1
|
Hu Y, Stillman B. Origins of DNA replication in eukaryotes. Mol Cell 2023; 83:352-372. [PMID: 36640769 PMCID: PMC9898300 DOI: 10.1016/j.molcel.2022.12.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Errors occurring during DNA replication can result in inaccurate replication, incomplete replication, or re-replication, resulting in genome instability that can lead to diseases such as cancer or disorders such as autism. A great deal of progress has been made toward understanding the entire process of DNA replication in eukaryotes, including the mechanism of initiation and its control. This review focuses on the current understanding of how the origin recognition complex (ORC) contributes to determining the location of replication initiation in the multiple chromosomes within eukaryotic cells, as well as methods for mapping the location and temporal patterning of DNA replication. Origin specification and configuration vary substantially between eukaryotic species and in some cases co-evolved with gene-silencing mechanisms. We discuss the possibility that centromeres and origins of DNA replication were originally derived from a common element and later separated during evolution.
Collapse
Affiliation(s)
- Yixin Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Program in Molecular and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
2
|
Wang D, Gao F. Comprehensive Analysis of Replication Origins in Saccharomyces cerevisiae Genomes. Front Microbiol 2019; 10:2122. [PMID: 31572328 PMCID: PMC6753640 DOI: 10.3389/fmicb.2019.02122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
DNA replication initiates from multiple replication origins (ORIs) in eukaryotes. Discovery and characterization of replication origins are essential for a better understanding of the molecular mechanism of DNA replication. In this study, the features of autonomously replicating sequences (ARSs) in Saccharomyces cerevisiae have been comprehensively analyzed as follows. Firstly, we carried out the analysis of the ARSs available in S. cerevisiae S288C. By evaluating the sequence similarity of experimentally established ARSs, we found that 94.32% of ARSs are unique across the whole genome of S. cerevisiae S288C and those with high sequence similarity are prone to locate in subtelomeres. Subsequently, we built a non-redundant dataset with a total of 520 ARSs, which are based on ARSs annotation of S. cerevisiae S288C from SGD and then supplemented with those from OriDB and DeOri databases. We conducted a large-scale comparison of ORIs among the diverse budding yeast strains from a population genomics perspective. We found that 82.7% of ARSs are not only conserved in genomic sequence but also relatively conserved in chromosomal position. The non-conserved ARSs tend to distribute in the subtelomeric regions. We also conducted a pan-genome analysis of ARSs among the S. cerevisiae strains, and a total of 183 core ARSs existing in all yeast strains were determined. We extracted the genes adjacent to replication origins among the 104 yeast strains to examine whether there are differences in their gene functions. The result showed that the genes involved in the initiation of DNA replication, such as orc3, mcm2, mcm4, mcm6, and cdc45, are conservatively located adjacent to the replication origins. Furthermore, we found the genes adjacent to conserved ARSs are significantly enriched in DNA binding, enzyme activity, transportation, and energy, whereas for the genes adjacent to non-conserved ARSs are significantly enriched in response to environmental stress, metabolites biosynthetic process and biosynthesis of antibiotics. In general, we characterized the replication origins from the genome-wide and population genomics perspectives, which would provide new insights into the replication mechanism of S. cerevisiae and facilitate the design of algorithms to identify genome-wide replication origins in yeast.
Collapse
Affiliation(s)
- Dan Wang
- Department of Physics, School of Science, Tianjin University, Tianjin, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| |
Collapse
|
3
|
Candelli T, Gros J, Libri D. Pervasive transcription fine-tunes replication origin activity. eLife 2018; 7:40802. [PMID: 30556807 PMCID: PMC6314782 DOI: 10.7554/elife.40802] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
RNA polymerase (RNAPII) transcription occurs pervasively, raising the important question of its functional impact on other DNA-associated processes, including replication. In budding yeast, replication originates from Autonomously Replicating Sequences (ARSs), generally located in intergenic regions. The influence of transcription on ARSs function has been studied for decades, but these earlier studies have neglected the role of non-annotated transcription. We studied the relationships between pervasive transcription and replication origin activity using high-resolution transcription maps. We show that ARSs alter the pervasive transcription landscape by pausing and terminating neighboring RNAPII transcription, thus limiting the occurrence of pervasive transcription within origins. We propose that quasi-symmetrical binding of the ORC complex to ARS borders and/or pre-RC formation are responsible for pausing and termination. We show that low, physiological levels of pervasive transcription impact the function of replication origins. Overall, our results have important implications for understanding the impact of genomic location on origin function.
Collapse
Affiliation(s)
- Tito Candelli
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Julien Gros
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Domenico Libri
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
4
|
Kang S, Kang MS, Ryu E, Myung K. Eukaryotic DNA replication: Orchestrated action of multi-subunit protein complexes. Mutat Res 2018; 809:58-69. [PMID: 28501329 DOI: 10.1016/j.mrfmmm.2017.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/13/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
Genome duplication is an essential process to preserve genetic information between generations. The eukaryotic cell cycle is composed of functionally distinct phases: G1, S, G2, and M. One of the key replicative proteins that participate at every stage of DNA replication is the Mcm2-7 complex, a replicative helicase. In the G1 phase, inactive Mcm2-7 complexes are loaded on the replication origins by replication-initiator proteins, ORC and Cdc6. Two kinases, S-CDK and DDK, convert the inactive origin-loaded Mcm2-7 complex to an active helicase, the CMG complex in the S phase. The activated CMG complex begins DNA unwinding and recruits enzymes essential for DNA synthesis to assemble a replisome at the replication fork. After completion of DNA synthesis, the inactive CMG complex on the replicated DNA is removed from chromatin to terminate DNA replication. In this review, we will discuss the structure, function, and regulation of the molecular machines involved in each step of DNA replication.
