1
|
Saha S, Kanaujia SP. Decoding Substrate Selectivity of an Archaeal RlmCD-like Methyltransferase Through Its Salient Traits. Biochemistry 2024; 63:2477-2492. [PMID: 39350642 DOI: 10.1021/acs.biochem.4c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2024]
Abstract
5-Methyluridine (m5U) rRNA modifications frequently occur at U747 and U1939 (Escherichia coli numbering) in domains II and IV of the 23S rRNA in Gram-negative bacteria, with the help of S-adenosyl-l-methionine (SAM)-dependent rRNA methyltransferases (MTases), RlmC and RlmD, respectively. In contrast, Gram-positive bacteria utilize a single SAM-dependent rRNA MTase, RlmCD, to modify both corresponding sites. Notably, certain archaea, specifically within the Thermococcales group, have been found to possess two genes encoding SAM-dependent archaeal (tRNA and rRNA) m5U (Arm5U) MTases. Among these, a tRNA-specific Arm5U MTase (PabTrmU54) has already been characterized. This study focused on the structural and functional characterization of the rRNA-specific Arm5U MTase from the hyperthermophilic archaeon Pyrococcus horikoshii (PhRlmCD). An in-depth structural examination revealed a dynamic hinge movement induced by the replacement of the iron-sulfur cluster with disulfide bonds, obstructing the substrate-binding site. It revealed distinctive characteristics of PhRlmCD, including elongated positively charged loops in the central domain and rotational variations in the TRAM domain, which influence substrate selectivity. Additionally, the results suggested that two potential mini-rRNA fragments interact in a similar manner with PhRlmCD at a positively charged cleft at the interface of domains and facilitate dual MTase activities akin to the protein RlmCD. Altogether, these observations showed that Arm5U MTases originated from horizontal gene transfer events, most likely from Gram-positive bacteria.
Collapse
Affiliation(s)
- Sayan Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
2
|
Fujita S, Sugio Y, Kawamura T, Yamagami R, Oka N, Hirata A, Yokogawa T, Hori H. ArcS from Thermococcus kodakarensis transfers L-lysine to preQ 0 nucleoside derivatives as minimum substrate RNAs. J Biol Chem 2024; 300:107505. [PMID: 38944122 PMCID: PMC11298593 DOI: 10.1016/j.jbc.2024.107505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
Archaeosine (G+) is an archaea-specific tRNA modification synthesized via multiple steps. In the first step, archaeosine tRNA guanine transglucosylase (ArcTGT) exchanges the G15 base in tRNA with 7-cyano-7-deazaguanine (preQ0). In Euryarchaea, preQ015 in tRNA is further modified by archaeosine synthase (ArcS). Thermococcus kodakarensis ArcS catalyzes a lysine-transfer reaction to produce preQ0-lysine (preQ0-Lys) as an intermediate. The resulting preQ0-Lys15 in tRNA is converted to G+15 by a radical S-adenosyl-L-methionine enzyme for archaeosine formation (RaSEA), which forms a complex with ArcS. Here, we focus on the substrate tRNA recognition mechanism of ArcS. Kinetic parameters of ArcS for lysine and tRNA-preQ0 were determined using a purified enzyme. RNA fragments containing preQ0 were prepared from Saccharomyces cerevisiae tRNAPhe-preQ015. ArcS transferred 14C-labeled lysine to RNA fragments. Furthermore, ArcS transferred lysine to preQ0 nucleoside and preQ0 nucleoside 5'-monophosphate. Thus, the L-shaped structure and the sequence of tRNA are not essential for the lysine-transfer reaction by ArcS. However, the presence of D-arm structure accelerates the lysine-transfer reaction. Because ArcTGT from thermophilic archaea recognizes the common D-arm structure, we expected the combination of T. kodakarensis ArcTGT and ArcS and RaSEA complex would result in the formation of preQ0-Lys15 in all tRNAs. This hypothesis was confirmed using 46 T. kodakarensis tRNA transcripts and three Haloferax volcanii tRNA transcripts. In addition, ArcTGT did not exchange the preQ0-Lys15 in tRNA with guanine or preQ0 base, showing that formation of tRNA-preQ0-Lys by ArcS plays a role in preventing the reverse reaction in G+ biosynthesis.
Collapse
Affiliation(s)
- Shu Fujita
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Yuzuru Sugio
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Takuya Kawamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| | - Natsuhisa Oka
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Gifu, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Gifu, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Gifu, Japan
| | - Akira Hirata
- Department of Natural Science, Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima, Tokushima, Japan
| | - Takashi Yokogawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Gifu, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Gifu, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Gifu, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan.
| |
Collapse
|
3
|
Nazim T, Kumar V, Ahmed F, Ehtesham NZ, Hasnain SE, Sundar D, Grover S. Computational analysis of RNA methyltransferase Rv3366 as a potential drug target for combating drug-resistant Mycobacterium tuberculosis. Front Mol Biosci 2024; 10:1348337. [PMID: 38274093 PMCID: PMC10808684 DOI: 10.3389/fmolb.2023.1348337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb) remains a formidable global health threat. The increasing drug resistance among M.tb clinical isolates is exacerbating the current tuberculosis (TB) burden. In this study we focused on identifying novel repurposed drugs that could be further investigated as potential anti-TB drugs. We utilized M.tb RNA methyltransferase Rv3366 (spoU) as a potential drug target due to its imperative activity in RNA modification and no structural homology with human proteins. Using computational modeling approaches the structure of Rv3366 was determined followed by high throughput virtual screening of Food and Drug Administration (FDA) approved drugs to screen potential binders of Rv3366. Molecular dynamics (MD) simulations were performed to assess the drug-protein binding interactions, complex stability and rigidity. Through this multi-step structure-based drug repurposing workflow two promising inhibitors of Rv3366 were identified, namely, Levodopa and Droxidopa. This study highlights the significance of targeting M.tb RNA methyltransferases to combat drug-resistant M.tb. and proposes Levodopa and Droxidopa as promising inhibitors of Rv3366 for future pre-clinical investigations.
Collapse
Affiliation(s)
- Tasmin Nazim
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Vipul Kumar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Faraz Ahmed
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Nasreen Z. Ehtesham
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, India
| | - Seyed E. Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, India
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Sonam Grover
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| |
Collapse
|
4
|
Kohno Y, Ito A, Okamoto A, Yamagami R, Hirata A, Hori H. Escherichia coli tRNA (Gm18) methyltransferase (TrmH) requires the correct localization of its methylation site (G18) in the D-loop for efficient methylation. J Biochem 2023; 175:43-56. [PMID: 37844264 DOI: 10.1093/jb/mvad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023] Open
Abstract
TrmH is a eubacterial tRNA methyltransferase responsible for formation of 2'-O-methylguaosine at position 18 (Gm18) in tRNA. In Escherichia coli cells, only 14 tRNA species possess the Gm18 modification. To investigate the substrate tRNA selection mechanism of E. coli TrmH, we performed biochemical and structural studies. Escherichia coli TrmH requires a high concentration of substrate tRNA for efficient methylation. Experiments using native tRNA SerCGA purified from a trmH gene disruptant strain showed that modified nucleosides do not affect the methylation. A gel mobility-shift assay reveals that TrmH captures tRNAs without distinguishing between relatively good and very poor substrates. Methylation assays using wild-type and mutant tRNA transcripts revealed that the location of G18 in the D-loop is very important for efficient methylation by E. coli TrmH. In the case of tRNASer, tRNATyrand tRNALeu, the D-loop structure formed by interaction with the long variable region is important. For tRNAGln, the short distance between G18 and A14 is important. Thus, our biochemical study explains all Gm18 modification patterns in E. coli tRNAs. The crystal structure of E. coli TrmH has also been solved, and the tRNA binding mode of E. coli TrmH is discussed based on the structure.
Collapse
Affiliation(s)
- Yoh Kohno
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Asako Ito
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Aya Okamoto
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Akira Hirata
- Department of Natural Science, Graduate School of Technology, Industrial and Social Science, Tokushima University, 2-1 Minamijosanjimacho, Tokushima, Tokushima 770-8506, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate school of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
5
|
Dai W, Yu NJ, Kleiner RE. Chemoproteomic Approaches to Studying RNA Modification-Associated Proteins. Acc Chem Res 2023; 56:2726-2739. [PMID: 37733063 PMCID: PMC11025531 DOI: 10.1021/acs.accounts.3c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The function of cellular RNA is modulated by a host of post-transcriptional chemical modifications installed by dedicated RNA-modifying enzymes. RNA modifications are widespread in biology, occurring in all kingdoms of life and in all classes of RNA molecules. They regulate RNA structure, folding, and protein-RNA interactions, and have important roles in fundamental gene expression processes involving mRNA, tRNA, rRNA, and other types of RNA species. Our understanding of RNA modifications has advanced considerably; however, there are still many outstanding questions regarding the distribution of modifications across all RNA transcripts and their biological function. One of the major challenges in the study of RNA modifications is the lack of sequencing methods for the transcriptome-wide mapping of different RNA-modification structures. Furthermore, we lack general strategies to characterize RNA-modifying enzymes and RNA-modification reader proteins. Therefore, there is a need for new approaches to enable integrated studies of RNA-modification chemistry and biology.In this Account, we describe our development and application of chemoproteomic strategies for the study of RNA-modification-associated proteins. We present two orthogonal methods based on nucleoside and oligonucleotide chemical probes: 1) RNA-mediated activity-based protein profiling (RNABPP), a metabolic labeling strategy based on reactive modified nucleoside probes to profile RNA-modifying enzymes in cells and 2) photo-cross-linkable diazirine-containing synthetic oligonucleotide probes for identifying RNA-modification reader proteins.We use RNABPP with C5-modified cytidine and uridine nucleosides to capture diverse RNA-pyrimidine-modifying enzymes including methyltransferases, dihydrouridine synthases, and RNA dioxygenase enzymes. Metabolic labeling facilitates the mechanism-based cross-linking of RNA-modifying enzymes with their native RNA substrates in cells. Covalent RNA-protein complexes are then isolated by denaturing oligo(dT) pulldown, and cross-linked proteins are identified by quantitative proteomics. Once suitable modified nucleosides have been identified as mechanism-based proteomic probes, they can be further deployed in transcriptome-wide sequencing experiments to profile the substrates of RNA-modifying enzymes at nucleotide resolution. Using 5-fluorouridine-mediated RNA-protein cross-linking and sequencing, we analyzed the substrates of human dihydrouridine synthase DUS3L. 5-Ethynylcytidine-mediated cross-linking enabled the investigation of ALKBH1 substrates. We also characterized the functions of these RNA-modifying enzymes in human cells by using genetic knockouts and protein translation reporters.We profiled RNA readers for N6-methyladenosine (m6A) and N1-methyladenosine (m1A) using a comparative proteomic workflow based on diazirine-containing modified oligonucleotide probes. Our approach enables quantitative proteome-wide analysis of the preference of RNA-binding proteins for modified nucleotides across a range of affinities. Interestingly, we found that YTH-domain proteins YTHDF1/2 can bind to both m6A and m1A to mediate transcript destabilization. Furthermore, m6A also inhibits stress granule proteins from binding to RNA.Taken together, we demonstrate the application of chemical probing strategies, together with proteomic and transcriptomic workflows, to reveal new insights into the biological roles of RNA modifications and their associated proteins.
