1
|
XIONG J, FENG T, YUAN BF. [Advances in mapping analysis of ribonucleic acid modifications through sequencing]. Se Pu 2024; 42:632-645. [PMID: 38966972 PMCID: PMC11224946 DOI: 10.3724/sp.j.1123.2023.12025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 07/06/2024] Open
Abstract
Over 170 chemical modifications have been discovered in various types of ribonucleic acids (RNAs), including messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and small nuclear RNA (snRNA). These RNA modifications play crucial roles in a wide range of biological processes such as gene expression regulation, RNA stability maintenance, and protein translation. RNA modifications represent a new dimension of gene expression regulation known as the "epitranscriptome". The discovery of RNA modifications and the relevant writers, erasers, and readers provides an important basis for studies on the dynamic regulation and physiological functions of RNA modifications. Owing to the development of detection technologies for RNA modifications, studies on RNA epitranscriptomes have progressed to the single-base resolution, multilayer, and full-coverage stage. Transcriptome-wide methods help discover new RNA modification sites and are of great importance for elucidating the molecular regulatory mechanisms of epitranscriptomics, exploring the disease associations of RNA modifications, and understanding their clinical applications. The existing RNA modification sequencing technologies can be categorized according to the pretreatment approach and sequencing principle as direct high-throughput sequencing, antibody-enrichment sequencing, enzyme-assisted sequencing, chemical labeling-assisted sequencing, metabolic labeling sequencing, and nanopore sequencing technologies. These methods, as well as studies on the functions of RNA modifications, have greatly expanded our understanding of epitranscriptomics. In this review, we summarize the recent progress in RNA modification detection technologies, focusing on the basic principles, advantages, and limitations of different methods. Direct high-throughput sequencing methods do not require complex RNA pretreatment and allow for the mapping of RNA modifications using conventional RNA sequencing methods. However, only a few RNA modifications can be analyzed by high-throughput sequencing. Antibody enrichment followed by high-throughput sequencing has emerged as a crucial approach for mapping RNA modifications, significantly advancing the understanding of RNA modifications and their regulatory functions in different species. However, the resolution of antibody-enrichment sequencing is limited to approximately 100-200 bp. Although chemical crosslinking techniques can achieve single-base resolution, these methods are often complex, and the specificity of the antibodies used in these methods has raised concerns. In particular, the issue of off-target binding by the antibodies requires urgent attention. Enzyme-assisted sequencing has improved the accuracy of the localization analysis of RNA modifications and enables stoichiometric detection with single-base resolution. However, the enzymes used in this technique show poor reactivity, specificity, and sequence preference. Chemical labeling sequencing has become a widely used approach for profiling RNA modifications, particularly by altering reverse transcription (RT) signatures such as RT stops, misincorporations, and deletions. Chemical-assisted sequencing provides a sequence-independent RNA modification detection strategy that enables the localization of multiple RNA modifications. Additionally, when combined with the biotin-streptavidin affinity method, low-abundance RNA modifications can be enriched and detected. Nevertheless, the specificity of many chemical reactions remains problematic, and the development of specific reaction probes for particular modifications should continue in the future to achieve the precise localization of RNA modifications. As an indirect localization method, metabolic labeling sequencing specifically localizes the sites at which modifying enzymes act, which is of great significance in the study of RNA modification functions. However, this method is limited by the intracellular labeling of RNA and cannot be applied to biological samples such as clinical tissues and blood samples. Nanopore sequencing is a direct RNA-sequencing method that does not require RT or the polymerase chain reaction (PCR). However, challenges in analyzing the data obtained from nanopore sequencing, such as the high rate of false positives, must be resolved. Discussing sequencing analysis methods for various types of RNA modifications is instructive for the future development of novel RNA modification mapping technologies, and will aid studies on the functions of RNA modifications across the entire transcriptome.
Collapse
|
2
|
Baek A, Rayhan A, Lee GE, Golconda S, Yu H, Kim S, Limbach PA, Addepalli B, Kim S. Mapping m 6A Sites on HIV-1 RNA Using Oligonucleotide LC-MS/MS. Methods Protoc 2024; 7:7. [PMID: 38251200 PMCID: PMC10801558 DOI: 10.3390/mps7010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
The biological significance of chemical modifications to the ribonucleic acid (RNA) of human immunodeficiency virus type-1 (HIV-1) has been recognized. However, our understanding of the site-specific and context-dependent roles of these chemical modifications remains limited, primarily due to the absence of nucleotide-resolution mapping of modification sites. In this study, we present a method for achieving nucleotide-resolution mapping of chemical modification sites on HIV-1 RNA using liquid chromatography and tandem mass spectrometry (LC-MS/MS). LC-MS/MS, a powerful tool capable of directly analyzing native RNAs, has proven effective for mapping RNA modifications in small RNA molecules, including ribosomal RNA and transfer RNA. However, longer RNAs have posed challenges, such as the 9 Kb HIV-1 virion RNA, due to the complexity of and ambiguity in mass differences among RNase T1-cleaved RNA fragments in LC-MS/MS data. Here, we introduce a new target RNA enrichment method to isolate small local RNA fragments of HIV-1 RNA that potentially harbor site-specific N6-methyladenosine (m6A) modifications. In our initial trial, we used target-specific DNA probes only and encountered insufficient RNA fragmentation due to inefficient S1 digestion near the target site. Recognizing that inefficient S1 digestion by HIV-1 RNA is likely due to the formation of secondary structures in proximity to the target site, we designed multiple DNA probes annealing to various sites of HIV-1 RNA to better control the structures of RNA substrates for S1 digestion. The use of these non-target DNA probes significantly improved the isolation of more homogeneous target RNA fragments of approximately 50 bases in length. Oligonucleotide LC-MS/MS analysis of these isolated target RNA fragments successfully separated and detected both m6A-methylated and non-methylated oligomers at the two m6A-predicted sites. The principle of this new target enrichment strategy holds promise and should be broadly applicable to the analysis of any lengthy RNA that was previously deemed infeasible for investigation using oligonucleotide LC-MS/MS.
Collapse
Affiliation(s)
- Alice Baek
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (A.B.); (G.-E.L.); (S.G.); (H.Y.); (S.K.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Asif Rayhan
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (A.R.); (P.A.L.)
| | - Ga-Eun Lee
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (A.B.); (G.-E.L.); (S.G.); (H.Y.); (S.K.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Sarah Golconda
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (A.B.); (G.-E.L.); (S.G.); (H.Y.); (S.K.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Hannah Yu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (A.B.); (G.-E.L.); (S.G.); (H.Y.); (S.K.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Shihyoung Kim
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (A.B.); (G.-E.L.); (S.G.); (H.Y.); (S.K.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (A.R.); (P.A.L.)
| | - Balasubrahmanyam Addepalli
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (A.R.); (P.A.L.)
| | - Sanggu Kim
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (A.B.); (G.-E.L.); (S.G.); (H.Y.); (S.K.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Deng L, Kumar J, Rose R, McIntyre W, Fabris D. Analyzing RNA posttranscriptional modifications to decipher the epitranscriptomic code. MASS SPECTROMETRY REVIEWS 2024; 43:5-38. [PMID: 36052666 DOI: 10.1002/mas.21798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The discovery of RNA silencing has revealed that non-protein-coding sequences (ncRNAs) can cover essential roles in regulatory networks and their malfunction may result in severe consequences on human health. These findings have prompted a general reassessment of the significance of RNA as a key player in cellular processes. This reassessment, however, will not be complete without a greater understanding of the distribution and function of the over 170 variants of the canonical ribonucleotides, which contribute to the breathtaking structural diversity of natural RNA. This review surveys the analytical approaches employed for the identification, characterization, and detection of RNA posttranscriptional modifications (rPTMs). The merits of analyzing individual units after exhaustive hydrolysis of the initial biopolymer are outlined together with those of identifying their position in the sequence of parent strands. Approaches based on next generation sequencing and mass spectrometry technologies are covered in depth to provide a comprehensive view of their respective merits. Deciphering the epitranscriptomic code will require not only mapping the location of rPTMs in the various classes of RNAs, but also assessing the variations of expression levels under different experimental conditions. The fact that no individual platform is currently capable of meeting all such demands implies that it will be essential to capitalize on complementary approaches to obtain the desired information. For this reason, the review strived to cover the broadest possible range of techniques to provide readers with the fundamental elements necessary to make informed choices and design the most effective possible strategy to accomplish the task at hand.
