions. In addition, only few studies have been conducted to examine the biological significance of differentially expressed gene sets following chemical exposure. Therefore, future studies should focus more under field conditions using a multidisciplinary approach (genomics, proteomics and metabolomics) to understand the synergetic effects of multiple environmental stressors and to determine the functional significance of differentially expressed genes. Nevertheless, recent developments in NGS technologies and decreasing costs of sequencing holds the promise to uncover the complexity of anthropogenic impacts and biological effects in wild fish populations.
Collapse
Affiliation(s)
- Girish Kumar
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
4
|
Chen H, Zhang C, Cai TC, Deng Y, Zhou S, Zheng Y, Ma S, Tang R, Varshney RK, Zhuang W. Identification of low Ca(2+) stress-induced embryo apoptosis response genes in Arachis hypogaea by SSH-associated library lift (SSHaLL). PLANT BIOTECHNOLOGY JOURNAL 2016; 14:682-98. [PMID: 26079063 PMCID: PMC11388959 DOI: 10.1111/pbi.12415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/13/2015] [Accepted: 04/28/2015] [Indexed: 05/23/2023]
Abstract
Calcium is a universal signal in the regulation of wide aspects in biology, but few are known about the function of calcium in the control of early embryo development. Ca(2+) deficiency in soil induces early embryo abortion in peanut, producing empty pods, which is a general problem; however, the underlying mechanism remains unclear. In this study, embryo abortion was characterized to be caused by apoptosis marked with cell wall degradation. Using a method of SSH cDNA libraries associated with library lift (SSHaLL), 62 differentially expressed genes were isolated from young peanut embryos. These genes were classified to be stress responses, catabolic process, carbohydrate and lipid metabolism, embryo morphogenesis, regulation, etc. The cell retardation with cell wall degradation was caused by up-regulated cell wall hydrolases and down-regulated cellular synthases genes. HsfA4a, which was characterized to be important to embryo development, was significantly down-regulated under Ca(2+) -deficient conditions from 15 days after pegging (DAP) to 30 DAP. Two AhCYP707A4 genes, encoding abscisic acid (ABA) 8'-hydroxylases, key enzymes for ABA catabolism, were up-regulated by 21-fold under Ca(2+) -deficient conditions upstream of HsfA4a, reducing the ABA level in early embryos. Over-expression of AhCYP707A4 in Nicotiana benthamiana showed a phenotype of low ABA content with high numbers of aborted embryos, small pods and less seeds, which confirms that AhCYP707A4 is a key player in regulation of Ca(2+) deficiency-induced embryo abortion via ABA-mediated apoptosis. The results elucidated the mechanism of low Ca(2+) -induced embryo abortion and described the method for other fields of study.
Collapse
Affiliation(s)
- Hua Chen
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chong Zhang
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tie Cheng Cai
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ye Deng
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuangbiao Zhou
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yixiong Zheng
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shiwei Ma
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ronghua Tang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Weijian Zhuang
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Identification of Powdery Mildew Responsive Genes in Hevea brasiliensis through mRNA Differential Display. Int J Mol Sci 2016; 17:ijms17020181. [PMID: 26840302 PMCID: PMC4783915 DOI: 10.3390/ijms17020181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 12/05/2022] Open
Abstract
Powdery mildew is an important disease of rubber trees caused by Oidium heveae B. A. Steinmann. As far as we know, none of the resistance genes related to powdery mildew have been isolated from the rubber tree. There is little information available at the molecular level regarding how a rubber tree develops defense mechanisms against this pathogen. We have studied rubber tree mRNA transcripts from the resistant RRIC52 cultivar by differential display analysis. Leaves inoculated with the spores of O. heveae were collected from 0 to 120 hpi in order to identify pathogen-regulated genes at different infection stages. We identified 78 rubber tree genes that were differentially expressed during the plant–pathogen interaction. BLAST analysis for these 78 ESTs classified them into seven functional groups: cell wall and membrane pathways, transcription factor and regulatory proteins, transporters, signal transduction, phytoalexin biosynthesis, other metabolism functions, and unknown functions. The gene expression for eight of these genes was validated by qRT-PCR in both RRIC52 and the partially susceptible Reyan 7-33-97 cultivars, revealing the similar or differential changes of gene expressions between these two cultivars. This study has improved our overall understanding of the molecular mechanisms of rubber tree resistance to powdery mildew.
Collapse
|
6
|
Ramakrishnan SK, Varshney A, Sharma A, Das BC, Yadava PK. Expression of targeted ribozyme against telomerase RNA causes altered expression of several other genes in tumor cells. Tumour Biol 2014; 35:5539-50. [PMID: 24664581 DOI: 10.1007/s13277-014-1729-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/04/2014] [Indexed: 01/11/2023] Open
Abstract
Telomeres are tandem repeat sequences present at chromosome end that are synthesized by RNA-protein enzyme called telomerase. The RNA component (TR) serves as template for telomerase reverse transcriptase (TERT) for generating telomere repeats. TERT is overexpressed in actively dividing cells including cancerous cells, absent in differentiated somatic cells whereas human telomerase RNA (hTR) is present in normal as well as in cancer cells. Telomerase overexpression in cancer cells ensures telomere length maintenance that actually provides proliferative advantage to cells. Stable expression of ribozyme against hTR in HeLa cells results in reduction of hTR levels, telomerase activity, and telomere length which is accompanied by altered cell morphology and expression of several specific cellular genes. The altered genes deduced from differentially display PCR and 2D gel electrophoresis upon hTR knockdown have function in ribosome biogenesis, chromatin modulation, cell cycle control, and p63-dependant pathways. Our observations shows hTR participates in diverse cellular functions other than telomere maintenance, validates as a possible drug targets in p53- and pRB-negative status, and indicated possible cross-talks between telomerase and other cellular pathways.
Collapse
Affiliation(s)
- Suresh Kumar Ramakrishnan
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | | | | | | |
Collapse
|
7
|
Woo S, Lee A, Denis V, Chen CA, Yum S. Transcript response of soft coral (Scleronephthya gracillimum) on exposure to polycyclic aromatic hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:901-910. [PMID: 23832774 DOI: 10.1007/s11356-013-1958-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/24/2013] [Indexed: 06/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the most persistent organic pollutants in worldwide aquatic environments. The extensive isolation of genes responsive to PAH pollution in soft coral (Scleronephthya gracillimum) is described herein. Soft coral colonies were exposed to 100 μg/L of a standard mixture of PAHs. Gene candidates with transcript levels that changed in response to PAH exposure were identified by differential display polymerase chain reaction (DD-PCR). There were 37 types of candidate genes identified, of which 20 were upregulated in expression and 17 were downregulated. The functions of the genes identified included oxidative stress response, ribosomal structure maintenance, molecular chaperone activity, protein kinase activation and tumorigenesis, defense mechanisms, transcription, and other biological responses. mRNA quantification was carried out using real-time quantitative PCR in eight selected genes: cytosolic malate dehydrogenase, protein disulfide isomerase, ribosomal protein L6, ral guanine nucleotide dissociation stimulator-like 1, poly(ADP-ribose) polymerase 4, peptidylglycine α-hydroxylating monooxygenase, a disintegrin and metalloproteinase (ADAM) metallopeptidase protein, and eukaryotic initiation factor 4 gamma 3. Changes in transcript levels were consistent with DD-PCR results. The gene candidates isolated in this study were differentially expressed and therefore have potential as molecular biomarkers for understanding coral responses to environmental stressors.