Collapse
Affiliation(s)
| | | | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, USA 08544
| |
Collapse
|
6
|
Haddad-Mashadrizeh A, Mirahmadi M, Taghavizadeh Yazdi ME, Gholampour-Faroji N, Bahrami A, Zomorodipour A, Moghadam Matin M, Qayoomian M, Saebnia N. Introns and Their Therapeutic Applications in Biomedical Researches. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3316. [PMID: 38269198 PMCID: PMC10804063 DOI: 10.30498/ijb.2023.334488.3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/23/2023] [Indexed: 01/26/2024]
Abstract
Context Although for a long time, it was thought that intervening sequences (introns) were junk DNA without any function, their critical roles and the underlying molecular mechanisms in genome regulation have only recently come to light. Introns not only carry information for splicing, but they also play many supportive roles in gene regulation at different levels. They are supposed to function as useful tools in various biological processes, particularly in the diagnosis and treatment of diseases. Introns can contribute to numerous biological processes, including gene silencing, gene imprinting, transcription, mRNA metabolism, mRNA nuclear export, mRNA localization, mRNA surveillance, RNA editing, NMD, translation, protein stability, ribosome biogenesis, cell growth, embryonic development, apoptosis, molecular evolution, genome expansion, and proteome diversity through various mechanisms. Evidence Acquisition In order to fulfill the objectives of this study, the following databases were searched: Medline, Scopus, Web of Science, EBSCO, Open Access Journals, and Google Scholar. Only articles published in English were included. Results & Conclusions The intervening sequences of eukaryotic genes have critical functions in genome regulation, as well as in molecular evolution. Here, we summarize recent advances in our understanding of how introns influence genome regulation, as well as their effects on molecular evolution. Moreover, therapeutic strategies based on intron sequences are discussed. According to the obtained results, a thorough understanding of intron functional mechanisms could lead to new opportunities in disease diagnosis and therapies, as well as in biotechnology applications.
Collapse
Affiliation(s)
- Aliakbar Haddad-Mashadrizeh
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Nazanin Gholampour-Faroji
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmadreza Bahrami
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Maryam Moghadam Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohsen Qayoomian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Saebnia
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
7
|
Kimura S. Discovering RNA modification enzymes using a comparative genomics approach. Methods Enzymol 2023; 692:55-67. [PMID: 37925187 DOI: 10.1016/bs.mie.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Identifying RNA modification enzymes is critical for understanding the biogenesis and function of RNA modification. Among several approaches that enable the identification of RNA modification enzymes, comparative genomics has become particularly useful due to the expanding availability of genomic DNA and annotation data. Here, a detailed protocol for carrying out a computational comparative genomics approach for the discovery of RNA modification enzymes is presented. An illustrative example of the utility of this approach in the discovery of AcpA, an acetyltransferase that synthesizes the newly discovered modification, acacp3U is also provided. This computational framework has applications for the identification of genes involved in other cellular processes.
Collapse
Affiliation(s)
- Satoshi Kimura
- Brigham and Women's Hospital, Department of Medicine, Division of Infectious Diseases, Boston, MA, USA; Harvard Medical School, Department of Microbiology, Boston, MA, USA.
| |
Collapse
|
8
|
Roovers M, Labar G, Wolff P, Feller A, Van Elder D, Soin R, Gueydan C, Kruys V, Droogmans L. The Bacillus subtilis open reading frame ysgA encodes the SPOUT methyltransferase RlmP forming 2'- O-methylguanosine at position 2553 in the A-loop of 23S rRNA. RNA (NEW YORK, N.Y.) 2022; 28:1185-1196. [PMID: 35710145 PMCID: PMC9380741 DOI: 10.1261/rna.079131.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
A previous bioinformatic analysis predicted that the ysgA open reading frame of Bacillus subtilis encodes an RNA methyltransferase of the SPOUT superfamily. Here we show that YsgA is the 2'-O-methyltransferase that targets position G2553 (Escherichia coli numbering) of the A-loop of 23S rRNA. This was shown by a combination of biochemical and mass spectrometry approaches using both rRNA extracted from B. subtilis wild-type or ΔysgA cells and in vitro synthesized rRNA. When the target G2553 is mutated, YsgA is able to methylate the ribose of adenosine. However, it cannot methylate cytidine nor uridine. The enzyme modifies free 23S rRNA but not the fully assembled ribosome nor the 50S subunit, suggesting that the modification occurs early during ribosome biogenesis. Nevertheless, ribosome subunits assembly is unaffected in a B. subtilis ΔysgA mutant strain. The crystal structure of the recombinant YsgA protein, combined with mutagenesis data, outlined in this article highlights a typical SPOUT fold preceded by an L7Ae/L30 (eL8/eL30 in a new nomenclature) amino-terminal domain.
Collapse
Affiliation(s)
| | | | - Philippe Wolff
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| | - André Feller
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles (ULB), Labiris, B-1070 Bruxelles, Belgium
| | - Dany Van Elder
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles (ULB), Labiris, B-1070 Bruxelles, Belgium
| | - Romuald Soin
- Laboratoire de Biologie Moléculaire du Gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Cyril Gueydan
- Laboratoire de Biologie Moléculaire du Gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Véronique Kruys
- Laboratoire de Biologie Moléculaire du Gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Louis Droogmans
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles (ULB), Labiris, B-1070 Bruxelles, Belgium
| |
Collapse
|
9
|
Schaefer MR. The Regulation of RNA Modification Systems: The Next Frontier in Epitranscriptomics? Genes (Basel) 2021; 12:genes12030345. [PMID: 33652758 PMCID: PMC7996938 DOI: 10.3390/genes12030345] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
RNA modifications, long considered to be molecular curiosities embellishing just abundant and non-coding RNAs, have now moved into the focus of both academic and applied research. Dedicated research efforts (epitranscriptomics) aim at deciphering the underlying principles by determining RNA modification landscapes and investigating the molecular mechanisms that establish, interpret and modulate the information potential of RNA beyond the combination of four canonical nucleotides. This has resulted in mapping various epitranscriptomes at high resolution and in cataloguing the effects caused by aberrant RNA modification circuitry. While the scope of the obtained insights has been complex and exciting, most of current epitranscriptomics appears to be stuck in the process of producing data, with very few efforts to disentangle cause from consequence when studying a specific RNA modification system. This article discusses various knowledge gaps in this field with the aim to raise one specific question: how are the enzymes regulated that dynamically install and modify RNA modifications? Furthermore, various technologies will be highlighted whose development and use might allow identifying specific and context-dependent regulators of epitranscriptomic mechanisms. Given the complexity of individual epitranscriptomes, determining their regulatory principles will become crucially important, especially when aiming at modifying specific aspects of an epitranscriptome both for experimental and, potentially, therapeutic purposes.
Collapse
Affiliation(s)
- Matthias R Schaefer
- Centre for Anatomy & Cell Biology, Division of Cell-and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Haus C, 1st Floor, 1090 Vienna, Austria
| |
Collapse
|
10
|
Boriack-Sjodin PA, Ribich S, Copeland RA. RNA-modifying proteins as anticancer drug targets. Nat Rev Drug Discov 2018; 17:435-453. [PMID: 29773918 DOI: 10.1038/nrd.2018.71] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
All major biological macromolecules (DNA, RNA, proteins and lipids) undergo enzyme-catalysed covalent modifications that impact their structure, function and stability. A variety of covalent modifications of RNA have been identified and demonstrated to affect RNA stability and translation to proteins; these mechanisms of translational control have been termed epitranscriptomics. Emerging data suggest that some epitranscriptomic mechanisms are altered in human cancers as well as other human diseases. In this Review, we examine the current understanding of RNA modifications with a focus on mRNA methylation, highlight their possible roles in specific cancer indications and discuss the emerging potential of RNA-modifying proteins as therapeutic targets.
Collapse
|
11
|
Pang P, Deng X, Wang Z, Xie W. Structural and biochemical insights into the 2′-O
-methylation of pyrimidines 34 in tRNA. FEBS J 2017; 284:2251-2263. [DOI: 10.1111/febs.14120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/26/2017] [Accepted: 05/22/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Panjiao Pang
- School of Pharmaceutical Sciences; The Sun Yat-Sen University; Guangzhou China
- Center for Cellular & Structural Biology; The Sun Yat-Sen University; Guangzhou China
| | - Xiangyu Deng
- Center for Cellular & Structural Biology; The Sun Yat-Sen University; Guangzhou China
- State Key Laboratory for Biocontrol; School of Life Sciences; The Sun Yat-Sen University; Guangzhou China
| | - Zhong Wang
- School of Pharmaceutical Sciences; The Sun Yat-Sen University; Guangzhou China
- Center for Cellular & Structural Biology; The Sun Yat-Sen University; Guangzhou China
| | - Wei Xie
- Center for Cellular & Structural Biology; The Sun Yat-Sen University; Guangzhou China
- State Key Laboratory for Biocontrol; School of Life Sciences; The Sun Yat-Sen University; Guangzhou China
| |
Collapse
|
12
|
Transfer RNA methyltransferases with a SpoU-TrmD (SPOUT) fold and their modified nucleosides in tRNA. Biomolecules 2017; 7:biom7010023. [PMID: 28264529 PMCID: PMC5372735 DOI: 10.3390/biom7010023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/23/2017] [Indexed: 11/22/2022] Open
Abstract
The existence of SpoU-TrmD (SPOUT) RNA methyltransferase superfamily was first predicted by bioinformatics. SpoU is the previous name of TrmH, which catalyzes the 2’-O-methylation of ribose of G18 in tRNA; TrmD catalyzes the formation of N1-methylguanosine at position 37 in tRNA. Although SpoU (TrmH) and TrmD were originally considered to be unrelated, the bioinformatics study suggested that they might share a common evolution origin and form a single superfamily. The common feature of SPOUT RNA methyltransferases is the formation of a deep trefoil knot in the catalytic domain. In the past decade, the SPOUT RNA methyltransferase superfamily has grown; furthermore, knowledge concerning the functions of their modified nucleosides in tRNA has also increased. Some enzymes are potential targets in the design of anti-bacterial drugs. In humans, defects in some genes may be related to carcinogenesis. In this review, recent findings on the tRNA methyltransferases with a SPOUT fold and their methylated nucleosides in tRNA, including classification of tRNA methyltransferases with a SPOUT fold; knot structures, domain arrangements, subunit structures and reaction mechanisms; tRNA recognition mechanisms, and functions of modified nucleosides synthesized by this superfamily, are summarized. Lastly, the future perspective for studies on tRNA modification enzymes are considered.