Collapse
Affiliation(s)
- L Deng
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - J Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - R Rose
- Department of Advanced Research Technologies, New York University Langone Health Center, New York, USA
| | - W McIntyre
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Daniele Fabris
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
4
|
Lahry K, Gopal A, Kumar Sahu A, Nora Marbaniang C, Ahmad Shah R, Mehta A, Varshney U. An alternative role of RluD in the fidelity of translation initiation in Escherichia coli. J Mol Biol 2022; 434:167588. [DOI: 10.1016/j.jmb.2022.167588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/21/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
|
5
|
Dutta N, Sarzynska J, Lahiri A. Molecular Dynamics Simulation of the Conformational Preferences of Pseudouridine Derivatives: Improving the Distribution in the Glycosidic Torsion Space. J Chem Inf Model 2020; 60:4995-5002. [PMID: 33030900 DOI: 10.1021/acs.jcim.0c00369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There are only four derivatives of pseudouridine (Ψ) that are known to occur naturally in RNA as post-transcriptional modifications. We have studied the conformational consequences of pseudouridylation and further modifications using replica exchange molecular dynamics simulations at the nucleoside level, and the simulated conformational preferences were compared with the available experimental (NMR) data. We found that the existing AMBER FF99-derived parameters for these nucleosides did not reproduce the observed experimental features and while the recommended bsc0 correction could be combined with these parameters leading to an improvement in the description of sugar pucker distributions, the χOL3 correction could not be applied to these nucleosides as such because of base isomerization. On the other hand, the revised χ torsion parameters (χIDRP) for Ψ developed earlier by us (Deb, I., J. Comput. Chem., 2016, 37, 1576-1588) in combination with the AMBER provided parameters and the revised γ torsion parameters generated conformational distributions, which generally were in better agreement with the experimental data. A significant shift of the distribution of base orientation toward the syn conformation was observed with our revised parameter sets compared to the large excess of anti conformation predicted by the FF99 parameters. Overall, our observations indicated that our revised set of parameters (χIDRP) for Ψ were also able to generate conformational distributions for all of the derivatives of Ψ in better agreement with the experimental data.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, West Bengal, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, West Bengal, India
| |
Collapse
|
6
|
McCown PJ, Ruszkowska A, Kunkler CN, Breger K, Hulewicz JP, Wang MC, Springer NA, Brown JA. Naturally occurring modified ribonucleosides. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1595. [PMID: 32301288 PMCID: PMC7694415 DOI: 10.1002/wrna.1595] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
Abstract
The chemical identity of RNA molecules beyond the four standard ribonucleosides has fascinated scientists since pseudouridine was characterized as the "fifth" ribonucleotide in 1951. Since then, the ever-increasing number and complexity of modified ribonucleosides have been found in viruses and throughout all three domains of life. Such modifications can be as simple as methylations, hydroxylations, or thiolations, complex as ring closures, glycosylations, acylations, or aminoacylations, or unusual as the incorporation of selenium. While initially found in transfer and ribosomal RNAs, modifications also exist in messenger RNAs and noncoding RNAs. Modifications have profound cellular outcomes at various levels, such as altering RNA structure or being essential for cell survival or organism viability. The aberrant presence or absence of RNA modifications can lead to human disease, ranging from cancer to various metabolic and developmental illnesses such as Hoyeraal-Hreidarsson syndrome, Bowen-Conradi syndrome, or Williams-Beuren syndrome. In this review article, we summarize the characterization of all 143 currently known modified ribonucleosides by describing their taxonomic distributions, the enzymes that generate the modifications, and any implications in cellular processes, RNA structure, and disease. We also highlight areas of active research, such as specific RNAs that contain a particular type of modification as well as methodologies used to identify novel RNA modifications. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Phillip J. McCown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Agnieszka Ruszkowska
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
- Present address:
Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - Charlotte N. Kunkler
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Kurtis Breger
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jacob P. Hulewicz
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew C. Wang
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Noah A. Springer
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jessica A. Brown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
7
|
Thakur P, Estevez M, Lobue PA, Limbach PA, Addepalli B. Improved RNA modification mapping of cellular non-coding RNAs using C- and U-specific RNases. Analyst 2020; 145:816-827. [PMID: 31825413 PMCID: PMC7002195 DOI: 10.1039/c9an02111f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Locating ribonucleoside modifications within an RNA sequence requires digestion of the RNA into oligoribonucleotides of amenable size for subsequent analysis by LC-MS (liquid chromatography-mass spectrometry). This approach, widely referred to as RNA modification mapping, is facilitated through ribonucleases (RNases) such as T1 (guanosine-specific), U2 (purine-selective) and A (pyrimidine-specific) among others. Sequence coverage by these enzymes depends on positioning of the recognized nucleobase (such as guanine or purine or pyrimidine) in the sequence and its ribonucleotide composition. Using E. coli transfer RNA (tRNA) and ribosomal RNA (rRNA) as model samples, we demonstrate the ability of complementary nucleobase-specific ribonucleases cusativin (C-specific) and MC1 (U-specific) to generate digestion products that facilitate confident mapping of modifications in regions such as G-rich and pyrimidine-rich segments of RNA, and to distinguish C to U sequence differences. These enzymes also increase the number of oligonucleotide digestion products that are unique to a specific RNA sequence. Further, with these additional RNases, multiple modifications can be localized with high confidence in a single set of experiments with minimal dependence on the individual tRNA abundance in a mixture. The sequence overlaps observed with these complementary digestion products and that of RNase T1 improved sequence coverage to 75% or above. A similar level of sequence coverage was also observed for the 2904 nt long 23S rRNA indicating their utility has no dependence on RNA size. Wide-scale adoption of these additional modification mapping tools could help expedite the characterization of modified RNA sequences to understand their structural and functional role in various living systems.
Collapse
Affiliation(s)
- Priti Thakur
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA.
| | | | | | | | | |
Collapse
|
8
|
Kenderdine T, Nemati R, Baker A, Palmer M, Ujma J, FitzGibbon M, Deng L, Royzen M, Langridge J, Fabris D. High-resolution ion mobility spectrometry-mass spectrometry of isomeric/isobaric ribonucleotide variants. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4465. [PMID: 31697854 PMCID: PMC8363168 DOI: 10.1002/jms.4465] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/13/2019] [Accepted: 10/22/2019] [Indexed: 06/01/2023]
Abstract
In this report, we explored the benefits of cyclic ion mobility (cIM) mass spectrometry in the analysis of isomeric post-transcriptional modifications of RNA. Standard methyl-cytidine samples were initially utilized to test the ability to correctly distinguish different structures sharing the same elemental composition and thus molecular mass. Analyzed individually, the analytes displayed characteristic arrival times (tD ) determined by the different positions of the modifying methyl groups onto the common cytidine scaffold. Analyzed in mixture, the widths of the respective signals resulted in significant overlap that initially prevented their resolution on the tD scale. The separation of the four isomers was achieved by increasing the number of passes through the cIM device, which enabled to fully differentiate the characteristic ion mobility behaviors associated with very subtle structural variations. The placement of the cIM device between the mass-selective quadrupole and the time-of-flight analyzer allowed us to perform gas-phase activation of each of these ion populations, which had been first isolated according to a common mass-to-charge ratio and then separated on the basis of different ion mobility behaviors. The observed fragmentation patterns confirmed the structures of the various isomers thus substantiating the benefits of complementing unique tD information with specific fragmentation data to reach more stringent analyte identification. These capabilities were further tested by analyzing natural mono-nucleotide mixtures obtained by exonuclease digestion of total RNA extracts. In particular, the combination of cIM separation and post-mobility dissociation allowed us to establish the composition of methyl-cytidine and methyl-adenine components present in the entire transcriptome of HeLa cells. For this reason, we expect that this technique will benefit not only epitranscriptomic studies requiring the determination of identity and expression levels of RNA modifications, but also metabolomics investigations involving the analysis of natural extracts that may possibly contain subsets of isomeric/isobaric species.
Collapse
Affiliation(s)
| | | | - A. Baker
- Waters Corporation, Wilmslow SK9 4AX, UK
| | - M. Palmer
- Waters Corporation, Wilmslow SK9 4AX, UK
| | - J. Ujma
- Waters Corporation, Wilmslow SK9 4AX, UK
| | - M FitzGibbon
- University at Albany, Albany, NY 12222
- University of California San Diego, La Jolla, CA 92093
| | - L. Deng
- University at Albany, Albany, NY 12222
| | - M. Royzen
- University at Albany, Albany, NY 12222
| | | | - D. Fabris
- University at Albany, Albany, NY 12222
| |
Collapse
|
9
|
Qi C, Ding J, Yuan B, Feng Y. Analytical methods for locating modifications in nucleic acids. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Affiliation(s)
- Bei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
11
|
Small methyltransferase RlmH assembles a composite active site to methylate a ribosomal pseudouridine. Sci Rep 2017; 7:969. [PMID: 28428565 PMCID: PMC5430550 DOI: 10.1038/s41598-017-01186-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/23/2017] [Indexed: 11/24/2022] Open
Abstract
Eubacterial ribosomal large-subunit methyltransferase H (RlmH) methylates 23S ribosomal RNA pseudouridine 1915 (Ψ1915), which lies near the ribosomal decoding center. The smallest member of the SPOUT superfamily of methyltransferases, RlmH lacks the RNA recognition domain found in larger methyltransferases. The catalytic mechanism of RlmH enzyme is unknown. Here, we describe the structures of RlmH bound to S-adenosyl-methionine (SAM) and the methyltransferase inhibitor sinefungin. Our structural and biochemical studies reveal catalytically essential residues in the dimer-mediated asymmetrical active site. One monomer provides the SAM-binding site, whereas the conserved C-terminal tail of the second monomer provides residues essential for catalysis. Our findings elucidate the mechanism by which a small protein dimer assembles a functionally asymmetric architecture.
Collapse
|
12
|
Dremann DN, Chow CS. The development of peptide ligands that target helix 69 rRNA of bacterial ribosomes. Bioorg Med Chem 2016; 24:4486-4491. [PMID: 27492196 PMCID: PMC4992606 DOI: 10.1016/j.bmc.2016.07.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 12/19/2022]
Abstract
Antibiotic resistance prevents successful treatment of common bacterial infections, making it clear that new target locations and drugs are required to resolve this ongoing challenge. The bacterial ribosome is a common target for antibacterials due to its essential contribution to cell viability. The focus of this work is a region of the ribosome called helix 69 (H69), which was recently identified as a secondary target site for aminoglycoside antibiotics. H69 has key roles in essential ribosomal processes such as subunit association, ribosome recycling, and tRNA selection. Conserved across phylogeny, bacterial H69 also contains two pseudouridines and one 3-methylpseudouridine. Phage display revealed a heptameric peptide sequence that targeted H69. Using solid-phase synthesis, peptide variants with higher affinity and improved selectivity to modified H69 were generated. Electrospray ionization mass spectrometry was used to determine relative apparent dissociation constants of the RNA-peptide complexes.