Collapse
Affiliation(s)
- Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea.
| | - Mi-Sun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Eunjin Ryu
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea; School of Life Sciences, Ulsan National Institute for Science and Technology, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea; School of Life Sciences, Ulsan National Institute for Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
5
|
Reinapae A, Jalakas K, Avvakumov N, Lõoke M, Kristjuhan K, Kristjuhan A. Recruitment of Fkh1 to replication origins requires precisely positioned Fkh1/2 binding sites and concurrent assembly of the pre-replicative complex. PLoS Genet 2017; 13:e1006588. [PMID: 28141805 PMCID: PMC5308776 DOI: 10.1371/journal.pgen.1006588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/14/2017] [Accepted: 01/18/2017] [Indexed: 12/28/2022] Open
Abstract
In budding yeast, activation of many DNA replication origins is regulated by their chromatin environment, whereas others fire in early S phase regardless of their chromosomal location. Several location-independent origins contain at least two divergently oriented binding sites for Forkhead (Fkh) transcription factors in close proximity to their ARS consensus sequence. To explore whether recruitment of Forkhead proteins to replication origins is dependent on the spatial arrangement of Fkh1/2 binding sites, we changed the spacing and orientation of the sites in early replication origins ARS305 and ARS607. We followed recruitment of the Fkh1 protein to origins by chromatin immunoprecipitation and tested the ability of these origins to fire in early S phase. Our results demonstrate that precise spatial and directional arrangement of Fkh1/2 sites is crucial for efficient binding of the Fkh1 protein and for early firing of the origins. We also show that recruitment of Fkh1 to the origins depends on formation of the pre-replicative complex (pre-RC) and loading of the Mcm2-7 helicase, indicating that the origins are regulated by cooperative action of Fkh1 and the pre-RC. These results reveal that DNA binding of Forkhead factors does not depend merely on the presence of its binding sites but on their precise arrangement and is strongly influenced by other protein complexes in the vicinity. In this study, we explore the mechanisms that determine activation of DNA replication origins in early S phase. It has been shown that a subset of replication origins is regulated by Forkhead family transcription factors that ensure their firing at the beginning of S phase. However, the recruitment of Forkhead factors to replication origins is not a straightforward process–there are thousands of Forkhead binding sites in the genome and their presence does not guarantee that Forkheads actually bind these sites. We show that recruitment of Fkh1 protein to DNA replication origins requires precise arrangement of Forkhead binding sites and depends on formation of pre-replicative complexes at the origins. These results clarify the mechanisms of Forkhead-dependent regulation of early DNA replication origins and also reveal that mere presence of consensus binding sites is not sufficient for recruitment of Forkhead proteins to their target loci.
Collapse
Affiliation(s)
- Allan Reinapae
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Kristiina Jalakas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Nikita Avvakumov
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Marko Lõoke
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Kersti Kristjuhan
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Arnold Kristjuhan
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
6
|
High Throughput Analyses of Budding Yeast ARSs Reveal New DNA Elements Capable of Conferring Centromere-Independent Plasmid Propagation. G3-GENES GENOMES GENETICS 2016; 6:993-1012. [PMID: 26865697 PMCID: PMC4825667 DOI: 10.1534/g3.116.027904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ability of plasmids to propagate in Saccharomyces cerevisiae has been instrumental in defining eukaryotic chromosomal control elements. Stable propagation demands both plasmid replication, which requires a chromosomal replication origin (i.e., an ARS), and plasmid distribution to dividing cells, which requires either a chromosomal centromere for segregation or a plasmid-partitioning element. While our knowledge of yeast ARSs and centromeres is relatively advanced, we know less about chromosomal regions that can function as plasmid partitioning elements. The Rap1 protein-binding site (RAP1) present in transcriptional silencers and telomeres of budding yeast is a known plasmid-partitioning element that functions to anchor a plasmid to the inner nuclear membrane (INM), which in turn facilitates plasmid distribution to daughter cells. This Rap1-dependent INM-anchoring also has an important chromosomal role in higher-order chromosomal structures that enhance transcriptional silencing and telomere stability. Thus, plasmid partitioning can reflect fundamental features of chromosome structure and biology, yet a systematic screen for plasmid partitioning elements has not been reported. Here, we couple deep sequencing with competitive growth experiments of a plasmid library containing thousands of short ARS fragments to identify new plasmid partitioning elements. Competitive growth experiments were performed with libraries that differed only in terms of the presence or absence of a centromere. Comparisons of the behavior of ARS fragments in the two experiments allowed us to identify sequences that were likely to drive plasmid partitioning. In addition to the silencer RAP1 site, we identified 74 new putative plasmid-partitioning motifs predicted to act as binding sites for DNA binding proteins enriched for roles in negative regulation of gene expression and G2/M-phase associated biology. These data expand our knowledge of chromosomal elements that may function in plasmid partitioning and suggest underlying biological roles shared by such elements.
Collapse
|
7
|
Temporal and spatial regulation of eukaryotic DNA replication: From regulated initiation to genome-scale timing program. Semin Cell Dev Biol 2014; 30:110-20. [DOI: 10.1016/j.semcdb.2014.04.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/04/2014] [Indexed: 11/23/2022]
|
8
|
Müller CA, Hawkins M, Retkute R, Malla S, Wilson R, Blythe MJ, Nakato R, Komata M, Shirahige K, de Moura AP, Nieduszynski CA. The dynamics of genome replication using deep sequencing. Nucleic Acids Res 2014; 42:e3. [PMID: 24089142 PMCID: PMC3874191 DOI: 10.1093/nar/gkt878] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/03/2013] [Accepted: 09/07/2013] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic genomes are replicated from multiple DNA replication origins. We present complementary deep sequencing approaches to measure origin location and activity in Saccharomyces cerevisiae. Measuring the increase in DNA copy number during a synchronous S-phase allowed the precise determination of genome replication. To map origin locations, replication forks were stalled close to their initiation sites; therefore, copy number enrichment was limited to origins. Replication timing profiles were generated from asynchronous cultures using fluorescence-activated cell sorting. Applying this technique we show that the replication profiles of haploid and diploid cells are indistinguishable, indicating that both cell types use the same cohort of origins with the same activities. Finally, increasing sequencing depth allowed the direct measure of replication dynamics from an exponentially growing culture. This is the first time this approach, called marker frequency analysis, has been successfully applied to a eukaryote. These data provide a high-resolution resource and methodological framework for studying genome biology.