Collapse
|
13
|
Next-Generation Sequencing-Based RiboMethSeq Protocol for Analysis of tRNA 2'-O-Methylation. Biomolecules 2017; 7:biom7010013. [PMID: 28208788 PMCID: PMC5372725 DOI: 10.3390/biom7010013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/02/2017] [Indexed: 12/16/2022] Open
Abstract
Analysis of RNA modifications by traditional physico-chemical approaches is labor intensive, requires substantial amounts of input material and only allows site-by-site measurements. The recent development of qualitative and quantitative approaches based on next-generation sequencing (NGS) opens new perspectives for the analysis of various cellular RNA species. The Illumina sequencing-based RiboMethSeq protocol was initially developed and successfully applied for mapping of ribosomal RNA (rRNA) 2′-O-methylations. This method also gives excellent results in the quantitative analysis of rRNA modifications in different species and under varying growth conditions. However, until now, RiboMethSeq was only employed for rRNA, and the whole sequencing and analysis pipeline was only adapted to this long and rather conserved RNA species. A deep understanding of RNA modification functions requires large and global analysis datasets for other important RNA species, namely for transfer RNAs (tRNAs), which are well known to contain a great variety of functionally-important modified residues. Here, we evaluated the application of the RiboMethSeq protocol for the analysis of tRNA 2′-O-methylation in Escherichia coli and in Saccharomyces cerevisiae. After a careful optimization of the bioinformatic pipeline, RiboMethSeq proved to be suitable for relative quantification of methylation rates for known modified positions in different tRNA species.
Collapse
|
14
|
TRUB1 is the predominant pseudouridine synthase acting on mammalian mRNA via a predictable and conserved code. Genome Res 2017; 27:393-406. [PMID: 28073919 PMCID: PMC5340967 DOI: 10.1101/gr.207613.116] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022]
Abstract
Following synthesis, RNA can be modified with over 100 chemically distinct modifications, which can potentially regulate RNA expression post-transcriptionally. Pseudouridine (Ψ) was recently established to be widespread and dynamically regulated on yeast mRNA, but less is known about Ψ presence, regulation, and biogenesis in mammalian mRNA. Here, we sought to characterize the Ψ landscape on mammalian mRNA, to identify the main Ψ-synthases (PUSs) catalyzing Ψ formation, and to understand the factors governing their specificity toward selected targets. We first developed a framework allowing analysis, evaluation, and integration of Ψ mappings, which we applied to >2.5 billion reads from 30 human samples. These maps, complemented with genetic perturbations, allowed us to uncover TRUB1 and PUS7 as the two key PUSs acting on mammalian mRNA and to computationally model the sequence and structural elements governing the specificity of TRUB1, achieving near-perfect prediction of its substrates (AUC = 0.974). We then validated and extended these maps and the inferred specificity of TRUB1 using massively parallel reporter assays in which we monitored Ψ levels at thousands of synthetically designed sequence variants comprising either the sequences surrounding pseudouridylation targets or systematically designed mutants perturbing RNA sequence and structure. Our findings provide an extensive and high-quality characterization of the transcriptome-wide distribution of pseudouridine in human and the factors governing it and provide an important resource for the community, paving the path toward functional and mechanistic dissection of this emerging layer of post-transcriptional regulation.
Collapse
|
15
|
Christian T, Sakaguchi R, Perlinska AP, Lahoud G, Ito T, Taylor EA, Yokoyama S, Sulkowska JI, Hou YM. Methyl transfer by substrate signaling from a knotted protein fold. Nat Struct Mol Biol 2016; 23:941-948. [PMID: 27571175 PMCID: PMC5429141 DOI: 10.1038/nsmb.3282] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/27/2016] [Indexed: 12/13/2022]
Abstract
Proteins with knotted configurations, in comparison with unknotted proteins, are restricted in conformational space. Little is known regarding whether knotted proteins have sufficient dynamics to communicate between spatially separated substrate-binding sites. TrmD is a bacterial methyltransferase that uses a knotted protein fold to catalyze methyl transfer from S-adenosyl methionine (AdoMet) to G37-tRNA. The product, m1G37-tRNA, is essential for life and maintains protein-synthesis reading frames. Using an integrated approach of structural, kinetic, and computational analysis, we show that the structurally constrained TrmD knot is required for its catalytic activity. Unexpectedly, the TrmD knot undergoes complex internal movements that respond to AdoMet binding and signaling. Most of the signaling propagates the free energy of AdoMet binding, thereby stabilizing tRNA binding and allowing assembly of the active site. This work demonstrates new principles of knots as organized structures that capture the free energies of substrate binding and facilitate catalysis.
Collapse
Affiliation(s)
- Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Reiko Sakaguchi
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Agata P Perlinska
- Center of New Technologies, University of Warsaw, Warsaw, Poland
- Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Georges Lahoud
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Takuhiro Ito
- RIKEN Systems and Structural Biology Center, Yokohama, Japan
- Graduate School of Science, University of Tokyo, Tokyo, Japan
- RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Erika A Taylor
- Department of Chemistry, Wesleyan University, Middletown, Connecticut, USA
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Yokohama, Japan
- Graduate School of Science, University of Tokyo, Tokyo, Japan
- RIKEN Structural Biology Laboratory, Yokohama, Japan
| | - Joanna I Sulkowska
- Center of New Technologies, University of Warsaw, Warsaw, Poland
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Abstract
The modified nucleosides of RNA are chemically altered versions of the standard A, G, U, and C nucleosides. This review reviews the nature and location of the modified nucleosides of Escherichia coli rRNA, the enzymes that form them, and their known and/or putative functional role. There are seven Ψ (pseudouridines) synthases to make the 11 pseudouridines in rRNA. There is disparity in numbers because RluC and RluD each make 3 pseudouridines. Crystal structures have shown that the Ψ synthase domain is a conserved fold found only in all five families of Ψ synthases. The conversion of uridine to Ψ has no precedent in known metabolic reactions. Other enzymes are known to cleave the glycosyl bond but none carry out rotation of the base and rejoining to the ribose while still enzyme bound. Ten methyltransferases (MTs) are needed to make all the methylated nucleosides in 16S RNA, and 14 are needed for 23S RNA. Biochemical studies indicate that the modes of substrate recognition are idiosyncratic for each Ψ synthase since no common mode of recognition has been detected in studies of the seven synthases. Eight of the 24 expected MTs have been identified, and six crystal structures have been determined. Seven of the MTs and five of the structures are class I MTs with the appropriate protein fold plus unique appendages for the Ψ synthases. The remaining MT, RlmB, has the class IV trefoil knot fold.
Collapse
|
17
|
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica contains 31 different modified nucleosides, which are all, except for one (Queuosine[Q]), synthesized on an oligonucleotide precursor, which through specific enzymes later matures into tRNA. The corresponding structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The syntheses of some of them (e.g.,several methylated derivatives) are catalyzed by one enzyme, which is position and base specific, but synthesis of some have a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N6-threonyladenosine [t6A],and Q). Several of the modified nucleosides are essential for viability (e.g.,lysidin, t6A, 1-methylguanosine), whereas deficiency in others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those, which are present in the body of the tRNA, have a primarily stabilizing effect on the tRNA. Thus, the ubiquitouspresence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
|
18
|
Structure-based function analysis of putative conserved proteins with isomerase activity from Haemophilus influenzae. 3 Biotech 2015; 5:741-763. [PMID: 28324524 PMCID: PMC4569619 DOI: 10.1007/s13205-014-0274-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/18/2014] [Indexed: 01/09/2023] Open
Abstract
Haemophilus influenzae, a Gram-negative bacterium and a member of the family Pasteurellaceae, causes chronic bronchitis, bacteremia, meningitis, etc. The H. influenzae is the first organism whose genome was completely sequenced and annotated. Here, we have extensively analyzed the genome of H. influenzae using available proteins structure and function analysis tools. The objective of this analysis is to assign a precise function to hypothetical proteins (HPs) whose functions are not determined so far. Function prediction of these proteins is helpful in precise understanding of mechanisms of pathogenesis and biochemical pathways important for selecting novel therapeutic target. After an extensive analysis of H. Influenzae genome we have found 13 HPs showing high level of sequence and structural similarity to the enzyme isomerase. Consequently, the structures of HPs have been modeled and analyzed to determine their precise functions. We found these HPs are alanine racemase, lysine 2, 3-aminomutase, topoisomerase DNA-binding C4 zinc finger, pseudouridine synthase B, C and E (Rlu B, C and E), hydroxypyruvate isomerase, nucleoside-diphosphate-sugar epimerase, amidophosphoribosyltransferase, aldose-1-epimerase, tautomerase/MIF, Xylose isomerase-like, have TIM barrel domain and sedoheptulose-7-phosphate isomerase like activity, signifying their corresponding functions in the H. influenzae. This work provides a better understanding of the role HPs with isomerase activities in the survival and pathogenesis of H. influenzae.
Collapse
|
19
|
Abstract
Cells have developed molecular machineries, which can chemically modify DNA and RNA nucleosides. One particular and chemically simple modification, (cytosine-5) methylation (m(5)C), has been detected both in RNA and DNA suggesting universal use of m(5)C for the function of these nucleotide polymers. m(5)C can be reproducibly mapped to abundant noncoding RNAs (transfer RNA, tRNA and ribosomal RNA, rRNA), and recently, also nonabundant RNAs (including mRNAs) have been reported to carry this modification. Quantification of m(5)C content in total RNA preparations indicates that a limited number of RNAs carry this modification and suggests specific functions for (cytosine-5) RNA methylation. What exactly is the biological function of m(5)C in RNA? Before attempting to address this question, m(5)C needs to be mapped specifically and reproducibly, preferably on a transcriptome-wide scale. To facilitate the detection of m(5)C in its sequence context, RNA bisulfite sequencing (RNA-BisSeq) has been developed. This method relies on the efficient chemical deamination of nonmethylated cytosine, which can be read out as single nucleotide polymorphism (nonmethylated cytosine as thymine vs. methylated cytosine as cytosine), when differentially comparing cDNA libraries to reference sequences after DNA sequencing. Here, the basic protocol of RNA-BisSeq, its current applications and limitations are described.