Collapse
Affiliation(s)
| | - Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
13
|
Jiang J, Seo H, Chow CS. Post-transcriptional Modifications Modulate rRNA Structure and Ligand Interactions. Acc Chem Res 2016; 49:893-901. [PMID: 27064497 DOI: 10.1021/acs.accounts.6b00014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Post-transcriptional modifications play important roles in modulating the functions of RNA species. The presence of modifications in RNA may directly alter its interactions with binding partners or cause structural changes that indirectly affect ligand recognition. Given the rapidly growing list of modifications identified in noncoding and mRNAs associated with human disease, as well as the dynamic control over modifications involved in various physiological processes, it is imperative to understand RNA structural modulation by these modifications. Among the RNA species, rRNAs provide numerous examples of modification types located in differing sequence and structural contexts. In addition, the modified rRNA motifs participate in a wide variety of ligand interactions, including those with RNA, protein, and small molecules. In fact, several classes of antibiotics exert their effects on protein synthesis by binding to functionally important and highly modified regions of the rRNAs. These RNA regions often display conservation in sequence, secondary structure, tertiary interactions, and modifications, trademarks of ideal drug-targeting sites. Furthermore, ligand interactions with such regions often favor certain modification-induced conformational states of the RNA. Our laboratory has employed a combination of biophysical methods such as nuclear magnetic resonance spectroscopy (NMR), circular dichroism, and UV melting to study rRNA modifications in functionally important motifs, including helix 31 (h31) and helix h44 (h44) of the small subunit rRNA and helix 69 (H69) of the large subunit rRNA. The modified RNA oligonucleotides used in these studies were generated by solid-phase synthesis with a variety of phosphoramidite chemistries. The natural modifications were shown to impact thermal stability, dynamic behavior, and tertiary structures of the RNAs, with additive or cooperative effects occurring with multiple, clustered modifications. Taking advantage of the structural diversity offered by specific modifications in the chosen rRNA motifs, phage display was used to select peptides that bind with moderate (low micromolar) affinity and selectivity to modified h31, h44, and H69. Interactions between peptide ligands and RNAs were monitored by biophysical methods, including electrospray ionization mass spectrometry (ESI-MS), NMR, and surface plasmon resonance (SPR). The peptides compare well with natural compounds such as aminoglycosides in their binding affinities to the modified rRNA constructs. Some candidates were shown to exhibit specificity toward different modification states of the rRNA motifs. The selected peptides may be further optimized for improved RNA targeting or used in screening assays for new drug candidates. In this Account, we hope to stimulate interest in bioorganic and biophysical approaches, which may be used to deepen our understanding of other functionally important, naturally modified RNAs beyond the rRNAs.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hyosuk Seo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Christine S. Chow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
14
|
Abstract
The modified nucleosides of RNA are chemically altered versions of the standard A, G, U, and C nucleosides. This review reviews the nature and location of the modified nucleosides of Escherichia coli rRNA, the enzymes that form them, and their known and/or putative functional role. There are seven Ψ (pseudouridines) synthases to make the 11 pseudouridines in rRNA. There is disparity in numbers because RluC and RluD each make 3 pseudouridines. Crystal structures have shown that the Ψ synthase domain is a conserved fold found only in all five families of Ψ synthases. The conversion of uridine to Ψ has no precedent in known metabolic reactions. Other enzymes are known to cleave the glycosyl bond but none carry out rotation of the base and rejoining to the ribose while still enzyme bound. Ten methyltransferases (MTs) are needed to make all the methylated nucleosides in 16S RNA, and 14 are needed for 23S RNA. Biochemical studies indicate that the modes of substrate recognition are idiosyncratic for each Ψ synthase since no common mode of recognition has been detected in studies of the seven synthases. Eight of the 24 expected MTs have been identified, and six crystal structures have been determined. Seven of the MTs and five of the structures are class I MTs with the appropriate protein fold plus unique appendages for the Ψ synthases. The remaining MT, RlmB, has the class IV trefoil knot fold.
Collapse
|
15
|
The antituberculosis antibiotic capreomycin inhibits protein synthesis by disrupting interaction between ribosomal proteins L12 and L10. Antimicrob Agents Chemother 2014; 58:2038-44. [PMID: 24449778 DOI: 10.1128/aac.02394-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capreomycin is a second-line drug for multiple-drug-resistant tuberculosis (TB). However, with increased use in clinics, the therapeutic efficiency of capreomycin is decreasing. To better understand TB resistance to capreomycin, we have done research to identify the molecular target of capreomycin. Mycobacterium tuberculosis ribosomal proteins L12 and L10 interact with each other and constitute the stalk of the 50S ribosomal subunit, which recruits initiation and elongation factors during translation. Hence, the L12-L10 interaction is considered to be essential for ribosomal function and protein synthesis. Here we provide evidence showing that capreomycin inhibits the L12-L10 interaction by using an established L12-L10 interaction assay. Overexpression of L12 and/or L10 in M. smegmatis, a species close to M. tuberculosis, increases the MIC of capreomycin. Moreover, both elongation factor G-dependent GTPase activity and ribosome-mediated protein synthesis are inhibited by capreomycin. When protein synthesis was blocked with thiostrepton, however, the bactericidal activity of capreomycin was restrained. All of these results suggest that capreomycin seems to inhibit TB by interrupting the L12-L10 interaction. This finding might provide novel clues for anti-TB drug discovery.
Collapse
|
16
|
Jiang J, Sakakibara Y, Chow CS. Helix 69: A Multitasking RNA Motif as a Novel Drug Target. Isr J Chem 2013. [DOI: 10.1002/ijch.201300012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Kaur M, Rupasinghe CN, Klosi E, Spaller MR, Chow CS. Selection of heptapeptides that bind helix 69 of bacterial 23S ribosomal RNA. Bioorg Med Chem 2013; 21:1240-7. [PMID: 23375098 DOI: 10.1016/j.bmc.2012.12.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 12/13/2012] [Accepted: 12/20/2012] [Indexed: 11/16/2022]
Abstract
Helix 69 of Escherichia coli 23S rRNA has important roles in specific steps of translation, such as subunit association, translocation, and ribosome recycling. An M13 phage library was used to identify peptide ligands with affinity for helix 69. One selected sequence, NQVANHQ, was shown through a bead assay to interact with helix 69. Electrospray ionization mass spectroscopy revealed an apparent dissociation constant for the amidated peptide and helix 69 in the low micromolar range. This value is comparable to that of aminoglycoside antibiotics binding to the A site of 16S rRNA or helix 69. Helix 69 variants (human) and unrelated RNAs (helix 31 or A site of 16S rRNA) showed two- to fourfold lower affinity for NQVANHQ-NH(2). These results suggest that the peptide has desirable features for development as a lead compound for novel antimicrobials.
Collapse
Affiliation(s)
- Moninderpal Kaur
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
18
|
Leppik M, Ero R, Liiv A, Kipper K, Remme J. Different sensitivity of H69 modification enzymes RluD and RlmH to mutations in Escherichia coli 23S rRNA. Biochimie 2012; 94:1080-9. [PMID: 22586702 DOI: 10.1016/j.biochi.2012.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nucleoside modifications are introduced into the ribosomal RNA during the assembly of the ribosome. The number and the localization of the modified nucleosides in rRNAs are known for several organisms. In bacteria, rRNA modified nucleosides are synthesized by a set of specific enzymes, the majority of which have been identified in Escherichia coli. Each rRNA modification enzyme recognizes its substrate nucleoside(s) at a specific stage of ribosome assembly. Not much is known about the specificity determinants involved in the substrate recognition of the modification enzymes. In order to shed light on the substrate specificity of RluD and RlmH, the enzymes responsible for the introduction of modifications into the stem-loop 69 (H69), we monitored the formation of H69 pseudouridines (Ψ) and methylated pseudouridine (m3Ψ) in vitro on ribosomes with alterations in 23S rRNA. While the synthesis of Ψs in H69 by RluD is relatively insensitive to the point mutations at neighboring positions, methylation of one of the Ψs by RlmH exhibited a much stronger sensitivity. Apparently, in spite of synthesizing modifications in the same region or even at the same position of rRNA, the two enzymes employ different substrate recognition mechanisms.
Collapse
Affiliation(s)
- Margus Leppik
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | | | | | | | | |
Collapse
|
19
|
Sakakibara Y, Chow CS. Role of pseudouridine in structural rearrangements of helix 69 during bacterial ribosome assembly. ACS Chem Biol 2012; 7:871-8. [PMID: 22324880 DOI: 10.1021/cb200497q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As part of the central core domain of the ribosome, helix 69 of 23S rRNA participates in an important intersubunit bridge and contacts several protein translation factors. Helix 69 is believed to play key roles in protein synthesis. Even though high-resolution crystal structures of the ribosome exist, the solution dynamics and roles of individual nucleotides in H69 are still not well-defined. To better understand the influence of modified nucleotides, specifically pseudouridine, on the multiple conformational states of helix 69 in the context of 50S subunits and 70S ribosomes, chemical probing analyses were performed on wild-type and pseudouridine-deficient bacterial ribosomes. Local structural rearrangements of helix 69 upon ribosomal subunit association and interactions with its partner, helix 44 of 16S rRNA, are observed. The helix 69 conformational states are also magnesium-dependent. The probing data presented in this study provide insight into the functional role of helix 69 dynamics and regulation of these conformational states by post-transcriptional pseudouridine modification.
Collapse
Affiliation(s)
- Yogo Sakakibara
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United
States
| | - Christine S. Chow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United
States
| |
Collapse
|
20
|
Giessing AMB, Kirpekar F. Mass spectrometry in the biology of RNA and its modifications. J Proteomics 2012; 75:3434-49. [PMID: 22348820 DOI: 10.1016/j.jprot.2012.01.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/20/2012] [Accepted: 01/26/2012] [Indexed: 01/31/2023]
Abstract
Many powerful analytical techniques for investigation of nucleic acids exist in the average modern molecular biology lab. The current review will focus on questions in RNA biology that have been answered by the use of mass spectrometry, which means that new biological information is the purpose and outcome of most of the studies we refer to. The review begins with a brief account of the subject "MS in the biology of RNA" and an overview of the prevalent RNA modifications identified to date. Fundamental considerations about mass spectrometric analysis of RNA are presented with the aim of detailing the analytical possibilities and challenges relating to the unique chemical nature of nucleic acids. The main biological topics covered are RNA modifications and the enzymes that perform the modifications. Modifications of RNA are essential in biology, and it is a field where mass spectrometry clearly adds knowledge of biological importance compared to traditional methods used in nucleic acid research. The biological applications are divided into analyses exclusively performed at the building block (mainly nucleoside) level and investigations involving mass spectrometry at the oligonucleotide level. We conclude the review discussing aspects of RNA identification and quantifications, which are upcoming fields for MS in RNA research. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.