Collapse
Affiliation(s)
- Seonock Woo
- South Sea Environment Research Division, Korea Institute of Ocean Science and Technology, Geoje, 656-830, Republic of Korea
| | | | | | | | | |
Collapse
|
8
|
Li Y, Li W, Zhang J, Ji D, Zhang G, Yang B. Identification of genes influencing formation of the Type III Brush Hair in Yangtze River Delta white goats by differential display of mRNA. Gene 2013; 526:205-9. [DOI: 10.1016/j.gene.2013.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/02/2013] [Accepted: 05/15/2013] [Indexed: 12/13/2022]
|
9
|
Wuest DM, Harcum SW, Lee KH. Genomics in mammalian cell culture bioprocessing. Biotechnol Adv 2012; 30:629-38. [PMID: 22079893 PMCID: PMC3718848 DOI: 10.1016/j.biotechadv.2011.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 09/20/2011] [Accepted: 10/30/2011] [Indexed: 12/14/2022]
Abstract
Explicitly identifying the genome of a host organism including sequencing, mapping, and annotating its genetic code has become a priority in the field of biotechnology with aims at improving the efficiency and understanding of cell culture bioprocessing. Recombinant protein therapeutics, primarily produced in mammalian cells, constitute a $108 billion global market. The most common mammalian cell line used in biologic production processes is the Chinese hamster ovary (CHO) cell line, and although great improvements have been made in titer production over the past 25 years, the underlying molecular and physiological factors are not well understood. Confident understanding of CHO bioprocessing elements (e.g. cell line selection, protein production, and reproducibility of process performance and product specifications) would significantly improve with a well understood genome. This review describes mammalian cell culture use in bioprocessing, the importance of obtaining CHO cell line genetic sequences, and the current status of sequencing efforts. Furthermore, transcriptomic techniques and gene expression tools are presented, and case studies exploring genomic techniques and applications aimed to improve mammalian bioprocess performance are reviewed. Finally, future implications of genomic advances are surmised.
Collapse
Affiliation(s)
- Diane M. Wuest
- Chemical Engineering and Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | - Sarah W. Harcum
- Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634, USA
| | - Kelvin H. Lee
- Chemical Engineering and Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| |
Collapse
|
10
|
Ren Z, Xiong Y, Deng C, Jiang S. Cloning, differential expression, and association analysis with fat traits of porcine IDH3γ gene. Appl Biochem Biotechnol 2011; 166:1112-20. [PMID: 22198866 DOI: 10.1007/s12010-011-9499-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/11/2011] [Indexed: 11/28/2022]
Abstract
Mitochondrial NAD⁺-dependent isocitrate dehydrogenase (IDH3) catalyzes the allosterically regulated rate-limiting step of the tricarboxylic acid cycle activated. In pigs, very little is known about this gene. Here, we cloned 1,346 bp full-length cDNA and 8,778 bp genomic sequence of porcine γ subunit of IDH3 (IDH3γ). IDH3γ contains 12 exons separated by 11 introns. Real-time PCR revealed that IDH3γ mRNA were upregulated in backfat of Large White compared with Meishan and F1 hybrids, and most abundant in small intestine via tissue distribution profile. A microsatellite ("GT" repeats) in second intron was found. The selected pigs were genotyped at this microsatellite. The IDH3γ genotypes showed a significant effect on backfat thickness at thorax-waist (P < 0.05), backfat thickness at sixth to seventh thorax (P < 0.01), and average backfat thickness (P < 0.05). This site seemed to be significantly dominant in action (P < 0.05 for backfat thickness at sixth to seventh thorax, backfat thickness at thorax-waist, and average backfat thickness), and allele B was associated with increase of thickness values of these traits. This locus is possibly considered as a marker for adipose deposition traits.
Collapse
Affiliation(s)
- Zhuqing Ren
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China.
| | | | | | | |
Collapse
|
11
|
El-Bakatoushi R. Identification and characterization of up-regulated genes in the halophyte Limoniastrum monopetalum (L.) Boiss grown under crude oil pollution. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2011. [DOI: 10.1016/j.jgeb.2011.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Sandbichler AM, Egg M, Schwerte T, Pelster B. Claudin 28b and F-actin are involved in rainbow trout gill pavement cell tight junction remodeling under osmotic stress. ACTA ACUST UNITED AC 2011; 214:1473-87. [PMID: 21490256 DOI: 10.1242/jeb.050062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Permeability of rainbow trout gill pavement cells cultured on permeable supports (single seeded inserts) changes upon exposure to freshwater or treatment with cortisol. The molecular components of this change are largely unknown, but tight junctions that regulate the paracellular pathway are prime candidates in this adaptational process. Using differential display polymerase chain reaction we found a set of 17 differentially regulated genes in trout pavement cells that had been exposed to freshwater apically for 24 h. Five genes were related to the cell-cell contact. One of these genes was isolated and identified as encoding claudin 28b, an integral component of the tight junction. Immunohistochemical reactivity to claudin 28b protein was concentrated in a circumferential ring colocalized to the cortical F-actin ring. To study the contribution of this isoform to changes in transepithelial resistance and Phenol Red diffusion under apical hypo-or hyperosmotic exposure we quantified the fluorescence signal of this claudin isoform in immunohistochemical stainings together with the fluorescence of phalloidin-probed F-actin. Upon hypo-osmotic stress claudin 28b fluorescence and epithelial tightness remained stable. Under hyperosmotic stress, the presence of claudin 28b at the junction significantly decreased, and epithelial tightness was severely reduced. Cortical F-actin fluorescence increased upon hypo-osmotic stress, whereas hyperosmotic stress led to a separation of cortical F-actin rings and the number of apical crypt-like pores increased. Addition of cortisol to the basolateral medium attenuated cortical F-actin separation and pore formation during hyperosmotic stress and reduced claudin 28b in junctions except after recovery of cells from exposure to freshwater. Our results showed that short-term salinity stress response in cultured trout gill cells was dependent on a dynamic remodeling of tight junctions, which involves claudin 28b and the supporting F-actin ring.
Collapse
Affiliation(s)
- Adolf Michael Sandbichler
- Institute of Zoology, and Center for Molecular Biosciences, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
13
|
Woo S, Jeon HY, Lee J, Song JI, Park HS, Yum S. Isolation of hyperthermal stress responsive genes in soft coral (Scleronephthya gracillimum). Mol Cell Toxicol 2010. [DOI: 10.1007/s13273-010-0051-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Ross PJ, Wang K, Kocabas A, Cibelli JB. Housekeeping gene transcript abundance in bovine fertilized and cloned embryos. Cell Reprogram 2010; 12:709-17. [PMID: 20973679 DOI: 10.1089/cell.2010.0036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to compare housekeeping gene expression levels, relative to total mRNA, across different stages of bovine preimplantation development in embryos generated by IVF and somatic cell nuclear transfer (SCNT). We first analyzed the levels of total RNA recovered from different stages of preimplantation development. A similar RNA level was observed from oocytes to 16-cell stage embryos with a significant increase at morula and blastocyst stages. Then we used an absolute mRNA determination method that accounts for the RNA level in the embryo by quantifying copies of transcripts normalized to loaded cDNA amount. The number of housekeeping genes mRNA copies per nanogram of cDNA was compared among samples obtained from different stages of preimplantation IVF-derived embryos. None of the genes analyzed (GAPDH, PPIA, ACTB, RPL15, GUSB, and Histone H2A.2) maintained constant levels throughout preimplantation development, indicating that they are not suitable for normalizing gene expression across developmental stages. We then compared expression of housekeeping genes between IVF and SCNT embryos at different embryonic stages. We found different levels of transcript abundance between IVF and SCNT embryos for GAPDH, RPL15, GUSB, and ACTB. On the other hand, Histone H2A.2 and PPIA were similar between IVF and SCNT embryos at each stage analyzed, although they varied across stages as previously mentioned.