Collapse
Affiliation(s)
- Matthias Schaefer
- Vienna Biocenter, Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, Universität Wien, Vienna, Austria.
| |
Collapse
|
20
|
Yin S, Jiang H, Chen D, Murchie AIH. Substrate recognition and modification by the nosiheptide resistance methyltransferase. PLoS One 2015; 10:e0122972. [PMID: 25910005 PMCID: PMC4409310 DOI: 10.1371/journal.pone.0122972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/11/2015] [Indexed: 11/29/2022] Open
Abstract
Background The proliferation of antibiotic resistant pathogens is an increasing threat to the general public. Resistance may be conferred by a number of mechanisms including covalent or mutational modification of the antibiotic binding site, covalent modification of the drug, or the over-expression of efflux pumps. The nosiheptide resistance methyltransferase (NHR) confers resistance to the thiazole antibiotic nosiheptide in the nosiheptide producer organism Streptomyces actuosus through 2ʹO-methylation of 23S rRNA at the nucleotide A1067. Although the crystal structures of NHR and the closely related thiostrepton-resistance methyltransferase (TSR) in complex with the cofactor S-Adenosyl-L-methionine (SAM) are available, the principles behind NHR substrate recognition and catalysis remain unclear. Methodology/Principal Findings We have analyzed the binding interactions between NHR and model 58 and 29 nucleotide substrate RNAs by gel electrophoresis mobility shift assays (EMSA) and fluorescence anisotropy. We show that the enzyme binds to RNA as a dimer. By constructing a hetero-dimer complex composed of one wild-type subunit and one inactive mutant NHR-R135A subunit, we show that only one functional subunit of the NHR homodimer is required for its enzymatic activity. Mutational analysis suggests that the interactions between neighbouring bases (G1068 and U1066) and A1067 have an important role in methyltransfer activity, such that the substitution of a deoxy sugar spacer (5ʹ) to the target nucleotide achieved near wild-type levels of methylation. A series of atomic substitutions at specific positions on the substrate adenine show that local base-base interactions between neighbouring bases are important for methylation. Conclusion/Significance Taken together these data suggest that local base-base interactions play an important role in aligning the substrate 2’ hydroxyl group of A1067 for methyl group transfer. Methylation of nucleic acids is playing an increasingly important role in fundamental biological processes and we anticipate that the approach outlined in this manuscript may be useful for investigating other classes of nucleic acid methyltransferases.
Collapse
Affiliation(s)
- Sitao Yin
- Key Laboratory of Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, PR China
- Institutes of Biomedical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, PR China
| | - Hengyi Jiang
- Key Laboratory of Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, PR China
- Institutes of Biomedical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, PR China
| | - Dongrong Chen
- Key Laboratory of Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, PR China
- Institutes of Biomedical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, PR China
- * E-mail: (AM); (DC)
| | - Alastair I. H. Murchie
- Key Laboratory of Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, PR China
- Institutes of Biomedical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, PR China
- * E-mail: (AM); (DC)
| |
Collapse
|
21
|
Subramanian M, Srinivasan T, Sudarsanam D. Examining the Gm18 and m(1)G Modification Positions in tRNA Sequences. Genomics Inform 2014; 12:71-5. [PMID: 25031570 PMCID: PMC4099351 DOI: 10.5808/gi.2014.12.2.71] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 12/30/2022] Open
Abstract
The tRNA structure contains conserved modifications that are responsible for its stability and are involved in the initiation and accuracy of the translation process. tRNA modification enzymes are prevalent in bacteria, archaea, and eukaryotes. tRNA Gm18 methyltransferase (TrmH) and tRNA m1G37 methyltransferase (TrmD) are prevalent and essential enzymes in bacterial populations. TrmH involves itself in methylation process at the 2'-OH group of ribose at the 18th position of guanosine (G) in tRNAs. TrmD methylates the G residue next to the anticodon in selected tRNA subsets. Initially, m1G37 modification was reported to take place on three conserved tRNA subsets (tRNAArg, tRNALeu, tRNAPro); later on, few archaea and eukaryotes organisms revealed that other tRNAs also have the m1G37 modification. The present study reveals Gm18, m1G37 modification, and positions of m1G that take place next to the anticodon in tRNA sequences. We selected extremophile organisms and attempted to retrieve the m1G and Gm18 modification bases in tRNA sequences. Results showed that the Gm18 modification G residue occurs in all tRNA subsets except three tRNAs (tRNAMet, tRNAPro, tRNAVal). Whereas the m1G37 modification base G is formed only on tRNAArg, tRNALeu, tRNAPro, and tRNAHis, the rest of the tRNAs contain adenine (A) next to the anticodon. Thus, we hypothesize that Gm18 modification and m1G modification occur irrespective of a G residue in tRNAs.
Collapse
Affiliation(s)
- Mayavan Subramanian
- Synthetic Biology and Biofuel Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110 067, India
| | - Thangavelu Srinivasan
- DST-FIST Bioinformatics and Principal Investigator, School of Genomics and Bioinformatics, Department of Advanced Zoology and Biotechnology, Loyola College, Chennai 600 034, India
| | - Dorairaj Sudarsanam
- DST-FIST Bioinformatics and Principal Investigator, School of Genomics and Bioinformatics, Department of Advanced Zoology and Biotechnology, Loyola College, Chennai 600 034, India
| |
Collapse
|
22
|
Hori H. Methylated nucleosides in tRNA and tRNA methyltransferases. Front Genet 2014; 5:144. [PMID: 24904644 PMCID: PMC4033218 DOI: 10.3389/fgene.2014.00144] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/04/2014] [Indexed: 12/26/2022] Open
Abstract
To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Applied Chemistry, Graduate School of Science and Engineering, Ehime University Matsuyama, Japan
| |
Collapse
|
23
|
Björk GR, Hagervall TG. Transfer RNA Modification: Presence, Synthesis, and Function. EcoSal Plus 2014; 6. [PMID: 26442937 DOI: 10.1128/ecosalplus.esp-0007-2013] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 06/05/2023]
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica serovar Typhimurium contains 33 different modified nucleosides, which are all, except one (Queuosine [Q]), synthesized on an oligonucleotide precursor, which by specific enzymes later matures into tRNA. The structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The synthesis of the tRNA-modifying enzymes is not regulated similarly, and it is not coordinated to that of their substrate, the tRNA. The synthesis of some of them (e.g., several methylated derivatives) is catalyzed by one enzyme, which is position and base specific, whereas synthesis of some has a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N 6-cyclicthreonyladenosine [ct6A], and Q). Several of the modified nucleosides are essential for viability (e.g., lysidin, ct6A, 1-methylguanosine), whereas the deficiency of others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those that are present in the body of the tRNA primarily have a stabilizing effect on the tRNA. Thus, the ubiquitous presence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
Affiliation(s)
- Glenn R Björk
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| | - Tord G Hagervall
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
24
|
Baldridge KC, Contreras LM. Functional implications of ribosomal RNA methylation in response to environmental stress. Crit Rev Biochem Mol Biol 2013; 49:69-89. [PMID: 24261569 DOI: 10.3109/10409238.2013.859229] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The study of post-transcriptional RNA modifications has long been focused on the roles these chemical modifications play in maintaining ribosomal function. The field of ribosomal RNA modification has reached a milestone in recent years with the confirmation of the final unknown ribosomal RNA methyltransferase in Escherichia coli in 2012. Furthermore, the last 10 years have brought numerous discoveries in non-coding RNAs and the roles that post-transcriptional modification play in their functions. These observations indicate the need for a revitalization of this field of research to understand the role modifications play in maintaining cellular health in a dynamic environment. With the advent of high-throughput sequencing technologies, the time is ripe for leaps and bounds forward. This review discusses ribosomal RNA methyltransferases and their role in responding to external stress in Escherichia coli, with a specific focus on knockout studies and on analysis of transcriptome data with respect to rRNA methyltransferases.
Collapse
Affiliation(s)
- Kevin C Baldridge
- McKetta Department of Chemical Engineering, The University of Texas at Austin , Austin, TX , USA
| | | |
Collapse
|
25
|
Czudnochowski N, Ashley GW, Santi DV, Alian A, Finer-Moore J, Stroud RM. The mechanism of pseudouridine synthases from a covalent complex with RNA, and alternate specificity for U2605 versus U2604 between close homologs. Nucleic Acids Res 2013; 42:2037-48. [PMID: 24214967 PMCID: PMC3919597 DOI: 10.1093/nar/gkt1050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RluB catalyses the modification of U2605 to pseudouridine (Ψ) in a stem-loop at the peptidyl transferase center of Escherichia coli 23S rRNA. The homolog RluF is specific to the adjacent nucleotide in the stem, U2604. The 1.3 Å resolution crystal structure of the complex between the catalytic domain of RluB and the isolated substrate stem-loop, in which the target uridine is substituted by 5-fluorouridine (5-FU), reveals a covalent bond between the isomerized target base and tyrosine 140. The structure is compared with the catalytic domain alone determined at 2.5 Å resolution. The RluB-bound stem-loop has essentially the same secondary structure as in the ribosome, with a bulge at A2602, but with 5-FU2605 flipped into the active site. We showed earlier that RluF induced a frame-shift of the RNA, moving A2602 into the stem and translating its target, U2604, into the active site. A hydrogen-bonding network stabilizes the bulge in the RluB–RNA but is not conserved in RluF and so RluF cannot stabilize the bulge. On the basis of the covalent bond between enzyme and isomerized 5-FU we propose a Michael addition mechanism for pseudouridine formation that is consistent with all experimental data.