Collapse
Affiliation(s)
- Carolin A. Müller
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Michelle Hawkins
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Renata Retkute
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Sunir Malla
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Ray Wilson
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Martin J. Blythe
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Ryuichiro Nakato
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Makiko Komata
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Katsuhiko Shirahige
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Alessandro P.S. de Moura
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| | - Conrad A. Nieduszynski
- School of Life Sciences, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Deep Seq, The University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan and Institute for Complex Systems and Mathematical Biology, The University of Aberdeen, Aberdeen, AB24 3UE UK
| |
Collapse
|
9
|
Hoggard T, Shor E, Müller CA, Nieduszynski CA, Fox CA. A Link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast. PLoS Genet 2013; 9:e1003798. [PMID: 24068963 PMCID: PMC3772097 DOI: 10.1371/journal.pgen.1003798] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/30/2013] [Indexed: 01/19/2023] Open
Abstract
Eukaryotic DNA replication origins are selected in G1-phase when the origin recognition complex (ORC) binds chromosomal positions and triggers molecular events culminating in the initiation of DNA replication (a.k.a. origin firing) during S-phase. Each chromosome uses multiple origins for its duplication, and each origin fires at a characteristic time during S-phase, creating a cell-type specific genome replication pattern relevant to differentiation and genome stability. It is unclear whether ORC-origin interactions are relevant to origin activation time. We applied a novel genome-wide strategy to classify origins in the model eukaryote Saccharomyces cerevisiae based on the types of molecular interactions used for ORC-origin binding. Specifically, origins were classified as DNA-dependent when the strength of ORC-origin binding in vivo could be explained by the affinity of ORC for origin DNA in vitro, and, conversely, as ‘chromatin-dependent’ when the ORC-DNA interaction in vitro was insufficient to explain the strength of ORC-origin binding in vivo. These two origin classes differed in terms of nucleosome architecture and dependence on origin-flanking sequences in plasmid replication assays, consistent with local features of chromatin promoting ORC binding at ‘chromatin-dependent’ origins. Finally, the ‘chromatin-dependent’ class was enriched for origins that fire early in S-phase, while the DNA-dependent class was enriched for later firing origins. Conversely, the latest firing origins showed a positive association with the ORC-origin DNA paradigm for normal levels of ORC binding, whereas the earliest firing origins did not. These data reveal a novel association between ORC-origin binding mechanisms and the regulation of origin activation time. Cell division requires the duplication of chromosomes, protein-DNA complexes harboring genetic information. Specific chromosomal positions, origins, initiate this duplication. Multiple origins are required for accurate, efficient duplication—an insufficient number leads to mistakes in the genetic material and pathologies such as cancer. Origins are chosen when the origin recognition complex (ORC) binds to them. The molecular interactions controlling this binding remain unclear. Understanding these interactions will lead to new ways to control cell division, which could aid in treatments of disease. Experiments were performed in the eukaryotic microbe budding yeast to define the types of molecular interactions ORC uses to bind origins. Yeasts are useful for these studies because chromosome duplication and structure are well conserved from yeast to humans. While ORC-DNA interactions were important, interactions between ORC and chromosomal proteins played a role. In addition, different origins relied on different types of molecular interactions with ORC. Finally, ORC-protein interactions but not ORC-DNA interactions were associated with enhanced origin function during chromosome-duplication, revealing an unanticipated link between the types of molecular interactions ORC uses to select an origin and the ultimate function of that origin. These results have implications for interfering with ORC-origin interactions to control cell division.
Collapse
Affiliation(s)
- Timothy Hoggard
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Program in Cellular and Molecular Biology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erika Shor
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Carolin A. Müller
- Centre for Genetics and Genomics, University of Nottingham Queen's Medical Centre, Nottingham, United Kingdom
| | - Conrad A. Nieduszynski
- Centre for Genetics and Genomics, University of Nottingham Queen's Medical Centre, Nottingham, United Kingdom
- * E-mail: (CAN); (CAF)
| | - Catherine A. Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Program in Cellular and Molecular Biology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (CAN); (CAF)
| |
Collapse
|
10
|
Lõoke M, Kristjuhan K, Värv S, Kristjuhan A. Chromatin-dependent and -independent regulation of DNA replication origin activation in budding yeast. EMBO Rep 2012; 14:191-8. [PMID: 23222539 PMCID: PMC3596130 DOI: 10.1038/embor.2012.196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 11/13/2012] [Accepted: 11/13/2012] [Indexed: 11/09/2022] Open
Abstract
To elucidate the role of the chromatin environment in the regulation of replication origin activation, autonomously replicating sequences were inserted into identical locations in the budding yeast genome and their activation times in S phase determined. Chromatin-dependent origins adopt to the firing time of the surrounding locus. In contrast, the origins containing two binding sites for Forkhead transcription factors are activated early in the S phase regardless of their location in the genome. Our results also show that genuinely late-replicating parts of the genome can be converted into early-replicating loci by insertion of a chromatin-independent early replication origin, ARS607, whereas insertion of two Forkhead-binding sites is not sufficient for conversion.