Collapse
Affiliation(s)
- Pablo J Ross
- Department of Animal Science, University of California, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
15
|
Pizzatti L, Binato R, Cofre J, Gomes BE, Dobbin J, Haussmann ME, D'Azambuja D, Bouzas LF, Abdelhay E. SUZ12 is a candidate target of the non-canonical WNT pathway in the progression of chronic myeloid leukemia. Genes Chromosomes Cancer 2010; 49:107-18. [PMID: 19847889 DOI: 10.1002/gcc.20722] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Polycomb proteins form multiprotein complexes that repress target genes by chromatin remodeling. In this work, we report that the SUZ12 polycomb gene is over-expressed in bone marrow samples of patients at the blastic phase of chronic myeloid leukemia. We also found a direct interaction between polycomb group genes and the WNT signaling pathway in chronic myeloid leukemia transformation. Electrophoretic mobility shift assay (EMSA), Chromatin immunoprecipitation assay (ChIP), and mass spectrometry assays identified noncanonical WNT pathway members, such as WNT5A and WNT11, bound to the SUZ12 promoter. Immunohistochemistry and immunofluorescence with WNT5A and WNT11 antibodies confirmed nuclear localization. Knockdown of WNTs 1, 5A, and 11 with RNAi approaches showed that WNT members are capable of activating SUZ12 transcription with varying promoter affinities. Finally, we suggest that SUZ12 is blocking cellular differentiation, as SUZ12 knockdown release differentiation programs in chronic myeloid blastic phase (CML-BP) transformed cell line.
Collapse
Affiliation(s)
- Luciana Pizzatti
- Divisão de Laboratórios do CEMO, Instituto Nacional do Câncer, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fook LW, Chow VTK. Transcriptome profiling of host-microbe interactions by differential display RT-PCR. Methods Mol Biol 2010; 630:33-47. [PMID: 20300989 DOI: 10.1007/978-1-60761-629-0_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, DNA microarray has become increasingly popular as a tool to investigate global expression patterns compared to differential display RT-PCR. Although differential display RT-PCR can be labour-intensive, it has its own merits over those of DNA microarray. While the latter usually consists of a well-defined set of species-specific genes, differential display RT-PCR allows the investigation of host-microbe interactions without bias towards any mRNA transcripts. This means that the regulated transcript expression of both host and pathogen can be analysed simultaneously. In addition, novel transcripts and alternate splicing variants pertaining to the infection can also be discovered. We have investigated the response of rhabdomyosarcoma cells to infection with a neurovirulent strain of enterovirus 71 (EV71) at different time-points during the infection process compared with uninfected cells. Using differential display RT-PCR, we identified mRNAs that were up- or down-regulated. Less than half of the clones match known genes including those involved in mediating the cytoskeleton, cell cycle, cell death, protein translational machinery and cellular transport. The rest of the clones do not match any known genes, of which several are novel genes. Noteworthy is the discovery of an alternate splicing form of TRIP7, which is down-regulated during EV71 infection. The differential display technique has potentially wide applicability to elucidate the gene expression or transcriptomic profiles of host-microbe interactions, which can provide a better understanding of microbial pathogenesis.
Collapse
Affiliation(s)
- Leong Wai Fook
- Institute of Molecular and Cell Biology, Proteos, Singapore
| | | |
Collapse
|
17
|
Meade JD, Cho YJ, Shester BR, Walden JC, Guo Z, Liang P. Automated fluorescent differential display for cancer gene profiling. Methods Mol Biol 2009; 576:99-133. [PMID: 19882260 DOI: 10.1007/978-1-59745-545-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Since its invention in 1992, differential display (DD) has become the most commonly used technique for identifying differentially expressed genes because of its many advantages over competing technologies such as DNA microarray, serial analysis of gene expression (SAGE), and subtractive hybridization. A large number of these publications have been in the field of cancer, specifically on p53 target genes. Despite the great impact of the method on biomedical research, there had been a lack of automation of DD technology to increase its throughput and accuracy for systematic gene expression analysis. Many previous DD work has taken a "shotgun" approach of identifying one gene at a time, with a limited number of polymerase chain reactions (PCRs) set up manually, giving DD a low-tech and low-throughput image. We have optimized the DD process with a platform that incorporates fluorescent digital readout, automated liquid handling, and large-format gels capable of running entire 96-well plates. The resulting streamlined fluorescent DD (FDD) technology offers an unprecedented accuracy, sensitivity, and throughput in comprehensive and quantitative analysis of gene expression. These major improvements will allow researchers to find differentially expressed genes of interest, both known and novel, quickly and easily.
Collapse
|
18
|
Joffre C, Leclère L, Buteau B, Martine L, Cabaret S, Malvitte L, Acar N, Lizard G, Bron A, Creuzot-Garcher C, Bretillon L. Oxysterols Induced Inflammation and Oxidation in Primary Porcine Retinal Pigment Epithelial Cells. Curr Eye Res 2009; 32:271-80. [PMID: 17453947 DOI: 10.1080/02713680601187951] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Aging is associated with an accumulation of cholesterol esters in the Bruch membrane. Cholesterol esters are prone to undergo oxidation and generate oxysterols that have cytotoxic and proinflammatory properties. We investigated the effects of three oxysterols on mitochondrial dysfunctions, inflammation, and oxidative stress in primary cultures of porcine retinal pigment epithelial (RPE) cells. METHODS RPE cells were incubated with oxysterols (50 micro M of 24-hydroxycholesterol, 25-hydroxycholesterol, or 7-ketocholesterol) for 24 hr and 48 hr. Oxysterol content was determined in cells and in corresponding media by gas chromatography. Mitochondrial activity was measured by mitochondrial dehydrogenase activity. The intracellular formation of reactive oxygen species in RPE cells was detected by using the fluorescent probe DCFH-DA. IL-8 was assayed in the supernatants by ELISA, and the corresponding cellular transcripts were semiquantified by RT-PCR. RESULTS Analyses of the oxysterols content in the RPE cells and corresponding media suggested a high rate of cellular uptake, although some differences were observed between 7-ketocholesterol on the one hand and 24-hydroxycholesterol and 25-hydroxycholesterol on the other hand. All oxysterols induced slight mitochondrial dysfunctions but a significant 2- to 4-fold increase in reactive oxygen species (ROS) production compared with the control. They also enhanced IL-8 gene expression and IL-8 protein secretion in the following decreasing order: 25-hydroxycholesterol > 24-hydroxycholesterol > 7-ketocholesterol. CONCLUSIONS We conclude that in confluent primary porcine RPE cells, 24-hydroxycholesterol, 25-hydroxycholesterol, and 7-ketocholesterol are potent inducers of oxidation and inflammation.