Collapse
Affiliation(s)
- Anders M B Giessing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | |
Collapse
|
21
|
Krivos KL, Addepalli B, Limbach PA. Removal of 3'-phosphate group by bacterial alkaline phosphatase improves oligonucleotide sequence coverage of RNase digestion products analyzed by collision-induced dissociation mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3609-3616. [PMID: 22095510 DOI: 10.1002/rcm.5266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
RNase mapping by nucleobase-specific endonucleases combined with liquid chromatography/tandem mass spectrometry (LC/MS/MS) is a powerful analytical method for characterizing ribonucleic acids (RNAs). Endonuclease digestion of RNA yields products that contain a 3'-terminal phosphate group. MS/MS via collision-induced dissociation (CID) of these digestion products on a linear ion trap generates fragmentation pathways that include the loss of phosphoric acid (-H(3)PO(4); -98 u), which does not provide information about the sequence of the digestion products and can reduce ion abundance from other pathways that provide sequence information. Here we investigate the use of bacterial alkaline phosphatase (BAP) after RNase digestion to remove the 3'-terminal phosphate from all RNase digestion products prior to LC/MS/MS analysis. RNase digestion products lacking the 3'-phosphate were found to produce CID spectra with more consistent, high-abundance c- and y-type fragment ions as well as significantly more a-Base and w-type ions than digestion products retaining the 3'-phosphate. In this manner, RNase mapping with LC/MS/MS can provide more complete RNA sequence information from fragment ions of higher abundance that are easier to interpret and identify.
Collapse
Affiliation(s)
- Kady L Krivos
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, P.O. Box 210172, University of Cincinnati, Cincinnati, OH 45221-0172, USA
| | | | | |
Collapse
|
22
|
Schnare MN, Gray MW. Complete modification maps for the cytosolic small and large subunit rRNAs of Euglena gracilis: functional and evolutionary implications of contrasting patterns between the two rRNA components. J Mol Biol 2011; 413:66-83. [PMID: 21875598 DOI: 10.1016/j.jmb.2011.08.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/15/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
In the protist Euglena gracilis, the cytosolic small subunit (SSU) rRNA is a single, covalently continuous species typical of most eukaryotes; in contrast, the large subunit (LSU) rRNA is naturally fragmented, comprising 14 separate RNA molecules instead of the bipartite (28S+5.8S) eukaryotic LSU rRNA typically seen. We present extensively revised secondary structure models of the E. gracilis SSU and LSU rRNAs and have mapped the positions of all of the modified nucleosides in these rRNAs (88 in SSU rRNA and 262 in LSU rRNA, with only 3 LSU rRNA modifications incompletely characterized). The relative proportions of ribose-methylated nucleosides and pseudouridine (∼60% and ∼35%, respectively) are closely similar in the two rRNAs; however, whereas the Euglena SSU rRNA has about the same absolute number of modifications as its human counterpart, the Euglena LSU rRNA has twice as many modifications as the corresponding human LSU rRNA. The increased levels of rRNA fragmentation and modification in E. gracilis LSU rRNA are correlated with a 3-fold increase in the level of mispairing in helical regions compared to the human LSU rRNA. In contrast, no comparable increase in mispairing is seen in helical regions of the SSU rRNA compared to its homologs in other eukaryotes. In view of the reported effects of both ribose-methylated nucleoside and pseudouridine residues on RNA structure, these correlations lead us to suggest that increased modification in the LSU rRNA may play a role in stabilizing a 'looser' structure promoted by elevated helical mispairing and a high degree of fragmentation.
Collapse
Affiliation(s)
- Murray N Schnare
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
23
|
Sakakibara Y, Chow CS. Probing conformational states of modified helix 69 in 50S ribosomes. J Am Chem Soc 2011; 133:8396-9. [PMID: 21557607 DOI: 10.1021/ja2005658] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The movement of the small ribosomal subunit (30S) relative to the large ribosomal subunit (50S) during translation is widely known, but many molecular details and roles of rRNA and proteins in this process are still undefined, especially in solution models. The functional relationship of modified nucleotides to ribosome activity is one such enigma. To better understand ribosome dynamics and the influence of modified nucleotides on such processes, the focus of this work was helix 69 of 23S rRNA, which contains three pseudouridine residues in its loop region. Ribosome probing experiments with dimethylsulfate revealed that specific base accessibilities and individual nucleotide conformations in helix 69 are influenced differently by pH, temperature, magnesium, and the presence of pseudouridine modifications.
Collapse
Affiliation(s)
- Yogo Sakakibara
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
24
|
Pseudouridylation of 23S rRNA helix 69 promotes peptide release by release factor RF2 but not by release factor RF1. Biochimie 2011; 93:834-44. [PMID: 21281690 DOI: 10.1016/j.biochi.2010.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/30/2010] [Indexed: 11/22/2022]
Abstract
Pseudouridine [Ψ] is a frequent base modification in the ribosomal RNA [rRNA] and may be involved in the modulation of the conformational flexibility of rRNA helix-loop structures during protein synthesis. Helix 69 of 23S rRNA contains pseudouridines at the positions 1911, 1915 and 1917 which are formed by the helix 69-specific synthase RluD. The growth defect caused by the lack of RluD can be rescued by mutations in class I release factor RF2, indicating a role for helix 69 pseudouridines in translation termination. We investigated the role of helix 69 pseudouridines in peptide release by release factors RF1 and RF2 in an in vitro system consisting of purified components of the Escherichia coli translation apparatus. Lack of all three pseudouridines in helix 69 compromised the activity of RF2 about 3-fold but did not significantly affect the activity of RF1. Reintroduction of pseudouridines into helix 69 by RluD-treatment restored the activity of RF2 in peptide release. A Ψ-to-C substitution at the 1917 position caused an increase in the dissociation rate of RF1 and RF2 from the postrelease ribosome. Our results indicate that the presence of all three pseudouridines in helix 69 stimulates peptide release by RF2 but has little effect on the activity of RF1. The interactions around the pseudouridine at the 1917 position appear to be most critical for a proper interaction of helix 69 with release factors.
Collapse
|
25
|
Ero R, Leppik M, Liiv A, Remme J. Specificity and kinetics of 23S rRNA modification enzymes RlmH and RluD. RNA (NEW YORK, N.Y.) 2010; 16:2075-84. [PMID: 20817755 PMCID: PMC2957048 DOI: 10.1261/rna.2234310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 07/30/2010] [Indexed: 05/29/2023]
Abstract
Along the ribosome assembly pathway, various ribosomal RNA processing and modification reactions take place. Stem-loop 69 in the large subunit of Escherichia coli ribosomes plays a substantial role in ribosome functioning. It contains three highly conserved pseudouridines synthesized by pseudouridine synthase RluD. One of the pseudouridines is further methylated by RlmH. In this paper we show that RlmH has unique substrate specificity among rRNA modification enzymes. It preferentially methylates pseudouridine and less efficiently uridine. Furthermore, RlmH is the only known modification enzyme that is specific to 70S ribosomes. Kinetic parameters determined for RlmH are the following: The apparent K(M) for substrate 70S ribosomes is 0.51 ± 0.06 μM, and for cofactor S-adenosyl-L-methionine 27 ± 3 μM; the k(cat) values are 4.95 ± 1.10 min⁻¹ and 6.4 ± 1.3 min⁻¹, respectively. Knowledge of the substrate specificity and the kinetic parameters of RlmH made it possible to determine the kinetic parameters for RluD as well. The K(M) value for substrate 50S subunits is 0.98 ± 0.18 μM and the k(cat) value is 1.97 ± 0.46 min⁻¹. RluD is the first rRNA pseudouridine synthase to be kinetically characterized. The determined rates of RluD- and RlmH-directed modifications of 23S rRNA are compatible with the rate of 50S assembly in vivo. The fact that RlmH requires 30S subunits demonstrates the dependence of 50S subunit maturation on the simultaneous presence of 30S subunits.
Collapse
Affiliation(s)
- Rya Ero
- Department of Molecular Biology, Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | | | | | | |
Collapse
|
26
|
Siibak T, Remme J. Subribosomal particle analysis reveals the stages of bacterial ribosome assembly at which rRNA nucleotides are modified. RNA (NEW YORK, N.Y.) 2010; 16:2023-32. [PMID: 20719918 PMCID: PMC2941110 DOI: 10.1261/rna.2160010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 07/15/2010] [Indexed: 05/25/2023]
Abstract
Modified nucleosides of ribosomal RNA are synthesized during ribosome assembly. In bacteria, each modification is made by a specialized enzyme. In vitro studies have shown that some enzymes need the presence of ribosomal proteins while other enzymes can modify only protein-free rRNA. We have analyzed the addition of modified nucleosides to rRNA during ribosome assembly. Accumulation of incompletely assembled ribosomal particles (25S, 35S, and 45S) was induced by chloramphenicol or erythromycin in an exponentially growing Escherichia coli culture. Incompletely assembled ribosomal particles were isolated from drug-treated and free 30S and 50S subunits and mature 70S ribosomes from untreated cells. Nucleosides of 16S and 23S rRNA were prepared and analyzed by reverse-phase, high-performance liquid chromatography (HPLC). Pseudouridines were identified by the chemical modification/primer extension method. Based on the results, the rRNA modifications were divided into three major groups: early, intermediate, and late assembly specific modifications. Seven out of 11 modified nucleosides of 16S rRNA were late assembly specific. In contrast, 16 out of 25 modified nucleosides of 23S rRNA were made during early steps of ribosome assembly. Free subunits of exponentially growing bacteria contain undermodified rRNA, indicating that a specific set of modifications is synthesized during very late steps of ribosome subunit assembly.