Collapse
Affiliation(s)
- Nadine Czudnochowski
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA, ProLynx, 455 Mission Bay Blvd., Suite 145, San Francisco, CA 94158, USA and Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 320003, Israel
| | | | | | | | | | | |
Collapse
|
26
|
Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae. Genetics 2013; 194:43-67. [PMID: 23633143 DOI: 10.1534/genetics.112.147470] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transfer RNAs (tRNAs) are essential for protein synthesis. In eukaryotes, tRNA biosynthesis employs a specialized RNA polymerase that generates initial transcripts that must be subsequently altered via a multitude of post-transcriptional steps before the tRNAs beome mature molecules that function in protein synthesis. Genetic, genomic, biochemical, and cell biological approaches possible in the powerful Saccharomyces cerevisiae system have led to exciting advances in our understandings of tRNA post-transcriptional processing as well as to novel insights into tRNA turnover and tRNA subcellular dynamics. tRNA processing steps include removal of transcribed leader and trailer sequences, addition of CCA to the 3' mature sequence and, for tRNA(His), addition of a 5' G. About 20% of yeast tRNAs are encoded by intron-containing genes. The three-step splicing process to remove the introns surprisingly occurs in the cytoplasm in yeast and each of the splicing enzymes appears to moonlight in functions in addition to tRNA splicing. There are 25 different nucleoside modifications that are added post-transcriptionally, creating tRNAs in which ∼15% of the residues are nucleosides other than A, G, U, or C. These modified nucleosides serve numerous important functions including tRNA discrimination, translation fidelity, and tRNA quality control. Mature tRNAs are very stable, but nevertheless yeast cells possess multiple pathways to degrade inappropriately processed or folded tRNAs. Mature tRNAs are also dynamic in cells, moving from the cytoplasm to the nucleus and back again to the cytoplasm; the mechanism and function of this retrograde process is poorly understood. Here, the state of knowledge for tRNA post-transcriptional processing, turnover, and subcellular dynamics is addressed, highlighting the questions that remain.
Collapse
|
27
|
Tchigvintsev A, Tchigvintsev D, Flick R, Popovic A, Dong A, Xu X, Brown G, Lu W, Wu H, Cui H, Dombrowski L, Joo JC, Beloglazova N, Min J, Savchenko A, Caudy AA, Rabinowitz JD, Murzin AG, Yakunin AF. Biochemical and structural studies of conserved Maf proteins revealed nucleotide pyrophosphatases with a preference for modified nucleotides. ACTA ACUST UNITED AC 2013; 20:1386-98. [PMID: 24210219 PMCID: PMC3899018 DOI: 10.1016/j.chembiol.2013.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/06/2013] [Accepted: 09/13/2013] [Indexed: 11/17/2022]
Abstract
Maf (for multicopy associated filamentation) proteins represent a large family of conserved proteins implicated in cell division arrest but whose biochemical activity remains unknown. Here, we show that the prokaryotic and eukaryotic Maf proteins exhibit nucleotide pyrophosphatase activity against 5-methyl-UTP, pseudo-UTP, 5-methyl-CTP, and 7-methyl-GTP, which represent the most abundant modified bases in all organisms, as well as against canonical nucleotides dTTP, UTP, and CTP. Overexpression of the Maf protein YhdE in E. coli cells increased intracellular levels of dTMP and UMP, confirming that dTTP and UTP are the in vivo substrates of this protein. Crystal structures and site-directed mutagenesis of Maf proteins revealed the determinants of their activity and substrate specificity. Thus, pyrophosphatase activity of Maf proteins toward canonical and modified nucleotides might provide the molecular mechanism for a dual role of these proteins in cell division arrest and house cleaning. Maf proteins represent a family of nucleoside triphosphate pyrophosphatases Maf proteins hydrolyze the canonical nucleotides dTTP, UTP, and CTP Maf proteins are also active against m5UTP, m5CTP, pseudo-UTP, and m7GTP Maf structures reveal the molecular mechanisms of their substrate selectivity
Collapse
Affiliation(s)
- Anatoli Tchigvintsev
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ochi A, Makabe K, Yamagami R, Hirata A, Sakaguchi R, Hou YM, Watanabe K, Nureki O, Kuwajima K, Hori H. The catalytic domain of topological knot tRNA methyltransferase (TrmH) discriminates between substrate tRNA and nonsubstrate tRNA via an induced-fit process. J Biol Chem 2013; 288:25562-25574. [PMID: 23867454 DOI: 10.1074/jbc.m113.485128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A conserved guanosine at position 18 (G18) in the D-loop of tRNAs is often modified to 2'-O-methylguanosine (Gm). Formation of Gm18 in eubacterial tRNA is catalyzed by tRNA (Gm18) methyltransferase (TrmH). TrmH enzymes can be divided into two types based on their substrate tRNA specificity. Type I TrmH, including Thermus thermophilus TrmH, can modify all tRNA species, whereas type II TrmH, for example Escherichia coli TrmH, modifies only a subset of tRNA species. Our previous crystal study showed that T. thermophilus TrmH is a class IV S-adenosyl-l-methionine-dependent methyltransferase, which maintains a topological knot structure in the catalytic domain. Because TrmH enzymes have short stretches at the N and C termini instead of a clear RNA binding domain, these stretches are believed to be involved in tRNA recognition. In this study, we demonstrate by site-directed mutagenesis that both N- and C-terminal regions function in tRNA binding. However, in vitro and in vivo chimera protein studies, in which four chimeric proteins of type I and II TrmHs were used, demonstrated that the catalytic domain discriminates substrate tRNAs from nonsubstrate tRNAs. Thus, the N- and C-terminal regions do not function in the substrate tRNA discrimination process. Pre-steady state analysis of complex formation between mutant TrmH proteins and tRNA by stopped-flow fluorescence measurement revealed that the C-terminal region works in the initial binding process, in which nonsubstrate tRNA is not excluded, and that structural movement of the motif 2 region of the catalytic domain in an induced-fit process is involved in substrate tRNA discrimination.
Collapse
Affiliation(s)
- Anna Ochi
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Koki Makabe
- the Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Ryota Yamagami
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Akira Hirata
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Reiko Sakaguchi
- the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Ya-Ming Hou
- the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Kazunori Watanabe
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Osamu Nureki
- the Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan, and
| | - Kunihiro Kuwajima
- the Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hiroyuki Hori
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan,; the Venture Business Laboratory, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
29
|
Ishida K, Kunibayashi T, Tomikawa C, Ochi A, Kanai T, Hirata A, Iwashita C, Hori H. Pseudouridine at position 55 in tRNA controls the contents of other modified nucleotides for low-temperature adaptation in the extreme-thermophilic eubacterium Thermus thermophilus. Nucleic Acids Res 2011; 39:2304-18. [PMID: 21097467 PMCID: PMC3064792 DOI: 10.1093/nar/gkq1180] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/02/2010] [Accepted: 11/02/2010] [Indexed: 11/13/2022] Open
Abstract
Pseudouridine at position 55 (Ψ55) in eubacterial tRNA is produced by TruB. To clarify the role of the Ψ55 modification, we constructed a truB gene disruptant (ΔtruB) strain of Thermus thermophilus which is an extreme-thermophilic eubacterium. Unexpectedly, the ΔtruB strain exhibited severe growth retardation at 50 °C. We assumed that these phenomena might be caused by lack of RNA chaperone activity of TruB, which was previously hypothetically proposed by others. To confirm this idea, we replaced the truB gene in the genome with mutant genes, which express TruB proteins with very weak or no enzymatic activity. However the growth retardation at 50 °C was not rescued by these mutant proteins. Nucleoside analysis revealed that Gm18, m(5)s(2)U54 and m(1)A58 in tRNA from the ΔtruB strain were abnormally increased. An in vitro assay using purified tRNA modification enzymes demonstrated that the Ψ55 modification has a negative effect on Gm18 formation by TrmH. These experimental results show that the Ψ55 modification is required for low-temperature adaptation to control other modified. (35)S-Met incorporation analysis showed that the protein synthesis activity of the ΔtruB strain was inferior to that of the wild-type strain and that the cold-shock proteins were absence in the ΔtruB cells at 50°C.
Collapse
Affiliation(s)
- Kazuo Ishida
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Kyoto 615-8510, Venture Business Laboratory, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577 and RIKEN SPring-8 Center, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyougo 679-5148, Japan
| | - Takashi Kunibayashi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Kyoto 615-8510, Venture Business Laboratory, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577 and RIKEN SPring-8 Center, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyougo 679-5148, Japan
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Kyoto 615-8510, Venture Business Laboratory, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577 and RIKEN SPring-8 Center, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyougo 679-5148, Japan
| | - Anna Ochi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Kyoto 615-8510, Venture Business Laboratory, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577 and RIKEN SPring-8 Center, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyougo 679-5148, Japan
| | - Tamotsu Kanai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Kyoto 615-8510, Venture Business Laboratory, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577 and RIKEN SPring-8 Center, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyougo 679-5148, Japan
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Kyoto 615-8510, Venture Business Laboratory, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577 and RIKEN SPring-8 Center, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyougo 679-5148, Japan
| | - Chikako Iwashita
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Kyoto 615-8510, Venture Business Laboratory, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577 and RIKEN SPring-8 Center, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyougo 679-5148, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Kyoto 615-8510, Venture Business Laboratory, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577 and RIKEN SPring-8 Center, Kouto 1-1-1, Sayo-cho, Sayo-gun, Hyougo 679-5148, Japan
| |
Collapse
|
30
|
Pseudouridylation of 23S rRNA helix 69 promotes peptide release by release factor RF2 but not by release factor RF1. Biochimie 2011; 93:834-44. [PMID: 21281690 DOI: 10.1016/j.biochi.2010.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/30/2010] [Indexed: 11/22/2022]
Abstract
Pseudouridine [Ψ] is a frequent base modification in the ribosomal RNA [rRNA] and may be involved in the modulation of the conformational flexibility of rRNA helix-loop structures during protein synthesis. Helix 69 of 23S rRNA contains pseudouridines at the positions 1911, 1915 and 1917 which are formed by the helix 69-specific synthase RluD. The growth defect caused by the lack of RluD can be rescued by mutations in class I release factor RF2, indicating a role for helix 69 pseudouridines in translation termination. We investigated the role of helix 69 pseudouridines in peptide release by release factors RF1 and RF2 in an in vitro system consisting of purified components of the Escherichia coli translation apparatus. Lack of all three pseudouridines in helix 69 compromised the activity of RF2 about 3-fold but did not significantly affect the activity of RF1. Reintroduction of pseudouridines into helix 69 by RluD-treatment restored the activity of RF2 in peptide release. A Ψ-to-C substitution at the 1917 position caused an increase in the dissociation rate of RF1 and RF2 from the postrelease ribosome. Our results indicate that the presence of all three pseudouridines in helix 69 stimulates peptide release by RF2 but has little effect on the activity of RF1. The interactions around the pseudouridine at the 1917 position appear to be most critical for a proper interaction of helix 69 with release factors.