Collapse
Affiliation(s)
- Corinne Joffre
- Eye and Nutrition Research Group, INRA, UMR1129 FLAVIC, Dijon, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Differential Gene Expression Between Hybrids and Their Parents During the Four Crucial Stages of Cotton Growth and Development. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1671-2927(09)60021-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Srivastava AK, Ramaswamy NK, Mukopadhyaya R, Jincy MGC, D'Souza SF. Thiourea modulates the expression and activity profile of mtATPase under salinity stress in seeds of Brassica juncea. ANNALS OF BOTANY 2009; 103:403-10. [PMID: 19033283 PMCID: PMC2707324 DOI: 10.1093/aob/mcn229] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 10/08/2008] [Accepted: 10/16/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Large areas of the globe are becoming saline due to evapotranspiration and poor irrigation practices, and sustainability of agriculture is being seriously affected. Thiourea (TU) has been identified as an effective bioregulator imparting stress tolerance to crops. The molecular mechanisms involved in the TU-mediated response are considered in this study. METHODS Differential display was performed in order to identify TU-modulated transcripts in Brassica juncea seeds exposed to various treatments (distilled water; 1 m NaCl; 1 m NaCl + 500 p.p.m. TU). The differential regulation of these transcripts was validated by quantitative real-time PCR. KEY RESULTS Thiourea treatment maintained the viability of seeds exposed to NaCl for 6 h. Expression analysis showed that the transcript level of alpha, beta, gamma, delta and epsilon subunits of mitochondrial ATPase (mtATPase) varied in seeds subjected to the different treatments for 1 h: expression level was significantly altered by 1 m NaCl relative to controls; however, in the NaCl + TU treatment it reverted back in an integrated manner. Similar results were obtained from time-kinetics studies of beta and delta subunits in roots of 8-d-old seedlings. These observations were also confirmed by the mtATPase activity from isolated mitochondria. The reversal in the expression and activity profile of mtATPase through the application of a bioregulator such as TU is a novel finding for any plant system. CONCLUSIONS The results suggest that TU treatment maintains the integrity and functioning of mitochondria in seeds as well as seedlings exposed to salinity. Thus, TU has the potential to be used as an effective bioregulator to impart salinity tolerance under field conditions, and might prove to be of high economic importance by opening new avenues for both basic and applied research.
Collapse
Affiliation(s)
| | - N. K. Ramaswamy
- Nuclear Agriculture and Biotechnology Division
- For correspondence. E-mail
| | - R. Mukopadhyaya
- Molecular Biology Division, Bhabha Atomic Research Center, Mumbai 400085, India
| | | | | |
Collapse
|
21
|
Manickavelu A, Koba T, Mishina K, Sassa H. Identification of differential gene expression for Kr1 gene in bread wheat using annealing control primer system. Mol Biol Rep 2008; 36:2111-8. [PMID: 19105046 DOI: 10.1007/s11033-008-9423-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 12/03/2008] [Indexed: 11/30/2022]
Abstract
Intergeneric hybridization is an important strategy to introgress alien genes into common wheat for its improvement. But presence of cross ability barrier mechanism regulated by Kr1 gene played a major destructive role for hybridization than other reported genes. In order to know the underlying molecular mechanism and to dissect out this barrier, a new annealing system, ACP (anneling control primer) system was used in chromosome 5B (containing Kr1 gene) specific Recombinant Inbred Line (RIL) population. Two differentially expressed fragments for Kr1 gene was identified, cloned and sequenced. Further the expression was confirmed by northern blotting analysis. Sequence analysis of the resulted clones revealed classes of putative genes, including stress responsive and signal transduction.
Collapse
Affiliation(s)
- Alagu Manickavelu
- Faculty of Horticulture, Chiba University, 648 Matsudo 271-8510, Japan.
| | | | | | | |
Collapse
|
22
|
Maqbool A, Zahur M, Irfan M, Younas M, Barozai K, Rashid B, Husnain T, Riazuddin S. Identification and expression of six drought-responsive transcripts through differential display in desi cotton (Gossypium arboreum). Mol Biol 2008. [DOI: 10.1134/s002689330804002x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Keshav S, McKnight AJ, Arora R, Gordon S. Cloning of intestinal phospholipase A2 from intestinal epithelial RNA by differential display PCR. Cell Prolif 2008. [DOI: 10.1111/j.1365-2184.1997.tb00917.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- S. Keshav
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - A. J. McKnight
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - R. Arora
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - S. Gordon
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Rowe A, Yun K, Emery D, Sangster N. Haemonchus contortus: Development of a two-step, differential-display PCR to detect differential gene expression in nematodes from immune and naïve sheep. Exp Parasitol 2008; 119:207-16. [DOI: 10.1016/j.exppara.2008.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 01/17/2008] [Accepted: 01/23/2008] [Indexed: 02/02/2023]
|
25
|
Reciprocal subtraction differential RNA display (RSDD): an efficient technology for cloning differentially expressed genes. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 383:1-14. [PMID: 18217675 DOI: 10.1007/978-1-59745-335-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Identification of differentially expressed genes is an essential step in comprehending the molecular basis of complex physiological and pathological processes. Subtraction hybridization and differential RNA display (DDRT-PCR) are two methods that are widely and successfully employed to clone differentially expressed genes. Unfortunately, both methods have inherent problems and limitations requiring improvements in the technique. A combination of these two methods termed reciprocal subtraction differential RNA display is described here that considerably reduces the complexity of DDRT-PCR and facilitates the rapid and efficient identification and cloning of both abundant and rare differentially expressed genes.
Collapse
|
26
|
Livesey FJ, Hunt SP. Differential display of mRNA by PCR. CURRENT PROTOCOLS IN HUMAN GENETICS 2008; Chapter 11:Unit 11.5. [PMID: 18428247 DOI: 10.1002/0471142905.hg1105s10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This unit outlines the polymerase chain reaction (PCR)-based technique of mRNA differential display, which identifies genes that are differentially expressed between cells or tissues. The basic protocol describes the actual differential display PCR reaction along with details of the identification, reamplification, and cloning of candidate differentially expressed genes. A support protocol provides instructions on removing contaminating genomic DNA from the RNA samples and reverse transcribing the purified RNA to produce the cDNA used in the subsequent PCR reactions.
Collapse
Affiliation(s)
- F J Livesey
- Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
27
|
Livesey FJ, Hunt CP. Differential display of mRNA by PCR. CURRENT PROTOCOLS IN NEUROSCIENCE 2008; Chapter 5:Unit 5.2. [PMID: 18428501 DOI: 10.1002/0471142301.ns0502s00] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This unit outlines the polymerase chain reaction (PCR)-based technique of mRNA differential display, which identifies genes that are differentially expressed between cells or tissues. The approach described here is a modification of the original method, referred to as single base-anchored differential display. The basic protocol describes the actual differential display PCR reaction along with details of the identification, reamplification, and cloning of candidate differentially expressed genes. The support protocol provides instructions on removing contaminating genomic DNA from the RNA samples and reverse transcribing the purified RNA to produce the cDNA used in the subsequent PCR reactions.