Collapse
MESH Headings
- Base Sequence
- Chloramphenicol/pharmacology
- DNA Primers/genetics
- Erythromycin/pharmacology
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Pseudouridine/chemistry
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- Ribosome Subunits/metabolism
- Ribosome Subunits, Small, Bacterial/metabolism
- Ribosomes/drug effects
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Triinu Siibak
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | |
Collapse
|
27
|
Hoshina R, Shimizu M, Makino Y, Haruyama Y, Ueda SI, Kato Y, Kasahara M, Ono BI, Imamura N. Isolation and characterization of a virus (CvV-BW1) that infects symbiotic algae of Paramecium bursaria in Lake Biwa, Japan. Virol J 2010; 7:222. [PMID: 20831832 PMCID: PMC2949830 DOI: 10.1186/1743-422x-7-222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/13/2010] [Indexed: 11/29/2022] Open
Abstract
Background We performed an environmental study of viruses infecting the symbiotic single-celled algae of Paramecium bursaria (Paramecium bursaria Chlorella virus, PBCV) in Lake Biwa, the largest lake in Japan. The viruses detected were all Chlorella variabilis virus (CvV = NC64A virus). One of them, designated CvV-BW1, was subjected to further characterization. Results CvV-BW1 formed small plaques and had a linear DNA genome of 370 kb, as judged by pulsed-field gel electrophoresis. Restriction analysis indicated that CvV-BW1 DNA belongs to group H, one of the most resistant groups among CvV DNAs. Based on a phylogenetic tree constructed using the dnapol gene, CvV was classified into two clades, A and B. CvV-BW1 belonged to clade B, in contrast to all previously identified virus strains of group H that belonged to clade A. Conclusions We conclude that CvV-BW1 composes a distinct species within C. variabilis virus.
Collapse
Affiliation(s)
- Ryo Hoshina
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Noji Higashi 1-1-1, Kusatsu 525-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Purta E, Kaminska KH, Kasprzak JM, Bujnicki JM, Douthwaite S. YbeA is the m3Psi methyltransferase RlmH that targets nucleotide 1915 in 23S rRNA. RNA (NEW YORK, N.Y.) 2008; 14:2234-44. [PMID: 18755835 PMCID: PMC2553730 DOI: 10.1261/rna.1198108] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/09/2008] [Indexed: 05/26/2023]
Abstract
Pseudouridines in the stable RNAs of Bacteria are seldom subjected to further modification. There are 11 pseudouridine (Psi) sites in Escherichia coli rRNA, and further modification is found only at Psi1915 in 23S rRNA, where the N-3 position of the base becomes methylated. Here, we report the identity of the E. coli methyltransferase that specifically catalyzes methyl group addition to form m(3)Psi1915. Analyses of E. coli rRNAs using MALDI mass spectrometry showed that inactivation of the ybeA gene leads to loss of methylation at nucleotide Psi1915. Methylation is restored by complementing the knockout strain with a plasmid-encoded copy of ybeA. Homologs of the ybeA gene, and thus presumably the ensuing methylation at nucleotide m(3)Psi1915, are present in most bacterial lineages but are essentially absent in the Archaea and Eukaryota. Loss of ybeA function in E. coli causes a slight slowing of the growth rate. Phylogenetically, ybeA and its homologs are grouped with other putative S-adenosylmethionine-dependent, SPOUT methyltransferase genes in the Cluster of Orthologous Genes COG1576; ybeA is the first member to be functionally characterized. The YbeA methyltransferase is active as a homodimer and docks comfortably into the ribosomal A site without encroaching into the P site. YbeA makes extensive interface contacts with both the 30S and 50S subunits to align its active site cofactor adjacent to nucleotide Psi1915. Methylation by YbeA (redesignated RlmH for rRNA large subunit methyltransferase H) possibly functions as a stamp of approval signifying that the 50S subunit has engaged in translational initiation.
Collapse
Affiliation(s)
- Elzbieta Purta
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | | | | |
Collapse
|
29
|
Ero R, Peil L, Liiv A, Remme J. Identification of pseudouridine methyltransferase in Escherichia coli. RNA (NEW YORK, N.Y.) 2008; 14:2223-33. [PMID: 18755836 PMCID: PMC2553739 DOI: 10.1261/rna.1186608] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 07/09/2008] [Indexed: 05/26/2023]
Abstract
In ribosomal RNA, modified nucleosides are found in functionally important regions, but their function is obscure. Stem-loop 69 of Escherichia coli 23S rRNA contains three modified nucleosides: pseudouridines at positions 1911 and 1917, and N3 methyl-pseudouridine (m(3)Psi) at position 1915. The gene for pseudouridine methyltransferase was previously not known. We identified E. coli protein YbeA as the methyltransferase methylating Psi1915 in 23S rRNA. The E. coli ybeA gene deletion strain lacks the N3 methylation at position 1915 of 23S rRNA as revealed by primer extension and nucleoside analysis by HPLC. Methylation at position 1915 is restored in the ybeA deletion strain when recombinant YbeA protein is expressed from a plasmid. In addition, we show that purified YbeA protein is able to methylate pseudouridine in vitro using 70S ribosomes but not 50S subunits from the ybeA deletion strain as substrate. Pseudouridine is the preferred substrate as revealed by the inability of YbeA to methylate uridine at position 1915. This shows that YbeA is acting at the final stage during ribosome assembly, probably during translation initiation. Hereby, we propose to rename the YbeA protein to RlmH according to uniform nomenclature of RNA methyltransferases. RlmH belongs to the SPOUT superfamily of methyltransferases. RlmH was found to be well conserved in bacteria, and the gene is present in plant and in several archaeal genomes. RlmH is the first pseudouridine specific methyltransferase identified so far and is likely to be the only one existing in bacteria, as m(3)Psi1915 is the only methylated pseudouridine in bacteria described to date.
Collapse
Affiliation(s)
- Rya Ero
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | | | | |
Collapse
|
30
|
Durairaj A, Limbach PA. Mass spectrometry of the fifth nucleoside: a review of the identification of pseudouridine in nucleic acids. Anal Chim Acta 2008; 623:117-25. [PMID: 18620915 PMCID: PMC2597214 DOI: 10.1016/j.aca.2008.06.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 06/17/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
Abstract
Pseudouridine, the so-called fifth nucleoside due to its ubiquitous presence in ribonucleic acids (RNAs), remains among the most challenging modified nucleosides to characterize. As an isomer of the major nucleoside uridine, pseudouridine cannot be detected by standard reverse-transcriptase-based DNA sequencing or RNase mapping approaches. Thus, over the past 15 years, investigators have focused on the unique structural properties of pseudouridine to develop selective derivatization or fragmentation strategies for its determination. While the N-cyclohexyl-N'-beta-(4-methylmorpholinium)ethylcarbodiimide p-tosylate (CMCT)-reverse transcriptase assay remains both a popular and powerful approach to screen for pseudouridine in larger RNAs, mass-spectrometry-based approaches are poised to play an increasingly important role in either confirming the findings of the CMCT-reverse transcriptase assay or in characterizing pseudouridine sequence placement and abundance in smaller RNAs. This review includes a brief discussion of pseudouridine including a summary of its biosynthesis and known importance within various RNAs. The review then focuses on chemical derivatization approaches that can be used to selectively modify pseudouridine to improve its detection, and the development of mass-spectrometry-based assays for the identification and sequencing of pseudouridine in various RNAs.
Collapse
Affiliation(s)
- Anita Durairaj
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172, University of Cincinnati, Cincinnati, OH 45221-0172, United States
| | | |
Collapse
|
31
|
Polo LM, Limbach PA. Analysis of oligonucleotides by electrospray ionization mass spectrometry. ACTA ACUST UNITED AC 2008; Chapter 10:Unit 10.2. [PMID: 18428821 DOI: 10.1002/0471142700.nc1002s00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Because of the high molecular weights and thermal lability of biomolecules such as nucleic acids and protein, they can be difficult to analyze by mass spectrometry. Such analyses require a "soft" ionization method that is capable of generating intact molecular ions. In addition, most mass analyzers have a limited upper mass range that is not sufficient for studying these large molecules. ESI-MS can be used to analyze molecules with a molecular weight that is larger than the mass-to-charge ratio limit of the analyzer. This unit describes how ESI allows for analysis of high-molecular-weight compounds through the generation of multiply charged ions in the gas phase. It discusses analyzer configurations, solvent selection, and gives protocols for sample preparation. For applications of ESI-MS, the unit discusses molecular weight determination and gives protocols for sequencing and for analyzing oligonucleotide modifications.
Collapse
Affiliation(s)
- L M Polo
- Louisiana State University, Baton Rouge, Louisiana, USA
| | | |
Collapse
|
32
|
Abeysirigunawardena SC, Chow CS. pH-dependent structural changes of helix 69 from Escherichia coli 23S ribosomal RNA. RNA (NEW YORK, N.Y.) 2008; 14:782-92. [PMID: 18268024 PMCID: PMC2271367 DOI: 10.1261/rna.779908] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Helix 69 in 23S rRNA is a region in the ribosome that participates in a considerable number of RNA-RNA and RNA-protein interactions. Conformational flexibility is essential for such a region to interact and accommodate protein factors at different stages of protein biosynthesis. In this study, pH-dependent structural and stability changes were observed for helix 69 through a variety of spectroscopic techniques, such as circular dichroism spectroscopy, UV melting, and nuclear magnetic resonance spectroscopy. In Escherichia coli 23S rRNA, helix 69 contains pseudouridine residues at positions 1911, 1915, and 1917. The presence of these pseudouridines was found to be essential for the pH-induced conformational changes. Some of the pH-dependent changes appear to be localized to the loop region of helix 69, emphasizing the importance of the highly conserved nature of residues in this region.