Collapse
|
31
|
Yang H, Wang Z, Shen Y, Wang P, Jia X, Zhao L, Zhou P, Gong R, Li Z, Yang Y, Chen D, Murchie AIH, Xu Y. Crystal Structure of the Nosiheptide-Resistance Methyltransferase of Streptomyces actuosus. Biochemistry 2010; 49:6440-50. [DOI: 10.1021/bi1005915] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huirong Yang
- Cancer Institute, Shanghai Cancer Center, Fudan University, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- School of Life Sciences, Fudan University, 220 Han-Dan Road, Shanghai 200433, China
| | - Zhe Wang
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- Department of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Shen
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- Department of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ping Wang
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- School of Life Sciences, Fudan University, 220 Han-Dan Road, Shanghai 200433, China
| | - Xu Jia
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- Department of Pharmacy, Fudan University, Shanghai 201203, China
| | - Liang Zhao
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- Department of Chemistry, Fudan University, Han-Dan Road, Shanghai 200433, China
| | - Pei Zhou
- Department of Pharmacy, Fudan University, Shanghai 201203, China
| | - Rui Gong
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- School of Life Sciences, Fudan University, 220 Han-Dan Road, Shanghai 200433, China
| | - Ze Li
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- School of Life Sciences, Fudan University, 220 Han-Dan Road, Shanghai 200433, China
| | - Ying Yang
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- School of Life Sciences, Fudan University, 220 Han-Dan Road, Shanghai 200433, China
| | - Dongrong Chen
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- Department of Pharmacy, Fudan University, Shanghai 201203, China
| | - Alastair I. H. Murchie
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- Department of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yanhui Xu
- Cancer Institute, Shanghai Cancer Center, Fudan University, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- School of Life Sciences, Fudan University, 220 Han-Dan Road, Shanghai 200433, China
| |
Collapse
|
32
|
Ochi A, Makabe K, Kuwajima K, Hori H. Flexible recognition of the tRNA G18 methylation target site by TrmH methyltransferase through first binding and induced fit processes. J Biol Chem 2010; 285:9018-29. [PMID: 20053984 DOI: 10.1074/jbc.m109.065698] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transfer RNA (Gm18) methyltransferase (TrmH) catalyzes methyl transfer from S-adenosyl-l-methionine to a conserved G18 in tRNA. We investigated the recognition mechanism of Thermus thermophilus TrmH for its guanosine target. Thirteen yeast tRNA(Phe) mutant transcripts were prepared in which the modification site and/or other nucleotides in the D-loop were substituted by dG, inosine, or other nucleotides. We then conducted methyl transfer kinetic studies, gel shift assays, and inhibition experiments using these tRNA variants. Sites of methylation were confirmed with RNA sequencing or primer extension. Although the G18G19 sequence is not essential for methylation by TrmH, disruption of G18G19 severely reduces the efficiency of methyl transfer. There is strict recognition of guanosine by TrmH, in that methylation occurs at the adjacent G19 when the G18 is replaced by dG or adenosine. The fact that TrmH methylates guanosine in D-loops from 4 to 12 nucleotides in length suggests that selection of the position of guanosine within the D-loop is relatively flexible. Our studies also demonstrate that the oxygen 6 atom of the guanine base is a positive determinant for TrmH recognition. The recognition process of TrmH for substrate is inducible and product-inhibited, in that tRNAs containing Gm18 are excluded by TrmH. In contrast, substitution of G18 with dG18 results in the formation of a more stable TrmH-tRNA complex. To address the mechanism, we performed the stopped-flow pre-steady state kinetic analysis. The result clearly showed that the binding of TrmH to tRNA is composed of at least three steps, the first bi-molecular binding and the subsequent two uni-molecular induced-fit processes.
Collapse
Affiliation(s)
- Anna Ochi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577
| | | | | | | |
Collapse
|
33
|
Dunstan MS, Hang PC, Zelinskaya NV, Honek JF, Conn GL. Structure of the thiostrepton resistance methyltransferase.S-adenosyl-L-methionine complex and its interaction with ribosomal RNA. J Biol Chem 2009; 284:17013-17020. [PMID: 19369248 PMCID: PMC2719339 DOI: 10.1074/jbc.m901618200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 03/31/2009] [Indexed: 12/03/2022] Open
Abstract
The x-ray crystal structure of the thiostrepton resistance RNA methyltransferase (Tsr).S-adenosyl-L-methionine (AdoMet) complex was determined at 2.45-A resolution. Tsr is definitively confirmed as a Class IV methyltransferase of the SpoU family with an N-terminal "L30-like" putative target recognition domain. The structure and our in vitro analysis of the interaction of Tsr with its target domain from 23 S ribosomal RNA (rRNA) demonstrate that the active biological unit is a Tsr homodimer. In vitro methylation assays show that Tsr activity is optimal against a 29-nucleotide hairpin rRNA though the full 58-nucleotide L11-binding domain and intact 23 S rRNA are also effective substrates. Molecular docking experiments predict that Tsr.rRNA binding is dictated entirely by the sequence and structure of the rRNA hairpin containing the A1067 target nucleotide and is most likely driven primarily by large complementary electrostatic surfaces. One L30-like domain is predicted to bind the target loop and the other is near an internal loop more distant from the target site where a nucleotide change (U1061 to A) also decreases methylation by Tsr. Furthermore, a predicted interaction with this internal loop by Tsr amino acid Phe-88 was confirmed by mutagenesis and RNA binding experiments. We therefore propose that Tsr achieves its absolute target specificity using the N-terminal domains of each monomer in combination to recognize the two distinct structural elements of the target rRNA hairpin such that both Tsr subunits contribute directly to the positioning of the target nucleotide on the enzyme.
Collapse
MESH Headings
- Base Sequence
- Catalytic Domain
- Crystallography, X-Ray
- Dimerization
- Drug Resistance, Bacterial
- Macromolecular Substances
- Methyltransferases/chemistry
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Protein Structure, Quaternary
- Protein Structure, Secondary
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- S-Adenosylmethionine/chemistry
- S-Adenosylmethionine/metabolism
- Staphylococcus aureus/drug effects
- Staphylococcus aureus/enzymology
- Staphylococcus aureus/genetics
- Static Electricity
- Thiostrepton/pharmacology
Collapse
Affiliation(s)
- Mark S Dunstan
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Pei C Hang
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Natalia V Zelinskaya
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - John F Honek
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322.
| |
Collapse
|
34
|
Alian A, DeGiovanni A, Griner SL, Finer-Moore JS, Stroud RM. Crystal structure of an RluF-RNA complex: a base-pair rearrangement is the key to selectivity of RluF for U2604 of the ribosome. J Mol Biol 2009; 388:785-800. [PMID: 19298824 DOI: 10.1016/j.jmb.2009.03.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/18/2009] [Accepted: 03/11/2009] [Indexed: 12/25/2022]
Abstract
Escherichia coli pseudouridine synthase RluF is dedicated to modifying U2604 in a stem-loop of 23S RNA, while a homologue, RluB, modifies the adjacent base, U2605. Both uridines are in the same RNA stem, separated by approximately 4 A. The 3.0 A X-ray crystal structure of RluF bound to the isolated stem-loop, in which U2604 is substituted by 5-fluorouridine to prevent catalytic turnover, shows RluF distinguishes closely spaced bases in similar environments by a selectivity mechanism based on a frameshift in base pairing. The RNA stem-loop is bound to a conserved binding groove in the catalytic domain. A base from a bulge in the stem, A2602, has folded into the stem, forcing one strand of the RNA stem to translate by one position and thus positioning U2604 to flip into the active site. RluF does not modify U2604 in mutant stem-loops that lack the A2602 bulge and shows dramatically higher activity for a stem-loop with a mutation designed to facilitate A2602 refolding into the stem with concomitant RNA strand translation. Residues whose side chains contact rearranged bases in the bound stem-loop, while conserved among RluFs, are not conserved between RluFs and RluBs, suggesting that RluB does not bind to the rearranged stem loop.
Collapse
Affiliation(s)
- Akram Alian
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| | | | | | | | | |
Collapse
|
35
|
Silva APG, Byrne RT, Chechik M, Smits C, Waterman DG, Antson AA. Expression, purification, crystallization and preliminary X-ray studies of the TAN1 orthologue from Methanothermobacter thermautotrophicus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:1083-6. [PMID: 18997348 DOI: 10.1107/s1744309108034039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 10/17/2008] [Indexed: 11/10/2022]
Abstract
MTH909 is the Methanothermobacter thermautotrophicus orthologue of Saccharomyces cerevisiae TAN1, which is required for N(4)-acetylcytidine formation in tRNA. The protein consists of an N-terminal near-ferredoxin-like domain and a C-terminal THUMP domain. Unlike most other proteins containing the THUMP domain, TAN1 lacks any catalytic domains and has been proposed to form a complex with a catalytic protein that is capable of making base modifications. MTH909 has been cloned, overexpressed and purified. The molecule exists as a monomer in solution. X-ray data were collected to 2.85 A resolution from a native crystal belonging to space group P6(1)22 (or P6(5)22), with unit-cell parameters a = 69.9, c = 408.5 A.