Collapse
|
28
|
Singh S, Khar A. Differential gene expression during apoptosis induced by a serum factor: role of mitochondrial F0-F1 ATP synthase complex. Apoptosis 2008; 10:1469-82. [PMID: 16215688 DOI: 10.1007/s10495-005-1394-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The number of genes that are up regulated or down regulated during apoptosis is large and still increasing. In an attempt to characterize differential gene expression during serum factor induced apoptosis in AK-5 cells (a rat histiocytoma), we found subunit 6 and subunit 8 of the transmembrane proton channel and subunit alpha of the catalytic core of the mitochondrial F(0)-F(1) ATP synthase complex to be up regulated during apoptosis. The increase in the expression levels of these subunits was concomitant with a transient increase in the intracellular ATP levels, suggesting that the increase in cellular ATP content is a result of the increase in the expression of ATP synthase subunits' gene and de novo protein synthesis. Depleting the cellular ATP levels with oligomycin inhibited apoptosis significantly, pointing to the requirement of ATP during apoptosis. Caspase 1 and caspase 3 activity and the loss of mitochondrial membrane potential were also inhibited by oligomycin during apoptosis in these cells, suggesting that the oligomycin induced inhibition of apoptosis could be due to inhibition of caspase activity and inhibition of mitochondrial depolarization. However, cytochrome C release during apoptosis was found to be completely independent of intracellular ATP content. Besides the ATP synthase complex genes, other mitochondrial genes like cytochrome C oxidase subunit II and III also showed elevated levels of expression during apoptosis. This kind of a mitochondrial gene expression profile suggests that in AK-5 cells, these genes are upregulated in a time-linked manner to ensure sufficient intracellular ATP levels and an efficient functioning of the mitochondrial respiratory chain for successful completion of the apoptotic pathway.
Collapse
Affiliation(s)
- S Singh
- Centre for Cellular & Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
29
|
Liang P, Pardee AB. Differential display of mRNA by PCR. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2008; Chapter 25:Unit 25B.3. [PMID: 18265216 DOI: 10.1002/0471142727.mb25b03s56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Formerly UNIT , this unit describes how differential display techniques allow the identification and subsequent isolation of differentially expressed genes that requires no knowledge of sequences, but rather PCR amplification using arbitrary oligonucleotides and high resolution polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- P Liang
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | | |
Collapse
|
30
|
Chen P, Harcum SW. Differential display identifies genes in Chinese hamster ovary cells sensitive to elevated ammonium. Appl Biochem Biotechnol 2008; 141:349-59. [PMID: 18025561 DOI: 10.1007/bf02729072] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 10/24/2006] [Accepted: 11/06/2006] [Indexed: 12/25/2022]
Abstract
Ammonium is a toxic waste product that has been reported to negatively inhibit cell growth and recombinant glycosylation in Chinese hamster ovary (CHO) cells; however, the effect of this toxicity on intracellular gene expression has received only limited investigation. We used a differential display method to identify genes in CHO cells that were affected by ammonium stress. Eight genes whose mRNA levels significantly changed in response to elevated ammonium were isolated and identified. Five of the genes were identified as having lower expression under the ammonium stress, whereas three genes were identified as having higher expression. Sequence homology with other mammalian organisms was used to attribute function to these newly identified genes. The identified ammonium-sensitive genes were grouped into three broad functional groups: cellular processes, energy metabolism, and genetic-information processing. The three cellular process-related genes had lower expression (anaphase-promoting complex subunit 5, eukaryotic initiation factor 5A II, KIAA1091 protein). The two energy-related genes had higher expression under ammonium stress (adenosine triphosphate synthase subunit C and mitofusin 1). Both of the genetic information-processing genes (endoplasmic reticulum [ER]-resident protein ERdj5 and structure-specific recognition protein 1) had lower expression under the ammonium stress, whereas the 26S proteasome subunit adenosine triphosphatase 3 gene had higher expression. These preliminary results indicate that ammonium stress lowers expression of genes controlling cell cycle, protein folding, and quality and raises genes that control energy metabolism and degradation. Our findings demonstrate the usefulness of mRNA differential-display techniques for the detection of CHO cell genes affected by ammonium stress.
Collapse
Affiliation(s)
- Peifeng Chen
- Department of Chemical and Biomolecular Engineering, Clemson University, 125 Earle Hall, Clemson, SC 29634-0909, USA
| | | |
Collapse
|
31
|
Affiliation(s)
- Antonio Tugores
- Gene Expression Laboratory, Stem Cell Research Center, Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, USA
| | | |
Collapse
|
32
|
Czikkel BE, Maxwell DP. NtGRAS1, a novel stress-induced member of the GRAS family in tobacco, localizes to the nucleus. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:1220-30. [PMID: 17007961 DOI: 10.1016/j.jplph.2006.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 07/12/2006] [Indexed: 05/12/2023]
Abstract
We report the isolation and initial characterization of a new member of the GRAS gene family from tobacco, NtGRAS1. Analysis of the predicted amino acid sequence shows that NtGRAS1 shares the highly conserved carboxy-terminal motifs common to all members of the GRAS family. NtGRAS1 expression was strongly induced in tobacco (BY-2) suspension cells by antimycin A, H(2)O(2), salicylic acid, and L-cysteine which were all found to raise intracellular reactive oxygen levels. An increase in NtGRAS1 expression was also triggered by treating cells with the nitric oxide donor sodium nitroprusside. By employing inhibitors of protein kinase and phosphatase action, we show that reversible phosphorylation is required for the stress-induced induction of NtGRAS1 and that reactive oxygen as well as NO-dependent signaling pathways probably share key intracellular components. Interestingly, in soil-grown plants, high constitutive expression of NtGRAS1 was found only in roots while expression was strongly induced in leaf tissue upon antimycin A treatment or following Pseudomonas syringae infection. Many members of the GRAS family are implicated in regulating transcription and this function for NtGRAS1 is supported by our finding that an NtGRAS1-GFP fusion protein localizes to the nucleus of onion epidermal cells. Our data suggest that NtGRAS1 may represent an important transcriptional regulator involved in the plant stress response.
Collapse
Affiliation(s)
- Beatrix E Czikkel
- Environmental Stress Biology Group, Department of Biology, University of Western Ontario, London, ONT, Canada
| | | |
Collapse
|
33
|
Liang P, Meade JD, Pardee AB. A protocol for differential display of mRNA expression using either fluorescent or radioactive labeling. Nat Protoc 2007; 2:457-70. [PMID: 17406608 DOI: 10.1038/nprot.2007.46] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Since its invention in the early 1990s, differential display (DD) has become one of the most commonly used techniques for identifying differentially expressed genes at the mRNA level. Unlike other genomic approaches, such as DNA microarrays, DD systematically detects changes in mRNA profiles among multiple samples being compared without the need of any prior knowledge of genomic information of the living organism being studied. Here, we present an optimized DD protocol with a fluorescent digital readout as well as traditional radioactive labeling. The resulting streamlined fluorescent DD process offers an unprecedented accuracy, sensitivity and throughput in comprehensive and quantitative analysis of eukaryotic gene expression. Results usually can be obtained within days using a limited number of primer combinations, but a comprehensive DD screen may take weeks or months to accomplish, depending on gene coverage required and the number of differentially expressed genes present within a biological system being compared.
Collapse
Affiliation(s)
- Peng Liang
- GenHunter Corporation, 624 Grassmere Park Dr, Suite 17, Nashville, Tennessee 37211, USA.
| | | | | |
Collapse
|
34
|
|
35
|
Chang KCN, Komm B, Arnold NB, Korc M. The application of differential display as a gene profiling tool. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2007; 383:31-40. [PMID: 18217677 DOI: 10.1007/978-1-59745-335-6_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Differential display is an effective expression profiling tool which was first introduced in 1992. The original technique is discussed along with modifications that have been described over the last several years. A highly reproducible, semihigh-throughput differential display protocol used in our laboratories is described along with an example of its successful application using pancreatic cancer cells. In addition to the work performed in our laboratories, several examples of successful applications of differential display under a number of scenarios are reviewed. Differential display is one of several expression profiling technologies available and is compared with some of them. The future of differential display remains bright and is as applicable today as it was in 1992.