Collapse
Affiliation(s)
- Marko Lõoke
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | | | | | | |
Collapse
|
11
|
Odunsi K, Mhawech-Fauceglia P, Andrews C, Beck A, Amuwo O, Lele S, Black JD, Huang RY. Elevated expression of the serine-arginine protein kinase 1 gene in ovarian cancer and its role in Cisplatin cytotoxicity in vitro. PLoS One 2012; 7:e51030. [PMID: 23236423 PMCID: PMC3517604 DOI: 10.1371/journal.pone.0051030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/23/2012] [Indexed: 11/18/2022] Open
Abstract
Alternatively spliced variants of several oncogenes and tumor suppressors have been shown to be important for their tumorigenicity. In the present study we have tested whether serine-arginine protein kinase 1 (SRPK1), a major regulator of splicing factors, is involved in ovarian cancer progression and plays a role in chemo-sensitivity. By Western blot analyses, SRPK1 protein was found to be overexpressed in 4 out of 6 ovarian cancer cell lines as compared with an immortalized ovarian surface epithelial cell line; and in 55% of ovarian tumor samples as compared with non-neoplastic ovarian tissue samples. Reduction of SRPK1 expression using small interfering RNA (siRNA) encoding small hairpin RNA in ovarian cancer cells led to (i) reduced cell proliferation rate, slower cell cycle progression and compromised anchorage-independent growth and migration ability in vitro, (ii) decreased level of phosphorylation of multiple serine-arginine proteins, and P44/42MAPK and AKT proteins, and (iii) enhanced sensitivity to cisplatin. Together, these results suggest that elevated SRPK1 expression may play a role in ovarian tumorigenesis and SRPK1 may be a potential target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Paulette Mhawech-Fauceglia
- Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Christopher Andrews
- Department of Biostatistics, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Amy Beck
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Olajumoke Amuwo
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Shashikant Lele
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Jennifer D. Black
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Ruea-Yea Huang
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Chisamore-Robert P, Peeters S, Shostak K, Yankulov K. Directional telomeric silencing and lack of canonical B1 elements in two silencer Autonomously Replicating Sequences in S. cerevisiae. BMC Mol Biol 2012; 13:34. [PMID: 23157664 PMCID: PMC3545912 DOI: 10.1186/1471-2199-13-34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/15/2012] [Indexed: 12/29/2022] Open
Abstract
Background Autonomously Replicating Sequences (ARS) in S. cerevisiae serve as origins of DNA replication or as components of cis-acting silencers, which impose positional repression at the mating type loci and at the telomeres. Both types of ARS can act as replicators or silencers, however it is not clear how these quite diverse functions are executed. It is believed that all ARS contain a core module of an essential ARS Consensus Sequence (ACS) and a non-essential B1 element. Results We have tested how the B1 elements contribute to the silencer and replicator function of ARS. We report that the ACS-B1 orientation of ARS has a profound effect on the levels of gene silencing at telomeres. We also report that the destruction of the canonical B1 elements in two silencer ARS (ARS317 and ARS319) has no effect on their silencer and replicator activity. Conclusions The observed orientation effects on gene silencing suggest that ARSs can act as both proto-silencers and as insulator elements. In addition, the lack of B1 suggests that the ACS-B1 module could be different in silencer and replicator ARS.
Collapse
|
13
|
Mehanna A, Diffley JFX. Pre-replicative complex assembly with purified proteins. Methods 2012; 57:222-6. [PMID: 22732456 DOI: 10.1016/j.ymeth.2012.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 05/30/2012] [Accepted: 06/09/2012] [Indexed: 11/27/2022] Open
Abstract
Licensing of origins of eukaryotic DNA replication involves the loading of six minichromosome maintenance proteins (Mcm2-7) into pre-replicative complexes (pre-RCs). The assembly of the pre-RC is restricted to G1 phase of the cell cycle, which is crucial to ensure once per cell cycle DNA replication. Mcm2-7 is loaded by the action of the origin recognition complex (ORC), Cdc6 and Cdt1 and requires ATP. In vitro reconstitution of this reaction has shown that Mcm2-7 is loaded onto DNA as a symmetrical head-to-head double hexamer. We describe in detail how pre-RC proteins are purified and used to reconstitute pre-RC formation in vitro. This method is useful for studying the biochemical mechanisms of Mcm2-7 loading as well as subsequent steps in DNA replication.
Collapse
Affiliation(s)
- Amina Mehanna
- Clare Hall Laboratories, Cancer Research UK, South Mimms, UK
| | | |
Collapse
|
14
|
Ding Q, MacAlpine DM. Defining the replication program through the chromatin landscape. Crit Rev Biochem Mol Biol 2011; 46:165-79. [PMID: 21417598 DOI: 10.3109/10409238.2011.560139] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA replication is an essential cell cycle event required for the accurate and timely duplication of the chromosomes. It is essential that the genome is replicated accurately and completely within the confines of S-phase. Failure to completely copy the genome has the potential to result in catastrophic genomic instability. Replication initiates in a coordinated manner from multiple locations, termed origins of replication, distributed across each of the chromosomes. The selection of these origins of replication is a dynamic process responding to both developmental and tissue-specific signals. In this review, we explore the role of the local chromatin environment in regulating the DNA replication program at the level of origin selection and activation. Finally, there is increasing molecular evidence that the DNA replication program itself affects the chromatin landscape, suggesting that DNA replication is critical for both genetic and epigenetic inheritance.
Collapse
Affiliation(s)
- Queying Ding
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
15
|
Chang F, May CD, Hoggard T, Miller J, Fox CA, Weinreich M. High-resolution analysis of four efficient yeast replication origins reveals new insights into the ORC and putative MCM binding elements. Nucleic Acids Res 2011; 39:6523-35. [PMID: 21558171 PMCID: PMC3159467 DOI: 10.1093/nar/gkr301] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In budding yeast, the eukaryotic initiator protein ORC (origin recognition complex) binds to a bipartite sequence consisting of an 11 bp ACS element and an adjacent B1 element. However, the genome contains many more matches to this consensus than actually bind ORC or function as origins in vivo. Although ORC-dependent loading of the replicative MCM helicase at origins is enhanced by a distal B2 element, less is known about this element. Here, we analyzed four highly active origins (ARS309, ARS319, ARS606 and ARS607) by linker scanning mutagenesis and found that sequences adjacent to the ACS contributed substantially to origin activity and ORC binding. Using the sequences of four additional B2 elements we generated a B2 multiple sequence alignment and identified a shared, degenerate 8 bp sequence that was enriched within 228 known origins. In addition, our high-resolution analysis revealed that not all origins exist within nucleosome free regions: a class of Sir2-regulated origins has a stably positioned nucleosome overlapping or near B2. This study illustrates the conserved yet flexible nature of yeast origin architecture to promote ORC binding and origin activity, and helps explain why a strong match to the ORC binding site is insufficient to identify origins within the genome.