Collapse
Affiliation(s)
- Ana P G Silva
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, England
| | | | | | | | | | | |
Collapse
|
36
|
Wu H, Min J, Zeng H, Plotnikov AN. Crystal structure of the methyltransferase domain of human TARBP1. Proteins 2008; 72:519-25. [PMID: 18412263 DOI: 10.1002/prot.22065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hong Wu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada M5G 1L6.
| | | | | | | |
Collapse
|
37
|
Bujnicki JM, Droogmans L, Grosjean H, Purushothaman SK, Lapeyre B. Bioinformatics-Guided Identification and Experimental Characterization of Novel RNA Methyltransferas. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/978-3-540-74268-5_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
38
|
Kuratani M, Bessho Y, Nishimoto M, Grosjean H, Yokoyama S. Crystal structure and mutational study of a unique SpoU family archaeal methylase that forms 2'-O-methylcytidine at position 56 of tRNA. J Mol Biol 2007; 375:1064-75. [PMID: 18068186 DOI: 10.1016/j.jmb.2007.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 10/30/2007] [Accepted: 11/09/2007] [Indexed: 11/15/2022]
Abstract
The conserved cytidine residue at position 56 of tRNA contributes to the maintenance of the L-shaped tertiary structure. aTrm56 catalyzes the 2'-O-methylation of the cytidine residue in archaeal tRNA, using S-adenosyl-L-methionine. Based on the amino acid sequence, aTrm56 is the most distant member of the SpoU family. Here, we determined the crystal structure of Pyrococcus horikoshii aTrm56 complexed with S-adenosyl-L-methionine at 2.48 A resolution. aTrm56 consists of the SPOUT domain, which contains the characteristic deep trefoil knot, and a unique C-terminal beta-hairpin. aTrm56 forms a dimer. The S-adenosyl-L-methionine binding and dimerization of aTrm56 were similar to those of the other SpoU members. A structure-based sequence alignment revealed that aTrm56 conserves only motif II, among the four signature motifs. However, an essential Arg16 residue is located at a novel position within motif I. Biochemical assays showed that aTrm56 prefers the L-shaped tRNA to the lambda form as its substrate.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Binding Sites
- Crystallography, X-Ray
- Cytidine/analogs & derivatives
- Cytidine/chemistry
- Dimerization
- Hydrogen Bonding
- Hydrophobic and Hydrophilic Interactions
- Methylation
- Models, Chemical
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Pyrococcus horikoshii/enzymology
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- S-Adenosylmethionine/metabolism
- Sequence Homology, Amino Acid
- tRNA Methyltransferases/chemistry
- tRNA Methyltransferases/genetics
- tRNA Methyltransferases/metabolism
Collapse
Affiliation(s)
- Mitsuo Kuratani
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
39
|
Matte A, Jia Z, Sunita S, Sivaraman J, Cygler M. Insights into the biology of Escherichia coli through structural proteomics. ACTA ACUST UNITED AC 2007; 8:45-55. [PMID: 17668295 DOI: 10.1007/s10969-007-9019-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
Escherichia coli has historically been an important organism for understanding a multitude of biological processes, and represents a model system as we attempt to simulate the workings of living cells. Many E. coli strains are also important human and animal pathogens for which new therapeutic strategies are required. For both reasons, a more complete and comprehensive understanding of the protein structure complement of E. coli is needed at the genome level. Here, we provide examples of insights into the mechanism and function of bacterial proteins that we have gained through the Bacterial Structural Genomics Initiative (BSGI), focused on medium-throughput structure determination of proteins from E. coli. We describe the structural characterization of several enzymes from the histidine biosynthetic pathway, the structures of three pseudouridine synthases, enzymes that synthesize one of the most abundant modified bases in RNA, as well as the combined use of protein structure and focused functional analysis to decipher functions for hypothetical proteins. Together, these results illustrate the power of structural genomics to contribute to a deeper biological understanding of bacterial processes.
Collapse
Affiliation(s)
- Allan Matte
- Biotechnology Research Institute, National Research Council Canada, Montreal, QC, Canada.
| | | | | | | | | |
Collapse
|
40
|
Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases. BMC Bioinformatics 2007; 8:73. [PMID: 17338813 PMCID: PMC1829167 DOI: 10.1186/1471-2105-8-73] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 03/05/2007] [Indexed: 11/29/2022] Open
Abstract
Background SPOUT methyltransferases (MTases) are a large class of S-adenosyl-L-methionine-dependent enzymes that exhibit an unusual alpha/beta fold with a very deep topological knot. In 2001, when no crystal structures were available for any of these proteins, Anantharaman, Koonin, and Aravind identified homology between SpoU and TrmD MTases and defined the SPOUT superfamily. Since then, multiple crystal structures of knotted MTases have been solved and numerous new homologous sequences appeared in the databases. However, no comprehensive comparative analysis of these proteins has been carried out to classify them based on structural and evolutionary criteria and to guide functional predictions. Results We carried out extensive searches of databases of protein structures and sequences to collect all members of previously identified SPOUT MTases, and to identify previously unknown homologs. Based on sequence clustering, characterization of domain architecture, structure predictions and sequence/structure comparisons, we re-defined families within the SPOUT superfamily and predicted putative active sites and biochemical functions for the so far uncharacterized members. We have also delineated the common core of SPOUT MTases and inferred a multiple sequence alignment for the conserved knot region, from which we calculated the phylogenetic tree of the superfamily. We have also studied phylogenetic distribution of different families, and used this information to infer the evolutionary history of the SPOUT superfamily. Conclusion We present the first phylogenetic tree of the SPOUT superfamily since it was defined, together with a new scheme for its classification, and discussion about conservation of sequence and structure in different families, and their functional implications. We identified four protein families as new members of the SPOUT superfamily. Three of these families are functionally uncharacterized (COG1772, COG1901, and COG4080), and one (COG1756 represented by Nep1p) has been already implicated in RNA metabolism, but its biochemical function has been unknown. Based on the inference of orthologous and paralogous relationships between all SPOUT families we propose that the Last Universal Common Ancestor (LUCA) of all extant organisms contained at least three SPOUT members, ancestors of contemporary RNA MTases that carry out m1G, m3U, and 2'O-ribose methylation, respectively. In this work we also speculate on the origin of the knot and propose possible 'unknotted' ancestors. The results of our analysis provide a comprehensive 'roadmap' for experimental characterization of SPOUT MTases and interpretation of functional studies in the light of sequence-structure relationships.
Collapse
|
41
|
Pan H, Ho JD, Stroud RM, Finer-Moore J. The crystal structure of E. coli rRNA pseudouridine synthase RluE. J Mol Biol 2007; 367:1459-70. [PMID: 17320904 PMCID: PMC1876706 DOI: 10.1016/j.jmb.2007.01.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/23/2007] [Accepted: 01/31/2007] [Indexed: 01/03/2023]
Abstract
Pseudouridine synthase RluE modifies U2457 in a stem of 23 S RNA in Escherichia coli. This modification is located in the peptidyl transferase center of the ribosome. We determined the crystal structures of the C-terminal, catalytic domain of E. coli RluE at 1.2 A resolution and of full-length RluE at 1.6 A resolution. The crystals of the full-length enzyme contain two molecules in the asymmetric unit and in both molecules the N-terminal domain is disordered. The protein has an active site cleft, conserved in all other pseudouridine synthases, that contains invariant Asp and Tyr residues implicated in catalysis. An electropositive surface patch that covers the active site cleft is just wide enough to accommodate an RNA stem. The RNA substrate stem can be docked to this surface such that the catalytic Asp is adjacent to the target base, and a conserved Arg is positioned to help flip the target base out of the stem into the enzyme active site. A flexible RluE specific loop lies close to the conserved region of the stem in the model, and may contribute to substrate specificity. The stem alone is not a good RluE substrate, suggesting RluE makes additional interactions with other regions in the ribosome.
Collapse
Affiliation(s)
| | | | | | - Janet Finer-Moore
- *Address correspondence to: Janet Finer-Moore (), S412B UCSF-GENENTECH HALL, 600 16th Street, San Francisco, California 94143-2240, Tel: 415 502-5426, Fax: 415 476 1902
| |
Collapse
|
42
|
Abstract
As the molecular adapters between codons and amino acids, transfer-RNAs are pivotal molecules of the genetic code. The coding properties of a tRNA molecule do not reside only in its primary sequence. Posttranscriptional nucleoside modifications, particularly in the anticodon loop, can modify cognate codon recognition, affect aminoacylation properties, or stabilize the codon-anticodon wobble base pairing to prevent ribosomal frameshifting. Despite a wealth of biophysical and structural knowledge of the tRNA modifications themselves, their pathways of biosynthesis had been until recently only partially characterized. This discrepancy was mainly due to the lack of obvious phenotypes for tRNA modification-deficient strains and to the difficulty of the biochemical assays used to detect tRNA modifications. However, the availability of hundreds of whole-genome sequences has allowed the identification of many of these missing tRNA-modification genes. This chapter reviews the methods that were used to identify these genes with a special emphasis on the comparative genomic approaches. Methods that link gene and function but do not rely on sequence homology will be detailed, with examples taken from the tRNA modification field.
Collapse
|
43
|
Graham DE, Kramer G. Identification and characterization of archaeal and fungal tRNA methyltransferases. Methods Enzymol 2007; 425:185-209. [PMID: 17673084 DOI: 10.1016/s0076-6879(07)25008-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
All organisms modify their tRNAs by use of evolutionarily conserved enzymes. Members of the Archaea contain an extensive set of modified nucleotides that were early evidence of the fundamental evolutionary divergence of the Archaea from Bacteria and Eucarya. However, the enzymes responsible for these posttranscriptional modifications were largely unknown before the advent of genome sequencing. This chapter explains methods to identify tRNA methyltransferases in genome sequences, emphasizing the identification and characterization of six enzymes from the hyperthermophilic archaeon Methanocaldococcus jannaschii. We describe methods to express these proteins, purify or synthesize tRNA substrates, measure methyltransferase activity, and map tRNA modifications. Comparison of the archaeal methyltransferases with their yeast homologs suggests that the common ancestor of the archaeal and eucaryal organismal lineages already had extensive tRNA modifications.
Collapse
Affiliation(s)
- David E Graham
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
44
|
Hamilton CS, Greco TM, Vizthum CA, Ginter JM, Johnston MV, Mueller EG. Mechanistic investigations of the pseudouridine synthase RluA using RNA containing 5-fluorouridine. Biochemistry 2006; 45:12029-38. [PMID: 17002302 PMCID: PMC2580076 DOI: 10.1021/bi061293x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pseuoduridine synthases (psi synthases) isomerize uridine (U) to pseudouridine (psi) in RNA, and they fall into five families that share very limited sequence similarity but have the same overall fold and active-site architecture, including an essential Asp. The mechanism by which the psi synthases operate remains unknown, and mechanistic work has largely made use of RNA containing 5-fluorouridine (f5U) in place of U. The psi synthase TruA forms a covalent adduct with such RNA, and heat disruption of the adduct generates a hydrated product of f5U, which was reasonably concluded to result from the hydrolysis of an ester linkage between the essential Asp and f5U. In contrast, the psi synthase TruB, which is a member of a different family, does not form an adduct with f5U in RNA but catalyzes the rearrangement and hydration of the f5U, which labeling studies with [18O]water showed does not result from ester hydrolysis. To extend the line of mechanistic investigation to another family of psi synthases and an enzyme that makes an adduct with f5U in RNA, the behavior of RluA toward RNA containing f5U was examined. Stem-loop RNAs are shown to be good substrates for RluA. Heat denaturation of the adduct between RluA and RNA containing f5U produces a hydrated nucleoside product, and labeling studies show that hydration does not occur by ester hydrolysis. These results are interpreted in light of a consistent mechanistic scheme for the handling of f5U by psi synthases.