Collapse
Affiliation(s)
- Ken Chien-Neng Chang
- Osteoporosis Research, Women's Health Research Institute, Wyeth Research, Collegeville, PA, USA
| | | | | | | |
Collapse
|
36
|
Pathak RU, Kanungo MS. Subtractive differential display: a modified differential display technique for isolating differentially expressed genes. Mol Biol Rep 2006; 34:41-6. [PMID: 17094010 DOI: 10.1007/s11033-006-9010-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Accepted: 07/24/2006] [Indexed: 11/28/2022]
Abstract
Differential display (DD) is a novel PCR-based technique, very commonly used to study differentially expressed genes at the mRNA level. In this paper we report a modified version of this technique that we have used to study the differences between the mRNA population from brain tissue of adult and old rats. We have modified the technique to enhance reproducibility and reduce false positives and redundancy. It is fast and does not require any expensive or uncommon reagent. We choose to call it as subtractive differential display as it is a differential display performed over subtracted mRNA population. We have used this protocol successfully to clone a number of age-related differentially expressed sequences from rat brain that need to be sequenced to establish the gene identity.
Collapse
Affiliation(s)
- Rashmi U Pathak
- Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221 005, India
| | | |
Collapse
|
37
|
Robinson JA, Susulic V, Liu YB, Taylor C, Hardenburg J, Gironda V, Zhao W, Kharode Y, McLarney S, Bai Y, Malone DP, Murrills R, Bex F. Identification of a PTH regulated gene selectively induced in vivo during PTH-mediated bone formation. J Cell Biochem 2006; 98:1203-20. [PMID: 16514668 DOI: 10.1002/jcb.20822] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The biological activities of parathyroid hormone (PTH) on bone are quite complex as demonstrated by its catabolic and anabolic activities on the skeleton. Although there have been many reports describing genes that are regulated by PTH in osteoblast cells, the goal of this study was to utilize a well-established in vivo PTH anabolic treatment regimen to identify genes that mediate bone anabolic effects of PTH. We identified a gene we named PTH anabolic induced gene in bone (PAIGB) that has been reported as brain and acute leukemia cytoplasmic (BAALC). Therefore, using the latter nomenclature, we have discovered that BAALC is a PTH-regulated gene whose mRNA expression was selectively induced in rat tibiae nearly 100-fold (maximal) by a PTH 1-34 anabolic treatment regimen in a time-dependent manner. Although BAALC is broadly expressed, PTH did not regulate BAALC expression in other PTH receptor expressing tissues and we find that the regulation of BAALC protein by PTH in vivo is confined to mature osteoblasts. Further in vitro studies using rat UMR-106 osteoblastic cells show that PTH 1-34 rapidly induces BAALC mRNA expression maximally by 4 h while the protein was induced by 8 h. In addition to being regulated by PTH 1-34, BAALC expression can also be induced by other bone forming factors including PGE(2) and 1,25 dihydroxy vitamin D(3). We determined that BAALC is regulated by PTH predominantly through the cAMP/PKA pathway. Finally, we demonstrate in MC3T3-E1 osteoblastic cells that BAALC overexpression regulates markers of osteoblast differentiation, including downregulating alkaline phosphatase and osteocalcin expression while inducing osteopontin expression. We also demonstrate that these transcriptional responses mediated by BAALC are similar to the responses elicited by PTH 1-34. These data, showing BAALC overexpression can mimic the effect of PTH on markers of osteoblast differentiation, along with the observations that BAALC is induced selectively with a bone anabolic treatment regimen of PTH (not a catabolic treatment regimen), suggest that BAALC may be an important mediator of the PTH anabolic action on bone cell function.
Collapse
Affiliation(s)
- John A Robinson
- Women's Health Research Institute, Wyeth Research, 500 Arcola Road, Collegeville, PA 19426, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Singh S, Khar A. Activation of NFkappaB and Ub-proteasome pathway during apoptosis induced by a serum factor is mediated through the upregulation of the 26S proteasome subunits. Apoptosis 2006; 11:845-59. [PMID: 16532374 DOI: 10.1007/s10495-006-5878-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We have been investigating differential gene expression associated with apoptosis in AK-5 cells (a spontaneously regressing rat histiocytoma) and have observed catalytic subunits beta 7 and alpha 5 of the 26S proteasome and ubiquitin to be upregulated during apoptosis induced by a variety of agents. The observed elevation in gene expression was parallel to a comparable increase in the cytosolic protein expression of the proteasome and ubiquitin and a markedly amplified increase in the proteasome activity. Inhibition of the increase in gene expression resulted in the inhibition of the rise in the proteasome activity subsequently leading to an inhibition of apoptosis. Similarly, pretreatment with proteasome inhibitors, MG132 and lactacystin, resulted in a significant inhibition of apoptosis pointing to the requirement of a highly active protein degradation machinery during apoptosis. The apoptosis inhibitory effect of the proteasome inhibitors involved an inhibition of the activation of various initiator and effector caspases but was independent of any changes in the mitochondrial membrane depolarization and cytochrome c release associated with apoptosis. Inhibition of proteasome activity or its upstream PI3 kinase activity inhibited NFkappaB translocation thereby suppressing apoptosis, which highlights the requirement of NFkappaB activation for completion of apoptosis in AK-5 cells. Hence, the apoptosis associated induction of the Ub-proteasome pathway components and the proteasome activity suggests that the proteasome, in its capacity as an efficient protein degradation complex, plays an important role in the successful execution of apoptosis.
Collapse
Affiliation(s)
- S Singh
- Centre for Cellular & Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
39
|
Logan MA, Steele MR, Van Raay TJ, Vetter ML. Identification of shared transcriptional targets for the proneural bHLH factors Xath5 and XNeuroD. Dev Biol 2006; 285:570-83. [PMID: 16112102 DOI: 10.1016/j.ydbio.2005.06.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 06/28/2005] [Accepted: 06/29/2005] [Indexed: 11/20/2022]
Abstract
Proneural basic helix-loop-helix (bHLH) transcription factors are critical positive regulators of neuronal differentiation in a variety of species and are required for proper differentiation of various subtypes of neurons. Although bHLH factors demonstrate some unique functions during neural development, they share the ability to regulate neuronal differentiation, potentially by targeting overlapping sets of genes. To assess this, we performed a screen in ectoderm animal cap tissue to identify direct transcriptional targets shared by two Xenopus ato-related bHLH factors, Xath5 and XNeuroD. Candidate target genes identified in this screen include several transcriptional regulators (Xebf2, Xebf3, XETOR and NKL), an RNA binding protein (elrC), a cell cycle component (Xgadd45gamma) and several novel genes. Overexpression of either Xath5 or XNeuroD induced ectopic in vivo expression of these candidate target genes. Conversely, blocking ato-related bHLH activity prevented endogenous nervous system expression of these genes. Therefore, we have identified a set of genes that can be regulated by multiple ato-related bHLH factors and may function as critical effectors of proneural bHLH-mediated differentiation.