Collapse
Affiliation(s)
- Fujung Chang
- Laboratory of Chromosome Replication, Van Andel Research Institute, 333 Bostwick Ave NE Grand Rapids, MI 49503, USA
| | | | | | | | | | | |
Collapse
|
16
|
Rehman MA, Yankulov K. The dual role of autonomously replicating sequences as origins of replication and as silencers. Curr Genet 2009; 55:357-63. [PMID: 19633981 DOI: 10.1007/s00294-009-0265-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/10/2009] [Accepted: 07/11/2009] [Indexed: 10/20/2022]
Abstract
Autonomously replicating sequences (ARSs) in Saccharomyces cerevisiae have been extensively characterized as both origins of DNA replication and as chromatin repressors/silencers. It has been conclusively shown that the origin and the silencer activities of ARS are substantially, but not entirely interchangeable and that they are modulated by position effects and chromatin environment. It remains unclear how these two quite divergent functions of ARS co-exist. This perspective focuses on recent advances, which have shown that slight differences in ARSs can modulate their affinity for origin recognition complex and their activity as silencers or origins.
Collapse
Affiliation(s)
- Muhammad Attiq Rehman
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | |
Collapse
|
17
|
Nieduszynski CA, Donaldson AD. Detection of replication origins using comparative genomics and recombinational ARS assay. Methods Mol Biol 2009; 521:295-313. [PMID: 19563113 DOI: 10.1007/978-1-60327-815-7_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Effective experimental techniques are available to identify replication origin regions in eukaryotic cells. Genome-wide identification of the precise sequence elements that direct origin activity is however still not straightforward, even in the yeast Saccharomyces cerevisiae which has the best characterised eukaryotic replication origins. The availability of genome sequences for a series of closely related (sensu stricto) budding yeasts has allowed us to take a 'comparative genomics' approach to this problem. Since they represent functional protein-binding sites, origin sequences are conserved better than the surrounding intergenic sequence within the genomes of closely related yeasts. We describe here how phylogenetic comparison data can be used to identify candidate replication origin sequences in the S. cerevisiae genome, and how large numbers of such candidate sites can simultaneously be assayed for ability to initiate replication. Similar approaches could potentially be used to identify protein-binding sequence elements having other functions, as well as replication origin sites in other species.
Collapse
|
18
|
Zou Y, Bi X. Positive roles of SAS2 in DNA replication and transcriptional silencing in yeast. Nucleic Acids Res 2008; 36:5189-200. [PMID: 18682530 PMCID: PMC2532737 DOI: 10.1093/nar/gkn465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sas2p is a histone acetyltransferase implicated in the regulation of transcriptional silencing, and ORC is the six-subunit origin recognition complex involved in the initiation of DNA replication and the establishment of transcriptionally silent chromatin by silencers in yeast. We show here that SAS2 deletion (sas2Δ) exacerbates the temperature sensitivity of the ORC mutants orc2-1 and orc5-1. Moreover, sas2Δ and orc2-1 have a synthetic effect on cell cycle progression through S phase and initiation of DNA replication. These results suggest that SAS2 plays a positive role in DNA replication and cell cycle progression. We also show that sas2Δ and orc5-1 have a synthetic effect on transcriptional silencing at the HMR locus. Moreover, we demonstrate that sas2Δ reduces the silencing activities of silencers regardless of their locations and contexts, indicating that SAS2 plays a positive role in silencer function. In addition, we show that SAS2 is required for maintaining the structure of transcriptionally silent chromatin.
Collapse
Affiliation(s)
- Yanfei Zou
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
19
|
Crampton A, Chang F, Pappas DL, Frisch RL, Weinreich M. An ARS Element Inhibits DNA Replication through a SIR2-Dependent Mechanism. Mol Cell 2008; 30:156-66. [DOI: 10.1016/j.molcel.2008.02.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 12/12/2007] [Accepted: 02/08/2008] [Indexed: 02/04/2023]
|
20
|
Kemp M, Bae B, Yu JP, Ghosh M, Leffak M, Nair SK. Structure and function of the c-myc DNA-unwinding element-binding protein DUE-B. J Biol Chem 2007; 282:10441-8. [PMID: 17264083 DOI: 10.1074/jbc.m609632200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Local zones of easily unwound DNA are characteristic of prokaryotic and eukaryotic replication origins. The DNA-unwinding element of the human c-myc replication origin is essential for replicator activity and is a target of the DNA-unwinding element-binding protein DUE-B in vivo. We present here the 2.0A crystal structure of DUE-B and complementary biochemical characterization of its biological activity. The structure corresponds to a dimer of the N-terminal domain of the full-length protein and contains many of the structural elements of the nucleotide binding fold. A single magnesium ion resides in the putative active site cavity, which could serve to facilitate ATP hydrolytic activity of this protein. The structure also demonstrates a notable similarity to those of tRNA-editing enzymes. Consistent with this structural homology, the N-terminal core of DUE-B is shown to display both D-aminoacyl-tRNA deacylase activity and ATPase activity. We further demonstrate that the C-terminal portion of the enzyme is disordered and not essential for dimerization. However, this region is essential for DNA binding in vitro and becomes ordered in the presence of DNA.
Collapse
Affiliation(s)
- Michael Kemp
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA
| | | | | | | | | | | |
Collapse
|
21
|
Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, Feuillet C. Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:463-74. [PMID: 17010109 DOI: 10.1111/j.1365-313x.2006.02891.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bread wheat (Triticum aestivum) is one of the most important crops worldwide. However, because of its large, hexaploid, highly repetitive genome it is a challenge to develop efficient means for molecular analysis and genetic improvement in wheat. To better understand the composition and molecular evolution of the hexaploid wheat homoeologous genomes and to evaluate the potential of BAC-end sequences (BES) for marker development, we have followed a chromosome-specific strategy and generated 11 Mb of random BES from chromosome 3B, the largest chromosome of bread wheat. The sequence consisted of about 86% of repetitive elements, 1.2% of coding regions, and 13% remained unknown. With 1.2% of the sequence length corresponding to coding sequences, 6000 genes were estimated for chromosome 3B. New repetitive sequences were identified, including a Triticineae-specific tandem repeat (Fat) that represents 0.6% of the B-genome and has been differentially amplified in the homoeologous genomes before polyploidization. About 10% of the BES contained junctions between nested transposable elements that were used to develop chromosome-specific markers for physical and genetic mapping. Finally, sequence comparison with 2.9 Mb of random sequences from the D-genome of Aegilops tauschii suggested that the larger size of the B-genome is due to a higher content in repetitive elements. It also indicated which families of transposable elements are mostly responsible for differential expansion of the homoeologous wheat genomes during evolution. Our data demonstrate that BAC-end sequencing from flow-sorted chromosomes is a powerful tool for analysing the structure and evolution of polyploid and highly repetitive genomes.