Collapse
MESH Headings
- Base Sequence
- Circular Dichroism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Hydrogen-Ion Concentration
- Models, Molecular
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Thermodynamics
Collapse
|
33
|
Leppik M, Peil L, Kipper K, Liiv A, Remme J. Substrate specificity of the pseudouridine synthase RluD in Escherichia coli. FEBS J 2007; 274:5759-66. [PMID: 17937767 DOI: 10.1111/j.1742-4658.2007.06101.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudouridine synthase RluD converts uridines at positions 1911, 1915, and 1917 of 23S rRNA to pseudouridines. These nucleotides are located in the functionally important helix-loop 69 of 23S rRNA. RluD is the only pseudouridine synthase that is required for normal growth in Escherichia coli. We have analyzed substrate specificity of RluD in vivo. Mutational analyses have revealed: (a) RluD isomerizes uridine in vivo only at positions 1911, 1915, and 1917, regardless of the presence of uridine at other positions in the loop of helix 69 of 23S rRNA variants; (b) substitution of one U by C has no effect on the conversion of others (i.e. formation of pseudouridines at positions 1911, 1915, and 1917 are independent of each other); (c) A1916 is the only position in the loop of helix 69, where mutations affect the RluD specific pseudouridine formation. Pseudouridines were determined in the ribosomal particles from a ribosomal large subunit defective strain (RNA helicase DeaD(-)). An absence of pseudouridines in the assembly precursor particles suggests that RluD directed isomerization of uridines occurs as a late step during the assembly of the large ribosomal subunit.
Collapse
Affiliation(s)
- Margus Leppik
- Institute of Molecular and Cell Biology, Tartu University, Tartu, Estonia
| | | | | | | | | |
Collapse
|
34
|
Chow CS, Lamichhane TN, Mahto SK. Expanding the nucleotide repertoire of the ribosome with post-transcriptional modifications. ACS Chem Biol 2007; 2:610-9. [PMID: 17894445 PMCID: PMC2535799 DOI: 10.1021/cb7001494] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In all kingdoms of life, RNAs undergo specific post-transcriptional modifications. More than 100 different analogues of the four standard RNA nucleosides have been identified. Modifications in ribosomal RNAs (rRNAs) are highly prevalent and cluster in regions of the ribosome that have functional importance, have a high level of nucleotide conservation, and typically lack proteins. Modifications also play roles in determining antibiotic resistance or sensitivity. A wide spectrum of chemical diversity from the modifications provides the ribosome with a broader range of possible interactions between rRNA regions, transfer RNA, messenger RNA, proteins, or ligands by influencing local rRNA folds and fine-tuning the translation process. The collective importance of the modified nucleosides in ribosome function has been demonstrated for a number of organisms, and further studies may reveal how the individual players regulate these functions through synergistic or cooperative effects.
Collapse
Affiliation(s)
- Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | | | | |
Collapse
|
35
|
Sumita M, Desaulniers JP, Chang YC, Chui HMP, Clos L, Chow CS. Effects of nucleotide substitution and modification on the stability and structure of helix 69 from 28S rRNA. RNA (NEW YORK, N.Y.) 2005; 11:1420-9. [PMID: 16120833 PMCID: PMC1370825 DOI: 10.1261/rna.2320605] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The helix 69 (H69) region of the large subunit (28S) rRNA of Homo sapiens contains five pseudouridine (Psi) residues out of 19 total nucleotides (26%), three of which are universally or highly conserved. In this study, the effects of this abundant modified nucleotide on the structure and stability of H69 were compared with those of uridine. The role of a loop nucleotide substitution from A in bacteria (position 1918 in Escherichia coli 23S rRNA) to G in eukaryotes (position in 3734 in H. sapiens) was also examined. The thermodynamic parameters were obtained through UV melting studies, and differences in the modified and unmodified RNA structures were examined by 1H NMR and circular dichroism spectroscopy. In addition, a [1,3-15N]Psi phosphoramidite was used to generate H69 analogs with site-specific 15N labels. By using this approach, different Psi residues can be clearly distinguished from one another in 1H NMR experiments. The effects of pseudouridine on H. sapiens H69 are consistent with previous studies on tRNA, rRNA, and snRNA models in which the nucleotide offers stabilization of duplex regions through PsiN1H-mediated hydrogen bonds. The overall secondary structure and base-pairing patterns of human H69 are similar to the bacterial RNA, consistent with the idea that ribosome structure and function are highly conserved. Nonetheless, pseudouridine-containing RNAs have subtle differences in their structures and stabilities compared to the corresponding uridine-containing analogs, suggesting possible roles for Psi such as maintaining translation fidelity.
Collapse
Affiliation(s)
- Minako Sumita
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
36
|
Desaulniers JP, Chui HMP, Chow CS. Solution conformations of two naturally occurring RNA nucleosides: 3-methyluridine and 3-methylpseudouridine. Bioorg Med Chem 2005; 13:6777-81. [PMID: 16125393 DOI: 10.1016/j.bmc.2005.07.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 07/21/2005] [Accepted: 07/21/2005] [Indexed: 10/25/2022]
Abstract
The conformations of 3-methyluridine and 3-methylpseudouridine are determined using a combination of sugar proton coupling constants from 1D NMR spectra and 1D NOE difference spectroscopy. Both C2'-endo and C3'-endo conformations are observed for 3-methyluridine (59:41, 37 degrees C, D2O) and 3-methylpseudouridine (51:49, 37 degrees C, D2O). 3-Methyluridine preferentially adopts an anti conformation in solution, whereas 3-methylpseudouridine is primarily in a syn conformation. anti/syn-Relationships are deduced by 1D NOE difference spectroscopy.
Collapse
|
37
|
Del Campo M, Recinos C, Yanez G, Pomerantz SC, Guymon R, Crain PF, McCloskey JA, Ofengand J. Number, position, and significance of the pseudouridines in the large subunit ribosomal RNA of Haloarcula marismortui and Deinococcus radiodurans. RNA (NEW YORK, N.Y.) 2005; 11:210-9. [PMID: 15659360 PMCID: PMC1370709 DOI: 10.1261/rna.7209905] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 11/19/2004] [Indexed: 05/24/2023]
Abstract
The number and position of the pseudouridines of Haloarcula marismortui and Deinococcus radiodurans large subunit RNA have been determined by a combination of total nucleoside analysis by HPLC-mass spectrometry and pseudouridine sequencing by the reverse transcriptase method and by LC/MS/MS. Three pseudouridines were found in H. marismortui, located at positions 1956, 1958, and 2621 corresponding to Escherichia coli positions 1915, 1917, and 2586, respectively. The three pseudouridines are all in locations found in other organisms. Previous reports of a larger number of pseudouridines in this organism were incorrect. Three pseudouridines and one 3-methyl pseudouridine (m3Psi) were found in D. radiodurans 23S RNA at positions 1894, 1898 (m3Psi), 1900, and 2584, the m3Psi site being determined by a novel application of mass spectrometry. These positions correspond to E. coli positions 1911, 1915, 1917, and 2605, which are also pseudouridines in E. coli (1915 is m3Psi). The pseudouridines in the helix 69 loop, residues 1911, 1915, and 1917, are in positions highly conserved among all phyla. Pseudouridine 2584 in D. radiodurans is conserved in eubacteria and a chloroplast but is not found in archaea or eukaryotes, whereas pseudouridine 2621 in H. marismortui is more conserved in eukaryotes and is not found in eubacteria. All the pseudoridines are near, but not exactly at, nucleotides directly involved in various aspects of ribosome function. In addition, two D. radiodurans Psi synthases responsible for the four Psi were identified.
Collapse
Affiliation(s)
- Mark Del Campo
- Lambowitz Laboratory, Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station A4800, Austin, TX 78712, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Del Campo M, Ofengand J, Malhotra A. Crystal structure of the catalytic domain of RluD, the only rRNA pseudouridine synthase required for normal growth of Escherichia coli. RNA (NEW YORK, N.Y.) 2004; 10:231-9. [PMID: 14730022 PMCID: PMC1370535 DOI: 10.1261/rna.5187404] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 10/22/2003] [Indexed: 05/18/2023]
Abstract
Escherichia coli pseudouridine synthase RluD makes pseudouridines 1911, 1915, and 1917 in the loop of helix 69 in 23S RNA. These are the most highly conserved ribosomal pseudouridines known. Of 11 pseudouridine synthases in E. coli, only cells lacking RluD have severe growth defects and abnormal ribosomes. We have determined the 2.0 A structure of the catalytic domain of RluD (residues 77-326), the first structure of an RluA family member. The catalytic domain folds into a mainly antiparallel beta-sheet flanked by several loops and helices. A positively charged cleft that presumably binds RNA leads to the conserved Asp 139. The RluD N-terminal S4 domain, connected by a flexible linker, is disordered in our structure. RluD is very similar in both catalytic domain structure and active site arrangement to the pseudouridine synthases RsuA, TruB, and TruA. We identify five sequence motifs, two of which are novel, in the RluA, RsuA, TruB, and TruA families, uniting them as one superfamily. These results strongly suggest that four of the five families of pseudouridine synthases arose by divergent evolution. The RluD structure also provides insight into its multisite specificity.
Collapse
Affiliation(s)
- Mark Del Campo
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33101-6129, USA
| | | | | |
Collapse
|
39
|
Sivaraman J, Iannuzzi P, Cygler M, Matte A. Crystal structure of the RluD pseudouridine synthase catalytic module, an enzyme that modifies 23S rRNA and is essential for normal cell growth of Escherichia coli. J Mol Biol 2004; 335:87-101. [PMID: 14659742 DOI: 10.1016/j.jmb.2003.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pseudouridine (5-beta-D-ribofuranosyluracil, Psi) is the most commonly found modified base in RNA. Conversion of uridine to Psi is performed enzymatically in both prokaryotes and eukaryotes by pseudouridine synthases (EC 4.2.1.70). The Escherichia coli Psi-synthase RluD modifies uridine to Psi at positions 1911, 1915 and 1917 within 23S rRNA. RluD also possesses a second function related to proper assembly of the 50S ribosomal subunit that is independent of Psi-synthesis. Here, we report the crystal structure of the catalytic module of RluD (residues 68-326; DeltaRluD) refined at 1.8A to a final R-factor of 21.8% (R(free)=24.3%). DeltaRluD is a monomeric enzyme having an overall mixed alpha/beta fold. The DeltaRluD molecule consists of two subdomains, a catalytic subdomain and C-terminal subdomain with the RNA-binding cleft formed by loops extending from the catalytic sub-domain. The catalytic sub-domain of DeltaRluD has a similar fold as in TruA, TruB and RsuA, with the location of the RNA-binding cleft, active-site and conserved, catalytic Asp residue superposing in all four structures. Superposition of the crystal structure of TruB bound to a T-stem loop with RluD reveals that similar RNA-protein interactions for the flipped-out uridine base would exist in both structures, implying that base-flipping is necessary for catalysis. This observation also implies that the specificity determinants for site-specific RNA-binding and recognition likely reside in parts of RluD beyond the active site.