Collapse
Affiliation(s)
- Mary A Logan
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
40
|
Basak SC, Lee S, Barta JR, Fernando MA. Differential display analysis of gene expression in two immunologically distinct strains of Eimeria maxima. Parasitol Res 2006; 99:28-36. [PMID: 16470414 DOI: 10.1007/s00436-005-0087-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 11/09/2005] [Indexed: 10/25/2022]
Abstract
Gene expression during sporulation and sporozoite excystation of two strains of Eimeria maxima was analyzed using the mRNA differential display technique. The two strains, the Guelph strain (GS) and a single sporocyst-derived strain (M6) from Florida, have been shown to be immunologically distinct. We isolated and cloned a 453-bp complimentary DNA (cDNA) fragment (GS-453) found only in GS sporozoites. In GS, this mRNA begins to be expressed during the earliest stages of oocyst sporulation and is continuously expressed up to and including in the excysted sporozoite. In all Northern blots, digoxigenin (DIG)-labeled GS-453 probe recognized an mRNA of approximately 1.6 kb from GS but not from RNA of M6. Southern blots using various endonucleases and probed with DIG-labeled GS-453 demonstrated that the genomes of both strains contained sufficiently similar sequences to permit hybridization with the probe, but the pattern of hybridization differed between the two strains. Extensive searches of the GenBank, European Molecular Biology Laboratory, and various apicomplexan expressed sequence tag databases using the DNA or inferred amino acid sequences of GS-453 cDNA clone did not identify similarity to any existing sequences.
Collapse
Affiliation(s)
- S C Basak
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, N1G 2W1, Ontario, Canada,
| | | | | | | |
Collapse
|
41
|
REN ZQ, XIONG YZ, DENG CY, LEI MG, ZUO B, LI FE, ZHENG R, XU DQ. Isolation, Cloning, and Identification of Expressed Sequence Tags from the Backfat Tissue in Duroc and Tongcheng Pigs by mRNA Differential Display. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1671-2927(06)60031-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Tripathi R, Sastry KS, Kota SK, Srinivas UK. Cloning and characterization of mouse cullin4B/E3 ubiquitin ligase. J Biosci 2005; 30:329-37. [PMID: 16052071 DOI: 10.1007/bf02703670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heat induced differentiation of mouse embryonal carcinoma cells PCC4 has been reported earlier. We have further characterized the phenotype of the differentiated cells and by DD-RT-PCR identified several partial cDNAs that are differentially expressed during differentiation. Nucleotide homology search revealed that the genes corresponding to some of the up-regulated partial cDNAs are indeed part of differentiation pathway. 5'extension of an EST that has homology to one of the partial cDNAs led to the identification of mouse cullin4B. Cullin4B is coded by a separate gene and has a unique and longer amino-terminal end with a putative nuclear localization signal sequence (NLS). We have cloned, expressed and raised antibodies against the amino and carboxy-terminal halves of cullin4B. Immuno staining of differentiated PCC4 cells with N-terminal Cul4B antibody showed enhanced expression of Cul4B and its translocation into the nucleus upon differentiation. Transient transfection of a chimeric gene encoding the N-terminal part of Cul4B fused to green fluorescent protein into PCC4 cells revealed that the protein was localized in the nucleus confirming the functional significance of the putative NLS. Since cullins are involved in recognition of specific proteins for degradation, based on the evidence presented here, we hypothesize that cullin4B is probably involved in differentiation specific degradation/modification of nuclear proteins.
Collapse
Affiliation(s)
- Rachana Tripathi
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
43
|
Sung B, Jung KJ, Song HS, Son MJ, Yu BP, Chung HY. cDNA representational difference analysis used in the identification of genes related to the aging process in rat kidney. Mech Ageing Dev 2005; 126:882-91. [PMID: 15893360 DOI: 10.1016/j.mad.2005.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2005] [Indexed: 11/24/2022]
Abstract
Aging is a complex physiological process by which the functions of many organ systems deteriorate. Growing evidence shows that age-related changes and damage are causally related to oxidative stress and inflammatory responses from reactive species. The aim of this study was to identify differentially expressed genes in old and young kidneys of Fisher 344 male rats during the aging process using complementary DNA representational difference analysis (cDNA RDA). cDNA RDA is a subtractive technique for identifying a focused set of differentially expressed genes. The distinctive advantage of this technique is its capability of detecting differences in gene expressions at less than one copy per cell and identifying genes not previously described in the database. Reverse transcription-polymerase chain reaction with specific primers was applied to confirm the differences found by RDA. Twenty-one putative differentially expressed genes were identified. Sixteen genes were up-regulated during aging and were associated with stress-response and inflammatory reactions, while five genes were down-regulated. These data suggested that the inflammatory process is a plausible cause of the aging process.
Collapse
Affiliation(s)
- Bokyung Sung
- College of Pharmacy, Aging Tissue Bank, Pusan National University, Jangjeon-dong, Geumjeong-ku, Busan 609-735, South Korea
| | | | | | | | | | | |
Collapse
|
44
|
Li L, Techel D, Gretz N, Hildebrandt A. A novel transcriptome subtraction method for the detection of differentially expressed genes in highly complex eukaryotes. Nucleic Acids Res 2005; 33:e136. [PMID: 16147983 PMCID: PMC1201337 DOI: 10.1093/nar/gni136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have designed a novel transcriptome subtraction method for the genome-scale analysis of differential gene expression in highly complex eukaryotes, in which suppression subtractive hybridization (SSH) is performed first to enrich the target and, after exchange of adapters, negative subtraction chain (NSC) is then used to eliminate the remaining background. NSC evolved from differential subtraction chain (DSC). We designed novel adapters which make the subtraction system more robust. SSH and NSC were then combined to successfully detect differentially expressed genes in Solanum. The combined technique improves qualitatively upon SSH, the only commercially available transcriptome subtraction system, by detecting target genes in the middle abundance class, to which most differentially expressed genes in highly complex eukaryotes are expected to belong. The main advantage of the combined technique with SSH/NSC is its ability to isolate differentially expressed genes quickly and cost-efficiently from non-standard models, for those microarrays are unavailable.
Collapse
Affiliation(s)
- L Li
- Centre for Medical Research (ZMF), University of Heidelberg, Germany.
| | | | | | | |
Collapse
|
45
|
Sharma P, Kumar S. Differential display-mediated identification of three drought-responsive expressed sequence tags in tea [Camellia sinensis (L.) O. Kuntze]. J Biosci 2005; 30:231-5. [PMID: 15886459 DOI: 10.1007/bf02703703] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
There is no information on drought-modulated gene(s) in tea [Camellia sinensis (L.) O. Kuntze], a woody and perennial plant of commercial importance. Using differential display of mRNA, three drought-modulated expressed sequence tags (ESTs) were identified. Northern and BLAST analysis revealed that clone dr1 (drought-responsive), induced only by drought but not by ABA, showed significant scores with PR-5 (pathogenesis related) family of PR-protein gene. Another clone dr2, repressed by drought but not by ABA, had nucleotide repeats for polyasparate that are also present in chicken calsequestrin-like mRNA. Clone dr3, responded similarly to clone dr2 but did not show significant homology with the reported genes, hence appears to be novel. Identification of these ESTs is an initial step to clone the full length genes and their promoters.
Collapse
Affiliation(s)
- Priti Sharma
- Advance Centre of Hill Bioresource and Biotechnology, CSK Himachal Pradesh Krishi Vishwavidyalaya, Palampur 176 062, India
| | | |
Collapse
|
46
|
Meintrup D, Reisinger E. A statistical model providing comprehensive predictions for the mRNA differential display. Bioinformatics 2005; 21:3880-6. [PMID: 16109746 DOI: 10.1093/bioinformatics/bti636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Differential display (DD) or arbitrarily primed fingerprinting serves to identify differentially expressed genes, but these techniques cannot determine how many of the theoretically available genes have been uncovered. Previous mathematical models are unsatisfying as they are not suitable to analyze experimental data. RESULTS In the present study, we provide a statistical model based on the redundancy of cDNA fragments amplified during DD experiments. This model is applicable to any DD and predicts (1) the total number of genes expressed in a sample cell type or tissue, (2) the number of differentially expressed genes, (3) the coverage obtained with any given number of primer combinations. In a DD experiment comparing two developmental stages of the post natal rat inner ear, we estimated the total number of differentially expressed genes accessible by DD to be 445, and the number of primer combinations required to uncover 90% of these to be 127. AVAILABILITY The algorithms were implemented in Matlab (The Mathworks, Inc., Natick, MA) environment and are available at www.physiologie.uni-freiburg.de/download.html CONTACT ellen.reisinger@physiologie.uni-freiburg.de.