Collapse
Affiliation(s)
- Etienne Paux
- UMR ASP 1095, INRA, Université Blaise Pascal, 63100 Clermont-Ferrand, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Bolon YT, Bielinsky AK. The spatial arrangement of ORC binding modules determines the functionality of replication origins in budding yeast. Nucleic Acids Res 2006; 34:5069-80. [PMID: 16984967 PMCID: PMC1635292 DOI: 10.1093/nar/gkl661] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In the quest to define autonomously replicating sequences (ARSs) in eukaryotic cells, an ARS consensus sequence (ACS) has emerged for budding yeast. This ACS is recognized by the replication initiator, the origin recognition complex (ORC). However, not every match to the ACS constitutes a replication origin. Here, we investigated the requirements for ORC binding to origins that carry multiple, redundant ACSs, such as ARS603. Previous studies raised the possibility that these ACSs function as individual ORC binding sites. Detailed mutational analysis of the two ACSs in ARS603 revealed that they function in concert and give rise to an initiation pattern compatible with a single bipartite ORC binding site. Consistent with this notion, deletion of one base pair between the ACS matches abolished ORC binding at ARS603. Importantly, loss of ORC binding in vitro correlated with the loss of ARS activity in vivo. Our results argue that replication origins in yeast are in general comprised of bipartite ORC binding sites that cannot function in random alignment but must conform to a configuration that permits ORC binding. These requirements help to explain why only a limited number of ACS matches in the yeast genome qualify as ORC binding sites.
Collapse
Affiliation(s)
| | - Anja-Katrin Bielinsky
- To whom correspondence should be addressed. Tel: +1 612 624 2469; Fax: +1 612 625 2163;
| |
Collapse
|
23
|
Bergero R. AT-rich sequences from the arbuscular mycorrhizal fungus Gigaspora rosea exhibit ARS function in the yeast Saccharomyces cerevisiae. Fungal Genet Biol 2006; 43:337-42. [PMID: 16504551 DOI: 10.1016/j.fgb.2006.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 12/24/2005] [Accepted: 01/09/2006] [Indexed: 11/22/2022]
Abstract
Autonomous replicating sequences are DNA elements that trigger DNA replication and are widely used in the development of episomal transformation vectors for fungi. In this paper, a genomic library from the mycorrhizal fungus Gigaspora rosea was constructed in the integrative plasmid YIp5 and screened in the budding yeast Saccharomyces cerevisiae for sequences that act as ARS and trigger plasmid replication. Two genetic elements (GrARS2, GrARS6) promoted high-rates of yeast transformation. Sequence analysis of these elements shows them to be AT-rich (72-80%) and to contain multiple near-matches to the yeast autonomous consensus sequences ACS and EACS. GrARS2 contained a putative miniature inverted-repeat transposable element (MITE) delimited by 28-bp terminal inverted repeats (TIRs). Disruption of this element and removal of one TIR increased plasmid stability several fold. The potential for palindromes to affect DNA replication is discussed.
Collapse
Affiliation(s)
- Roberta Bergero
- Crop and Soil Research Group, Scottish Agricultural College, King's Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
24
|
Abstract
Developmentally regulated gene amplification serves to increase the number of templates for transcription, yielding greatly increased protein and/or RNA product for gene(s) at the amplified loci. It is observed with genes that are very actively transcribed and during narrow windows of developmental time where copious amounts of those particular gene products are required. Amplification results from repeated firing of origins at a few genomic loci, while the rest of the genome either does not replicate, or replicates to a lesser extent. As such, amplification is a striking exception to the once-and-only-once rule of DNA replication and may be informative as to that mechanism. Drosophila amplifies eggshell (chorion) genes in the follicle cells of the ovary to allow for rapid eggshell synthesis. Sciara amplifies multiple genes in larval salivary gland cells that encode proteins secreted in the saliva for the pupal case. Finally, Tetrahymena amplifies its rRNA genes several thousand-fold in the creation of the transcriptionally active macronucleus. Due to the ease of molecular and genetic analysis with these systems, the study of origin regulation has advanced rapidly. Comparisons reveal an evolutionarily conserved trans-regulatory apparatus and a similar organization of sequence-specific cis-regulatory replicator and origin elements. The studies indicate a regulatory role for chromatin structure and transcriptionally active genes near the origins.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-1340, USA.
| |
Collapse
|
25
|
Casper JM, Kemp MG, Ghosh M, Randall GM, Vaillant A, Leffak M. The c-myc DNA-unwinding element-binding protein modulates the assembly of DNA replication complexes in vitro. J Biol Chem 2005; 280:13071-83. [PMID: 15653697 DOI: 10.1074/jbc.m404754200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of DNA-unwinding elements (DUEs) at eukaryotic replicators has raised the question of whether these elements contribute to origin activity by their intrinsic helical instability, as protein-binding sites, or both. We used the human c-myc DUE as bait in a yeast one-hybrid screen and identified a DUE-binding protein, designated DUE-B, with a predicted mass of 23.4 kDa. Based on homology to yeast proteins, DUE-B was previously classified as an aminoacyl-tRNA synthetase; however, the human protein is approximately 60 amino acids longer than its orthologs in yeast and worms and is primarily nuclear. In vivo, chromatin-bound DUE-B localized to the c-myc DUE region. DUE-B levels were constant during the cell cycle, although the protein was preferentially phosphorylated in cells arrested early in S phase. Inhibition of DUE-B protein expression slowed HeLa cell cycle progression from G1 to S phase and induced cell death. DUE-B extracted from HeLa cells or expressed from baculovirus migrated as a dimer during gel filtration and co-purified with ATPase activity. In contrast to endogenous DUE-B, baculovirus-expressed DUE-B efficiently formed high molecular mass complexes in Xenopus egg and HeLa extracts. In Xenopus extracts, baculovirus-expressed DUE-B inhibited chromatin replication and replication protein A loading in the presence of endogenous DUE-B, suggesting that differential covalent modification of these proteins can alter their effect on replication. Recombinant DUE-B expressed in HeLa cells restored replication activity to egg extracts immunodepleted with anti-DUE-B antibody, suggesting that DUE-B plays an important role in replication in vivo.