Collapse
Affiliation(s)
- J Sivaraman
- Department of Biochemistry, McGill University, H3G 1Y6, Montreal, Que., Canada
| | | | | | | |
Collapse
|
40
|
Ofengand J, Malhotra A, Remme J, Gutgsell NS, Del Campo M, Jean-Charles S, Peil L, Kaya Y. Pseudouridines and pseudouridine synthases of the ribosome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:147-59. [PMID: 12762017 DOI: 10.1101/sqb.2001.66.147] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
psi are ubiquitous in ribosomal RNA. Eubacteria, Archaea, and eukaryotes all contain psi, although their number varies widely, with eukaryotes having the most. The small ribosomal subunit can apparently do without psi in some organisms, even though others have as many as 40 or more. Large subunits appear to need at least one psi but can have up to 50-60. psi is made by a set of site-specific enzymes in eubacteria, and in eukaryotes by a single enzyme complexed with auxiliary proteins and specificity-conferring guide RNAs. The mechanism is not known in Archaea, but based on an analysis of the kinds of psi synthases found in sequenced archaeal genomes, it is likely to involve use of guide RNAs. All psi synthases can be classified into one of four related groups, virtually all of which have a conserved aspartate residue in a conserved sequence motif. The aspartate is essential for psi formation in all twelve synthases examined so far. When the need for psi in E. coli was examined, the only synthase whose absence caused a major decrease in growth rate under normal conditions was RluD, the synthase that makes psi 1911, psi 1915, and psi 1917 in the helix 69 end-loop. This growth defect was the result of a major failure in assembly of the large ribosomal subunit. The defect could be prevented by supplying the rluD structural gene in trans, and also by providing a point mutant gene that made a synthase unable to make psi. Therefore, the RluD synthase protein appears to be directly involved in 50S subunit assembly, possibly as an RNA chaperone, and this activity is independent of its ability to form psi. This result is not without precedent. Depletion of PET56, a 2'-O-methyltransferase specific for G2251 (E. coli numbering) in yeast mitochondria virtually blocks 50S subunit assembly and mitochondrial function (Sirum-Connolly et al. 1995), but the methylation activity of the enzyme is not required (T. Mason, pers. comm.). The absence of FtsJ, a heat shock protein that makes Um2552 in E. coli, makes the 50S subunit less stable at 1 mM Mg++ (Bügl et al. 2000) and inhibits subunit joining (Caldas et al. 2000), but, in this case, it is not yet known whether the effects are due to the lack of 2'-O-methylation or to the absence of the enzyme itself. Is there any role for the psi residues themselves? First, as noted above, the 3 psi made by RluD which cluster in the end-loop of helix 69 are highly conserved, with one being universal (Fig. 2B). In the 70S-tRNA structure (Yusupov et al. 2001), the loop of this helix containing the psi supports the anticodon arm of A-site tRNA near its juncture with the amino acid arm. The middle of helix 69 does the same thing for P-site tRNA. Unfortunately, the resolution is not yet sufficient to provide a more precise alignment of the psi residues with the other structural elements of the tRNA-ribosome complex so that one cannot yet determine what role, if any, is played by the N-1 H that distinguishes psi from U. Second, and more generally, some psi residues in the LSU appear to be near the site of peptide-bond formation or tRNA binding but not actually at it (Fig. 2B) (Nissen et al. 2000; Yusupov et al. 2001). For example, position 2492 is commonly psi and is only six residues away from A2486, the A postulated to catalyze peptide-bond formation. Position 2589 is psi in all the eukaryotes and is next to 2588, which base-pairs with the C75 of A-site tRNA. Residue 2620, which interacts with the A76 of A-site-bound tRNA, is a psi or is next to a psi in eukaryotes and Archaea, and is five residues away from psi 2580 in E. coli. A2637, which is between the two CCA ends of P- and A-site tRNA, is near psi 2639, psi 2640, and psi 2641, found in a number of organisms. Residue 2529, which contacts the backbone of A-site tRNA residues 74-76, is near psi 2527 psi 2528 in H. marismortui. Residues 2505-2507, which contact A-site tRNA residues 50-53, are near psi 2509 in higher eukaryotes, and residues 2517-2519 in contact with A-site tRNA residues 64-65 are within 1-3 nucleotides of psi 2520 in higher eukaryotes and psi 2514 in H. marismortui. A way to rationalize this might be to invoke the concept suggested in the Introduction that psi acts as a molecular glue to hold loose elements in a more rigid configuration. It may well be that this is more important near the site of peptide-bond formation and tRNA binding, accounting for the preponderance of psi in this vicinity. What might be the role of all the other psi in eukaryotes? One can only surmise that cells, having once acquired the ability to make psi with guide RNAs, took advantage of the system to inexpensively place psi wherever an undesirable loose region was found. It might be that in some of these cases, psi performs the role played by proteins in other regions, namely that of holding the rRNA in its proper configuration. Confirmation of this hypothesis will have to await structural determination of eukaryotic ribosomes.
Collapse
Affiliation(s)
- J Ofengand
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Chui HMP, Desaulniers JP, Scaringe SA, Chow CS. Synthesis of helix 69 of Escherichia coli 23S rRNA containing its natural modified nucleosides, m(3)Psi and Psi. J Org Chem 2002; 67:8847-54. [PMID: 12467398 DOI: 10.1021/jo026364m] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of 3-methylpseudouridine (m(3)Psi) phosphoramidite, 5'-O-[benzhydryloxybis(trimethylsilyloxy)silyl]-2'-O-[bis(2-acetoxyethoxy)methyl]-3-methylpseudouridine-3'-(methyl-N,N-diisopropyl)phosphoramidite, is reported. Selective pivaloyloxymethyl protection of the Psi N1 followed by methylation at N3 was used to generate the naturally occurring pseudouridine analogue. The m(3)Psi phosphoramidite was used in combination with pseudouridine (Psi) and standard base phosphoramidites to synthesize a 19-nucleotide RNA representing helix 69 of Escherichia coli 23S ribosomal RNA (rRNA) (residues 1906-1924), containing a single m(3)Psi at position 1915 and two Psi's at positions 1911 and 1917. Our synthesis of the fully modified helix 69 RNA demonstrates the ability to make milligram quantities of RNA that can be used for further high-resolution structure studies. Site-selective introduction of the methyl group at the N3 position of pseudouridine at position 1915 causes a slight increase in the thermodynamic stability of the RNA hairpin relative to pseudouridine; RNAs containing either uridine or 3-methyluridine at position 1915 have similar stability. One-dimensional imino proton NMR and circular dichroism spectra of the modified RNAs reveal that the methyl group does not cause any substantial changes in the RNA hairpin structure.
Collapse
Affiliation(s)
- Helen M-P Chui
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Pseudouridines are found in virtually all ribosomal RNAs but their function is unknown. There are four to eight times more pseudouridines in eukaryotes than in eubacteria. Mapping 19 Haloarcula marismortui pseudouridines on the three-dimensional 50S subunit does not show clustering. In bacteria, specific enzymes choose the site of pseudouridine formation. In eukaryotes, and probably also in archaea, selection and modification is done by a guide RNA-protein complex. No unique specific role for ribosomal pseudouridines has been identified. We propose that pseudouridine's function is as a molecular glue to stabilize required RNA conformations that would otherwise be too flexible.
Collapse
Affiliation(s)
- James Ofengand
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, P.O. Box 016129, Miami, FL 33101, USA.
| |
Collapse
|
43
|
Chui HMP, Meroueh M, Scaringe SA, Chow CS. Synthesis of a 3-methyluridine phosphoramidite to investigate the role of methylation in a ribosomal RNA hairpin. Bioorg Med Chem 2002; 10:325-32. [PMID: 11741781 DOI: 10.1016/s0968-0896(01)00283-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The synthesis of a 5'-O-BzH-2'-O-ACE-protected-3-methyluridine phosphoramidite is reported [BzH, benzhydryloxy-bis(trimethylsilyloxy)silyl; ACE, bis(2-acetoxyethoxy)methyl]. The phosphoramidite was employed in solid-phase RNA synthesis to generate a series of RNA hairpins containing single or multiple modifications, including the common nucleoside pseudouridine. Three 19-nucleotide hairpin RNAs that represent the 1920-loop region (G(1906)-C(1924)) of Escherichia coli 23S ribosomal RNA were generated. Modifications were present at positions 1911, 1915, and 1917. The stabilities and structures of the three RNAs were examined by using thermal melting, circular dichroism, and NMR spectroscopy
Collapse
Affiliation(s)
- Helen M P Chui
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
44
|
Patteson KG, Rodicio LP, Limbach PA. Identification of the mass-silent post-transcriptionally modified nucleoside pseudouridine in RNA by matrix-assisted laser desorption/ionization mass spectrometry. Nucleic Acids Res 2001; 29:E49-9. [PMID: 11353094 PMCID: PMC55470 DOI: 10.1093/nar/29.10.e49] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2001] [Revised: 02/23/2001] [Accepted: 03/08/2001] [Indexed: 11/13/2022] Open
Abstract
A new method using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the direct analysis of the mass-silent post-transcriptionally modified nucleoside pseudouridine in nucleic acids has been developed. This method utilizes 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide to derivatize pseudouridine residues. After chemical derivatization all pseudouridine residues will contain a 252 Da 'mass tag' that allows the presence of pseudouridine to be identified using mass spectrometry. Pseudouridine residues can be identified in intact nucleic acids by obtaining a mass spectrum of the nucleic acid before and after derivatization. The mass difference (in units of 252 Da) will denote the number of pseudouridine residues present. To determine the sequence location of pseudouridine, a combination of enzymatic hydrolysis and mass spectrometric steps are used. Here, MALDI analysis of RNase T1 digestion products before and after modification are used to narrow the sequence location of pseudouridine to specific T1 fragments in the gene sequence. Further mass spectrometric monitoring of exonuclease digestion products from isolated T1 fragments is then used for exact sequence placement. This approach to pseudouridine identification is demonstrated using Escherichia coli tRNAS: This new method allows for the direct determination of pseudouridine in nucleic acids, can be used to identify modified pseudouridine residues and can be used with general modification mapping approaches to completely characterize the post-transcriptional modifications present in RNAs.