Collapse
Affiliation(s)
- David Meintrup
- Institut EIT 1, Universitaet der Bundeswehr Muenchen, Neubiberg, Germany
| | | |
Collapse
|
47
|
Park JH, Liu L, Kim IH, Kim JH, You KR, Kim DG. Identification of the Genes Involved in Enhanced Fenretinide-Induced Apoptosis by Parthenolide in Human Hepatoma Cells. Cancer Res 2005; 65:2804-14. [PMID: 15805281 DOI: 10.1158/0008-5472.can-04-2221] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fenretinide (N-4-hydroxyphenyl retinamide, 4HPR) is a synthetic anticancer retinoid that is a well-known apoptosis-inducing agent. Recently, we observed that the apoptosis induced by fenretinide could be effectively enhanced in hepatoma cells by a concomitant treatment with parthenolide, which is a known inhibitor of nuclear factor-kappaB (NF-kappaB). Furthermore, treatment with fenretinide triggered the activation of NF-kappaB during apoptosis, which could be substantially inhibited by parthenolide, suggesting that NF-kappaB activation during fenretinide-induced apoptosis has an antiapoptotic effect. This study investigated the molecular mechanism of this apoptotic potentiation by NF-kappaB inhibition. The genes involved in the enhanced fenretinide-induced apoptosis by parthenolide were identified using the differential display-PCR method and subsequent Northern blot or semiquantitative reverse transcriptase PCR analysis. This study identified 35 apoptosis-related genes including 12 unknown genes that were either up- or down-regulated by parthenolide. Interestingly, one up-regulated gene (HA1A2) was isolated and cloned from the liver cDNA, and was found to be identical to ANKRD1, which is also referred to as the CARP gene. Compared with controls treated with an empty vector or with antisense cDNA, the ectopic expression of ANKRD1 led to reduced colony formation and to enhanced apoptotic cell death in hepatoma cells. These results suggest that ANKRD1 and the other genes, whose expressions were substantially modulated by the parthenolide-mediated inhibition of NF-kappaB activation, play roles in the enhanced drug-induced apoptosis. In addition, this study suggests that those identified genes may be useful in anticancer strategies against hepatoma.
Collapse
Affiliation(s)
- Jeong-Hyang Park
- Division of Gastroenterology and Hepatology, The Research Institute of Clinical Medicine, Department of Internal Medicine, Chonbuk National University Medical School and Hospital, Chonju, Chonbuk, Republic of Korea
| | | | | | | | | | | |
Collapse
|
48
|
Mori M, Burgess DL, Gefrides LA, Foreman PJ, Opferman JT, Korsmeyer SJ, Cavalheiro EA, Naffah-Mazzacoratti MG, Noebels JL. Expression of apoptosis inhibitor protein Mcl1 linked to neuroprotection in CNS neurons. Cell Death Differ 2005; 11:1223-33. [PMID: 15286683 DOI: 10.1038/sj.cdd.4401483] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mcl1 is a Bcl2-related antiapoptotic protein originally isolated from human myeloid leukemia cells. Unlike Bcl2, expression has not been reported in CNS neurons. We isolated Mcl1 in a direct screen for candidate modifier genes of neuronal vulnerability by differential display of mRNAs upregulated following prolonged seizures in two mouse strains with contrasting levels of hippocampal cell death. Mcl1 is widely expressed in neurons, and transcription is rapidly induced in both strains. In resistant C57Bl/6J mice, Mcl1 protein levels remain persistently elevated in hippocampal pyramidal neurons after seizures, but fall rapidly in C3H/HeJ hippocampus, coinciding with extensive neuronal apoptosis. DNA damage and caspase-mediated cell death were strikingly increased in Mcl1-deficient mice when compared to +/+ littermates after similar seizures. We identify Mcl1 as a neuronal gene responsive to excitotoxic insult in the brain, and link relative levels of Mcl1 expression to inherited differences in neuronal thresholds for apoptosis.
Collapse
Affiliation(s)
- M Mori
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Robinson M, Parsons Perez MC, Tébar L, Palmer J, Patel A, Marks D, Sheasby A, De Felipe C, Coffin R, Livesey FJ, Hunt SP. FLRT3 is expressed in sensory neurons after peripheral nerve injury and regulates neurite outgrowth. Mol Cell Neurosci 2005; 27:202-14. [PMID: 15485775 DOI: 10.1016/j.mcn.2004.06.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 06/10/2004] [Accepted: 06/15/2004] [Indexed: 11/23/2022] Open
Abstract
We used a molecular screen to identify genes upregulated in regenerating adult rat dorsal root ganglion cells. FLRT3 mRNA and protein characterized by a fibronectin type III domain and a leucine-rich repeat motif was upregulated in damaged sensory neurons. The protein was then transported into their peripheral and central processes where the FLRT3 protein was localized to presynaptic axon terminals. In vitro, the FLRT3 protein was expressed at the cell surface, regulated neurite outgrowth in sensory neurons, but did not exhibit homophilic binding. FLRT3 was widely expressed in the developing embryo, particularly in the central nervous system and somites. However, in the adult, we found no evidence for accumulation or reexpression of the FLRT3 protein in damaged axons of the central nervous system. We conclude that FLRT3 codes for a putative cell surface receptor implicated in both the development of the nervous system and in the regeneration of the peripheral nervous system (PNS).
Collapse
Affiliation(s)
- M Robinson
- Department of Anatomy and Developmental Biology, UCL, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hu W, Jones PD, Decoen W, Newsted JL, Giesy JP. Comparison of gene expression methods to identify genes responsive to perfluorooctane sulfonic acid. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2005; 19:153-160. [PMID: 21783471 DOI: 10.1016/j.etap.2004.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Accepted: 06/22/2004] [Indexed: 05/31/2023]
Abstract
Genome-wide expression techniques are being increasingly used to assess the effects of environmental contaminants. Oligonucleotide or cDNA microarray methods make possible the screening of large numbers of known sequences for a given model species, while differential display analysis makes possible analysis of the expression of all the genes from any species. We report a comparison of two currently popular methods for genome-wide expression analysis in rat hepatoma cells treated with perfluorooctane sulfonic acid. The two analyses provided 'complimentary' information. Approximately 5% of the 8000 genes analyzed by the GeneChip array, were altered by a factor of three or greater. Differential display results were more difficult to interpret, since multiple gene products were present in most gel bands so a probabilistic approach was used to determine which pathways were affected. The mechanistic interpretation derived from these two methods was in agreement, both showing similar alterations in a specific set of genes.
Collapse
Affiliation(s)
- Wenyue Hu
- Department of Zoology, 224 National Food Safety and Toxicology Center and Institute of Environmental Toxicology, Michigan State University, East Lansing, MI 48824-1311, USA
| | | | | | | | | |
Collapse
|