Collapse
Affiliation(s)
- John M Casper
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435, USA
| | | | | | | | | | | |
Collapse
|
26
|
Global chromatin structure of 45,000 base pairs of chromosome III in a- and alpha-cell yeast and during mating-type switching. Mol Cell Biol 2004; 24:10026-35. [PMID: 15509803 DOI: 10.1128/mcb.24.22.10026-10035.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Directionality of yeast mating-type switching has been attributed to differences in chromatin structure for the left arm of chromosome III. We have mapped the structure of approximately 45 kbp of the left arm of chromosome III in a and alpha cells in logarithmically growing cultures and in a cells during switching. Distinctive features of chromatin structure were the occurrence of DNase I-hypersensitive sites in the promoter region of nearly every gene and some replication origins and the presence of extended regions of positioned nucleosomes in approximately 25% of the open reading frames. Other than the recombination enhancer, chromatin structures were identical in the two cell types. Changes in chromatin structure during switching were confined to the recombination enhancer. This unbiased analysis of an extended region of chromatin reveals that significant features of organized chromatin exist for the entire region, and these features are largely static with respect to mating type and mating-type switching. Our analysis also shows that primary chromatin structure does not cause the documented differences in recombinational frequency of the left arm of chromosome III in yeast a and alpha cells.
Collapse
|
27
|
Affiliation(s)
- Isabelle A Lucas
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
28
|
Breier AM, Chatterji S, Cozzarelli NR. Prediction of Saccharomyces cerevisiae replication origins. Genome Biol 2004; 5:R22. [PMID: 15059255 PMCID: PMC395781 DOI: 10.1186/gb-2004-5-4-r22] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 02/02/2004] [Accepted: 02/04/2004] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Autonomously replicating sequences (ARSs) function as replication origins in Saccharomyces cerevisiae. ARSs contain the 17 bp ARS consensus sequence (ACS), which binds the origin recognition complex. The yeast genome contains more than 10,000 ACS matches, but there are only a few hundred origins, and little flanking sequence similarity has been found. Thus, identification of origins by sequence alone has not been possible. RESULTS We developed an algorithm, Oriscan, to predict yeast origins using similarity to 26 characterized origins. Oriscan used 268 bp of sequence, including the T-rich ACS and a 3' A-rich region. The predictions identified the exact location of the ACS. A total of 84 of the top 100 Oriscan predictions, and 56% of the top 350, matched known ARSs or replication protein binding sites. The true accuracy was even higher because we tested 25 discrepancies, and 15 were in fact ARSs. Thus, 94% of the top 100 predictions and an estimated 70% of the top 350 were correct. We compared the predictions to corresponding sequences in related Saccharomyces species and found that the ACSs of experimentally supported predictions show significant conservation. CONCLUSIONS The high accuracy of the predictions indicates that we have defined near-sufficient conditions for ARS activity, the A-rich region is a recognizable feature of ARS elements with a probable role in replication initiation, and nucleotide sequence is a reliable predictor of yeast origins. Oriscan detected most origins in the genome, demonstrating previously unrecognized generality in yeast replication origins and significant discriminatory power in the algorithm.
Collapse
Affiliation(s)
- Adam M Breier
- Graduate Group in Biophysics, University of California-Berkeley, Berkeley, CA 94720-3204, USA
| | - Sourav Chatterji
- Department of Computer Science, University of California-Berkeley, Berkeley, CA 94720-3204, USA
| | - Nicholas R Cozzarelli
- Department of Molecular and Cellular Biology, Barker Hall, University of California-Berkeley, Berkeley, CA 94720-3204, USA
| |
Collapse
|
29
|
Weinreich M, Palacios DeBeer MA, Fox CA. The activities of eukaryotic replication origins in chromatin. ACTA ACUST UNITED AC 2004; 1677:142-57. [PMID: 15020055 DOI: 10.1016/j.bbaexp.2003.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Accepted: 11/17/2003] [Indexed: 12/26/2022]
Abstract
DNA replication initiates at chromosomal positions called replication origins. This review will focus on the activity, regulation and roles of replication origins in Saccharomyces cerevisiae. All eukaryotic cells, including S. cerevisiae, depend on the initiation (activity) of hundreds of replication origins during a single cell cycle for the duplication of their genomes. However, not all origins are identical. For example, there is a temporal order to origin activation with some origins firing early during the S-phase and some origins firing later. Recent studies provide evidence that posttranslational chromatin modifications, heterochromatin-binding proteins and nucleosome positioning can control the efficiency and/or timing of chromosomal origin activity in yeast. Many more origins exist than are necessary for efficient replication. The availability of excess replication origins leaves individual origins free to evolve distinct forms of regulation and/or roles in chromosomes beyond their fundamental role in DNA synthesis. We propose that some origins have acquired roles in controlling chromatin structure and/or gene expression. These roles are not linked obligatorily to replication origin activity per se, but instead exploit multi-subunit replication proteins with the potential to form context-dependent protein-protein interactions.
Collapse
Affiliation(s)
- Michael Weinreich
- Laboratory of Chromosome Replication, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA.
| | | | | |
Collapse
|
30
|
Palacios DeBeer MA, Muller U, Fox CA. Differential DNA affinity specifies roles for the origin recognition complex in budding yeast heterochromatin. Genes Dev 2003; 17:1817-22. [PMID: 12897051 PMCID: PMC196224 DOI: 10.1101/gad.1096703] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The origin recognition complex (ORC) marks chromosomal positions as replication origins and is essential for replication initiation. At a few loci, the ORC functions in heterochromatin formation. We show that the ORC's two roles at the heterochromatic HMRa locus in Saccharomyces cerevisiae were regulated by differences in the ORC's interaction with its target site. At HMRa, a strong ORC-DNA interaction inhibited and delayed replication initiation but promoted heterochromatin formation, whereas a weak ORC-DNA interaction allowed for increased and earlier replication initiation but reduced heterochromatin formation. Therefore, the ORC's interaction with its target site could modulate ORC activity within a heterochromatin domain in vivo.