Collapse
MESH Headings
- Base Sequence
- CME-Carbodiimide/analogs & derivatives
- CME-Carbodiimide/metabolism
- Chromatography, High Pressure Liquid
- Escherichia coli/genetics
- Molecular Weight
- Pseudouridine/analysis
- Pseudouridine/genetics
- Pseudouridine/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- RNA, Transfer, Val/chemistry
- RNA, Transfer, Val/genetics
- RNA, Transfer, Val/metabolism
- Ribonuclease T1/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- K G Patteson
- 232 Choppin Hall, Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
45
|
Kowalak JA, Bruenger E, Crain PF, McCloskey JA. Identities and phylogenetic comparisons of posttranscriptional modifications in 16 S ribosomal RNA from Haloferax volcanii. J Biol Chem 2000; 275:24484-9. [PMID: 10818097 DOI: 10.1074/jbc.m002153200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small subunit (16 S) rRNA from the archaeon Haloferax volcanii, for which sites of modification were previously reported, was examined using mass spectrometry. A census of all modified residues was taken by liquid chromatography/electrospray ionization-mass spectrometry analysis of a total nucleoside digest of the rRNA. Following rRNA hydrolysis by RNase T(1), accurate molecular mass values of oligonucleotide products were measured using liquid chromatography/electrospray ionization-mass spectrometry and compared with values predicted from the corresponding gene sequence. Three modified nucleosides, distributed over four conserved sites in the decoding region of the molecule, were characterized: 3-(3-amino-3-carboxypropyl)uridine-966, N(6)-methyladenosine-1501, and N(6),N(6)-dimethyladenosine-1518 and -1519 (all Escherichia coli numbering). Nucleoside 3-(3-amino-3-carboxypropyl)uridine, previously unknown in rRNA, occurs at a highly conserved site of modification in all three evolutionary domains but for which no structural assignment in archaea has been previously reported. Nucleoside N(6)-methyladenosine, not previously placed in archaeal rRNAs, frequently occurs at the analogous location in eukaryotic small subunit rRNA but not in bacteria. H. volcanii small subunit rRNA appears to reflect the phenotypically low modification level in the Crenarchaeota kingdom and is the only cytoplasmic small subunit rRNA shown to lack pseudouridine.
Collapse
Affiliation(s)
- J A Kowalak
- Departments of Biochemistry and Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | | | |
Collapse
|
46
|
Meroueh M, Grohar PJ, Qiu J, SantaLucia J, Scaringe SA, Chow CS. Unique structural and stabilizing roles for the individual pseudouridine residues in the 1920 region of Escherichia coli 23S rRNA. Nucleic Acids Res 2000; 28:2075-83. [PMID: 10773075 PMCID: PMC105375 DOI: 10.1093/nar/28.10.2075] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The synthesis of a 5'-O-BzH-2'- O -ACE-protected pseudouridine phosphoramidite is reported [BzH, benzhydryloxy-bis(trimethylsilyloxy)silyl; ACE, bis(2-acetoxyethoxy)methyl]. The availability of the phosphoramidite allows for reliable and efficient syntheses of hairpin RNAs containing single or multiple pseudouridine modifications in the stem or loop regions. Five 19-nt hairpin RNAs representing the 1920-loop region (G(1906)-C(1924)) of Escherichia coli 23S rRNA were synthesized with pseudouridine residues located at positions 1911, 1915 and 1917. Thermodynamic parameters, circular dichroism spectra and NMR data are presented for all five RNAs. Overall, three different structural contexts for the pseudouridine residues were examined and compared with the unmodified RNA. Our main findings are that pseudouridine modifications exhibit a range of effects on RNA stability and structure, depending on their locations. More specifically, pseudouridines in the single-stranded loop regions of the model RNAs are slightly destabilizing, whereas a pseudo-uridine at the stem-loop junction is stabilizing. Furthermore, the observed effects on stability are approximately additive when multiple pseudouridine residues are present. The possible relationship of these results to RNA function is discussed.
Collapse
Affiliation(s)
- M Meroueh
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
47
|
Triman KL. Mutational analysis of 23S ribosomal RNA structure and function in Escherichia coli. ADVANCES IN GENETICS 1999; 41:157-95. [PMID: 10494619 DOI: 10.1016/s0065-2660(08)60153-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- K L Triman
- Department of Biology, Franklin and Marshall College, Lancaster, Pennsylvania 17604, USA
| |
Collapse
|
48
|
Wang PP, Kotra LP, Chu CK, Bartlett MG. Structure determination of 4-azido-2-pyrimidinone nucleoside analogs using mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 1999; 34:724-732. [PMID: 10407356 DOI: 10.1002/(sici)1096-9888(199907)34:7<724::aid-jms820>3.0.co;2-t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The nucleoside prodrugs 4-azido-ara-C and 2'-fluoro-2', 3'-dideoxy-4-azido-ara-C and their base-catalyzed reaction products were thoroughly characterized by mass spectrometry. The structures of the base-catalyzed reaction products were determined and confirmed using a combination of high-resolution and tandem mass spectrometry with deuterium exchange. An intra-molecular rearrangement reaction occurred in 4-azido-ara-C at physiological pH leading to the formation of a 2',6-anhydro product. A nucleoside of similar structure, 2'-fluoro-2'3'-dideoxy-4-azido-ara-C was studied to determine if the formation of the 2',6-anhydro ring was due to the presence of the 4-azido group or the arabinose 2'-OH group. The 6-position of 2'-fluoro-2',3'-dideoxy-4-azido-ara-C was found to be unreactive at physiological pH, but could add ammonia under strongly basic conditions (pH 11.0, ammonia solution). Finally, the formation of an intriguing tetrazole ring by the 4-azido moiety was observed.
Collapse
Affiliation(s)
- P P Wang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602-2352, USA
| | | | | | | |
Collapse
|
49
|
Conrad J, Niu L, Rudd K, Lane BG, Ofengand J. 16S ribosomal RNA pseudouridine synthase RsuA of Escherichia coli: deletion, mutation of the conserved Asp102 residue, and sequence comparison among all other pseudouridine synthases. RNA (NEW YORK, N.Y.) 1999; 5:751-63. [PMID: 10376875 PMCID: PMC1369802 DOI: 10.1017/s1355838299990167] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The gene for RsuA, the pseudouridine synthase that converts U516 to pseudouridine in 16S ribosomal RNA of Escherichia coli, has been deleted in strains MG1655 and BL21/DE3. Deletion of this gene resulted in the specific loss of pseudouridine516 in both cell lines, and replacement of the gene in trans on a plasmid restored the pseudouridine. Therefore, rsuA is the only gene in E. coli with the ability to produce a protein capable of forming pseudouridine516. There was no effect on the growth rate of rsuA- MG1655 either in rich or minimal medium at either 24, 37, or 42 degrees C. Plasmid rescue of the BL21/DE3 rsuA- strain using pET15b containing an rsuA gene with aspartate102 replaced by asparagine or threonine demonstrated that neither mutant was active in vivo. This result supports a role for this aspartate, located in a unique GRLD sequence in this gene, at the catalytic center of the synthase. Induction of wild-type and the two mutant synthases in strain BL21/DE3 from genes in pET15b yielded a strong overexpression of all three proteins in approximately equal amounts showing that the mutations did not affect production of the protein in vivo and thus that the lack of activity was not due to a failure to produce a gene product. Aspartate102 is found in a conserved motif present in many pseudouridine synthases. The conservation and distribution of this motif in nature was assessed.
Collapse
Affiliation(s)
- J Conrad
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | | | |
Collapse
|
50
|
Raychaudhuri S, Conrad J, Hall BG, Ofengand J. A pseudouridine synthase required for the formation of two universally conserved pseudouridines in ribosomal RNA is essential for normal growth of Escherichia coli. RNA (NEW YORK, N.Y.) 1998; 4:1407-17. [PMID: 9814761 PMCID: PMC1369713 DOI: 10.1017/s1355838298981146] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Escherichia coli rRNA contains 10 pseudouridines of unknown function. They are made by synthases, each of which is specific for one or more pseudouridines. Here we show that the sfhB (yfil) ORF of E. coli is a pseudouridine synthase gene by cloning, protein overexpression, and reaction in vitro with rRNA transcripts. Gene disruption by miniTn10(cam) insertion revealed that this synthase gene, here renamed rluD, codes for a synthase which is solely responsible in vivo for synthesis of the three pseudouridines clustered in a stem-loop at positions 1911, 1915, and 1917 of 23S RNA. The absence of RluD results in severe growth inhibition. Both the absence of pseudouridine and the growth defect could be reversed by insertion of a plasmid carrying the rluD gene into the mutant cell, clearly linking both effects to the absence of RIuD. This is the first report of a major physiological defect due to the deletion of any pseudouridine synthase. Growth inhibition may be due to the lack of one or more of the 23S RNA pseudouridines made by this synthase since pseudouridines 1915 and 1917 are universally conserved and are located in proximity to the decoding center of the ribosome where they could be involved in modulating codon recognition.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cell Division
- Cloning, Molecular
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli Proteins
- Genes, Bacterial/genetics
- Genes, Essential/genetics
- Genetic Complementation Test
- Hydro-Lyases
- Intramolecular Transferases/genetics
- Intramolecular Transferases/isolation & purification
- Intramolecular Transferases/metabolism
- Molecular Sequence Data
- Mutagenesis, Insertional
- Nucleic Acid Conformation
- Phenotype
- Polymerase Chain Reaction
- Pseudouridine/biosynthesis
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 23S/biosynthesis
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- Sequence Analysis, DNA
- Sequence Analysis, RNA
Collapse
Affiliation(s)
- S Raychaudhuri
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | |
Collapse
|