Collapse
Affiliation(s)
- Christopher S Hamilton
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | | | |
Collapse
|
45
|
Hur S, Stroud RM, Finer-Moore J. Substrate recognition by RNA 5-methyluridine methyltransferases and pseudouridine synthases: a structural perspective. J Biol Chem 2006; 281:38969-73. [PMID: 17085441 DOI: 10.1074/jbc.r600034200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Sun Hur
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
46
|
Watanabe K, Nureki O, Fukai S, Endo Y, Hori H. Functional Categorization of the Conserved Basic Amino Acid Residues in TrmH (tRNA (Gm18) Methyltansferase) Enzymes. J Biol Chem 2006; 281:34630-9. [PMID: 16963456 DOI: 10.1074/jbc.m606141200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transfer RNA (Gm18) methyltransferase (TrmH) catalyzes the methyl transfer from S-adenosyl-L-methionine (AdoMet) to the 2'-OH group of the G18 ribose in tRNA. To identify amino acid residues responsible for the tRNA recognition, we have carried out the alanine substitution mutagenesis of the basic amino acid residues that are conserved only in TrmH enzymes and not in the other SpoU proteins. We analyzed the mutant proteins by S-adenosyl-L-homocysteine affinity column chromatography, gel mobility shift assay, and kinetic assay of the methyl transfer reaction. Based on these biochemical studies and the crystal structure of TrmH, we found that the conserved residues can be categorized according to their role (i) in the catalytic center (Arg-41), (ii) in the initial site of tRNA binding (Lys-90, Arg-166, Arg-168, and Arg-176), (iii) in the tRNA binding site required for continuation the catalytic cycle (Arg-8, Arg-19, and Lys-32), (iv) in the structural element involved in release of S-adenosyl-L-homocysteine (Arg-11-His-71-Met-147 interaction), (v) in the assisted phosphate binding site (His-34), or (vi) in an unknown function (Arg-109). Furthermore, the difference between the Kd and Km values for tRNA suggests that the affinity for tRNA is enhanced in the presence of AdoMet. To confirm this idea, we carried out the kinetic studies, a gel mobility shift assay with a mutant protein disrupted in the catalytic center, and the analytical gel-filtration chromatography. Our experimental results clearly show that the enzyme has a semi-ordered sequential mechanism in which AdoMet both enhances the affinity for tRNA and induces formation of the tetramer structure.
Collapse
Affiliation(s)
- Kazunori Watanabe
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Bunkyo 3, Matsuyama 790-8577, Japan
| | | | | | | | | |
Collapse
|
47
|
Behm-Ansmant I, Massenet S, Immel F, Patton JR, Motorin Y, Branlant C. A previously unidentified activity of yeast and mouse RNA:pseudouridine synthases 1 (Pus1p) on tRNAs. RNA (NEW YORK, N.Y.) 2006; 12:1583-93. [PMID: 16804160 PMCID: PMC1524882 DOI: 10.1261/rna.100806] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mouse pseudouridine synthase 1 (mPus1p) was the first vertebrate RNA:pseudouridine synthase that was cloned and characterized biochemically. The mPus1p was previously found to catalyze Psi formation at positions 27, 28, 34, and 36 in in vitro produced yeast and human tRNAs. On the other hand, the homologous Saccharomyces cerevisiae scPus1p protein was shown to modify seven uridine residues in tRNAs (26, 27, 28, 34, 36, 65, and 67) and U44 in U2 snRNA. In this work, we expressed mPus1p in yeast cells lacking scPus1p and studied modification of U2 snRNA and several yeast tRNAs. Our data showed that, in these in vivo conditions, the mouse enzyme efficiently modifies yeast U2 snRNA at position 44 and tRNAs at positions 27, 28, 34, and 36. However, a tRNA:Psi26-synthase activity of mPus1p was not observed. Furthermore, we found that both scPus1p and mPus1p, in vivo and in vitro, have a previously unidentified activity at position 1 in cytoplasmic tRNAArg(ACG). This modification can take place in mature tRNA, as well as in pre-tRNAs with 5' and/or 3' extensions. Thus, we identified the protein carrying one of the last missing yeast tRNA:Psi synthase activities. In addition, our results reveal an additional activity of mPus1p at position 30 in tRNA that scPus1p does not possess.
Collapse
Affiliation(s)
- Isabelle Behm-Ansmant
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP, Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | | | | | |
Collapse
|
48
|
Purta E, van Vliet F, Tkaczuk KL, Dunin-Horkawicz S, Mori H, Droogmans L, Bujnicki JM. The yfhQ gene of Escherichia coli encodes a tRNA:Cm32/Um32 methyltransferase. BMC Mol Biol 2006; 7:23. [PMID: 16848900 PMCID: PMC1569432 DOI: 10.1186/1471-2199-7-23] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 07/18/2006] [Indexed: 11/10/2022] Open
Abstract
Background Naturally occurring tRNAs contain numerous modified nucleosides. They are formed by enzymatic modification of the primary transcripts during the complex RNA maturation process. In model organisms Escherichia coli and Saccharomyces cerevisiae most enzymes involved in this process have been identified. Interestingly, it was found that tRNA methylation, one of the most common modifications, can be introduced by S-adenosyl-L-methionine (AdoMet)-dependent methyltransferases (MTases) that belong to two structurally and phylogenetically unrelated protein superfamilies: RFM and SPOUT. Results As a part of a large-scale project aiming at characterization of a complete set of RNA modification enzymes of model organisms, we have studied the Escherichia coli proteins YibK, LasT, YfhQ, and YbeA for their ability to introduce the last unassigned methylations of ribose at positions 32 and 34 of the tRNA anticodon loop. We found that YfhQ catalyzes the AdoMet-dependent formation of Cm32 or Um32 in tRNASer1 and tRNAGln2 and that an E. coli strain with a disrupted yfhQ gene lacks the tRNA:Cm32/Um32 methyltransferase activity. Thus, we propose to rename YfhQ as TrMet(Xm32) according to the recently proposed, uniform nomenclature for all RNA modification enzymes, or TrmJ, according to the traditional nomenclature for bacterial tRNA MTases. Conclusion Our results reveal that methylation at position 32 is carried out by completely unrelated TrMet(Xm32) enzymes in eukaryota and prokaryota (RFM superfamily member Trm7 and SPOUT superfamily member TrmJ, respectively), mirroring the scenario observed in the case of the m1G37 modification (introduced by the RFM member Trm5 in eukaryota and archaea, and by the SPOUT member TrmD in bacteria).
Collapse
Affiliation(s)
- Elzbieta Purta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Françoise van Vliet
- Institut de Recherches Microbiologiques Wiame, avenue E. Gryson 1, B-1070 Bruxelles, Belgium
| | - Karolina L Tkaczuk
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland
- Institute of Technical Biochemistry, Technical University of Lodz, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Stanislaw Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Hirotada Mori
- Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0035, Japan
| | - Louis Droogmans
- Laboratoire de Microbiologie, Université Libre de Bruxelles, Institut de Recherches Microbiologiques Wiame, avenue E. Gryson 1, B-1070 Bruxelles, Belgium
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| |
Collapse
|
49
|
Sunita S, Zhenxing H, Swaathi J, Cygler M, Matte A, Sivaraman J. Domain Organization and Crystal Structure of the Catalytic Domain of E.coli RluF, a Pseudouridine Synthase that Acts on 23S rRNA. J Mol Biol 2006; 359:998-1009. [PMID: 16712869 DOI: 10.1016/j.jmb.2006.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 03/27/2006] [Accepted: 04/05/2006] [Indexed: 11/21/2022]
Abstract
Pseudouridine synthases catalyze the isomerization of uridine to pseudouridine (Psi) in rRNA and tRNA. The pseudouridine synthase RluF from Escherichia coli (E.C. 4.2.1.70) modifies U2604 in 23S rRNA, and belongs to a large family of pseudouridine synthases present in all kingdoms of life. Here we report the domain architecture and crystal structure of the catalytic domain of E.coli RluF at 2.6A resolution. Limited proteolysis, mass spectrometry and N-terminal sequencing indicate that RluF has a distinct domain architecture, with the catalytic domain flanked at the N and C termini by additional domains connected to it by flexible linkers. The structure of the catalytic domain of RluF is similar to those of RsuA and TruB. RluF is a member of the RsuA sequence family of Psi-synthases, along with RluB and RluE. Structural comparison of RluF with its closest structural homologues, RsuA and TruB, suggests possible functional roles for the N-terminal and C-terminal domains of RluF.
Collapse
Affiliation(s)
- S Sunita
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore, Singapore 117543
| | | | | | | | | | | |
Collapse
|
50
|
Basturea GN, Rudd KE, Deutscher MP. Identification and characterization of RsmE, the founding member of a new RNA base methyltransferase family. RNA (NEW YORK, N.Y.) 2006; 12:426-34. [PMID: 16431987 PMCID: PMC1383581 DOI: 10.1261/rna.2283106] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 12/01/2005] [Indexed: 05/06/2023]
Abstract
A variety of RNA methyltransferases act during ribosomal RNA maturation to modify nucleotides in a site-specific manner. However, of the 10 base-methylated nucleotides present in the small ribosomal subunit of Escherichia coli, only three enzymes responsible for modification of four bases are known. Here, we show that the protein encoded by yggJ, a member of the uncharacterized DUF558 protein family of predicted alpha/beta (trefoil) knot methyltransferases is responsible for methylation at U1498 in 16S rRNA. The gene is well-conserved across bacteria and plants, and likely performs the same function in other organisms. A yggJ deletion strain lacks the methyl group at U1498 as well as the specific methyltransferase activity. Moreover, purified recombinant YggJ specifically methylates m3U1498 in vitro. The deletion strain was unaffected in exponential growth in rich or minimal media at multiple temperatures, but it was defective when grown in competition with isogenic wild-type cells. Based on these data, we conclude that yggJ is the founding member of a family of RNA base methyltransferases, and propose that it be renamed rsmE.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Gene Deletion
- Genes, Bacterial
- Genetic Complementation Test
- Methylation
- Molecular Sequence Data
- Phylogeny
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Sequence Homology, Amino Acid
- Terminology as Topic
- tRNA Methyltransferases/chemistry
- tRNA Methyltransferases/genetics
Collapse
Affiliation(s)
- Georgeta N Basturea
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33101-6129, USA
| | | | | |
Collapse
|