Collapse
|
31
|
Chen Y, Zhao M, Li ZP, He ML. The function of the nuclear matrix attachment region of silkworm rDNA as an autonomously replicating sequence in plasmid and chromosomal replication origin in yeast. Biochem Biophys Res Commun 2002; 299:723-9. [PMID: 12470638 DOI: 10.1016/s0006-291x(02)02746-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nuclear matrix attachment regions (MARs) play a crucial role in chromatin architecture, gene expression, and DNA replication. Although it is well known that yeast autonomously replicating sequences (ARSs) bind nuclear matrix and MARs also function as ARS elements in yeast, whether a heterologous MAR or ARS element acts as a replication origin in the chromosome has not been elucidated. We previously identified a MAR (rMAR) located in the nontranscribed spacer (NTS) of silkworm Attacus ricini rDNA. We report here that this rMAR contains 10 copies of ARS consensus sequence (ACS) and several DNA unwinding regions. The rMAR employs ARS activity in yeast and a rARS element locates in the 3(') region of the rMAR. Furthermore, we have also revealed that either the rMAR or the rARS element functions as a replication origin in the chromosome. Our results provide the first direct evidence to demonstrate that heterologous rMAR and rARS display chromosomal origin activity, suggesting that the chromosome structure and replication origin of rDNA reserve some common features during evolution.
Collapse
Affiliation(s)
- Ying Chen
- The Institute of Molecular Biology, The University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|
32
|
Wilmes GM, Bell SP. The B2 element of the Saccharomyces cerevisiae ARS1 origin of replication requires specific sequences to facilitate pre-RC formation. Proc Natl Acad Sci U S A 2002; 99:101-6. [PMID: 11756674 PMCID: PMC117521 DOI: 10.1073/pnas.012578499] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The minimal requirements for a eukaryotic origin of replication are an initiator binding site and a region of helically unstable DNA [DNA unwinding element (DUE)]. Budding yeast origins consist of modular elements, and one of these elements, B2, has been proposed to act as a DUE. To test this hypothesis, we screened for sequences that function at the B2 element of ARS1. We found that the B2 element required A-rich sequences, but that the function of these identified sequences did not correlate with helical instability. Instead, the sequences that substituted fully for B2 function showed similarity to the ARS consensus sequence (ACS). The ACS is the binding site for the initiator origin recognition complex (ORC), but the selected sequences are not strong ORC binding sites in vitro. Nonfunctional B2 sequences show a corresponding loss in Mcm2-7p origin association. The function of these mutant sequences is rescued by Cdc6p overexpression. We propose that the B2 element requires specific sequences to bind a component of the pre-RC.
Collapse
Affiliation(s)
- Gwendolyn M Wilmes
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
33
|
Poloumienko A, Dershowitz A, De J, Newlon CS. Completion of replication map of Saccharomyces cerevisiae chromosome III. Mol Biol Cell 2001; 12:3317-27. [PMID: 11694569 PMCID: PMC60257 DOI: 10.1091/mbc.12.11.3317] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Saccharomyces cerevisiae chromosomal DNA replication initiates at intervals of approximately 40 kb and depends upon the activity of autonomously replicating sequence (ARS) elements. The identification of ARS elements and analysis of their function as chromosomal replication origins requires the use of functional assays because they are not sufficiently similar to identify by DNA sequence analysis. To complete the systematic identification of ARS elements on S. cerevisiae chromosome III, overlapping clones covering 140 kb of the right arm were tested for their ability to promote extrachromosomal maintenance of plasmids. Examination of chromosomal replication intermediates of each of the seven ARS elements identified revealed that their efficiencies of use as chromosomal replication origins varied widely, with four ARS elements active in < or = 10% of cells in the population and two ARS elements active in > or = 90% of the population. Together with our previous analysis of a 200-kb region of chromosome III, these data provide the first complete analysis of ARS elements and DNA replication origins on an entire eukaryotic chromosome.
Collapse
Affiliation(s)
- A Poloumienko
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
34
|
Sharma K, Weinberger M, Huberman JA. Roles for internal and flanking sequences in regulating the activity of mating-type-silencer-associated replication origins in Saccharomyces cerevisiae. Genetics 2001; 159:35-45. [PMID: 11560885 PMCID: PMC1461791 DOI: 10.1093/genetics/159.1.35] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
ARS301 and ARS302 are inactive replication origins located at the left end of budding yeast (Saccharomyces cerevisiae) chromosome III, where they are associated with the HML-E and -I silencers of the HML mating type cassette. Although they function as replication origins in plasmids, they do not serve as origins in their normal chromosomal locations, because they are programmed to fire so late in S phase that they are passively replicated by the replication fork from neighboring early-firing ARS305 before they have a chance to fire on their own. We asked whether the nucleotide sequences required for plasmid origin function of these silencer-associated chromosomally inactive origins differ from the sequences needed for plasmid origin function by nonsilencer-associated chromosomally active origins. We could not detect consistent differences in sequence requirements for the two types of origins. Next, we asked whether sequences within or flanking these origins are responsible for their chromosomal inactivity. Our results demonstrate that both flanking and internal sequences contribute to chromosomal inactivity, presumably by programming these origins to fire late in S phase. In ARS301, the function of the internal sequences determining chromosomal inactivity is dependent on the checkpoint proteins Mec1p and Rad53p.
Collapse
Affiliation(s)
- K Sharma
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263-0001, USA
| | | | | |
Collapse
|
35
|
Wang Y, Vujcic M, Kowalski D. DNA replication forks pause at silent origins near the HML locus in budding yeast. Mol Cell Biol 2001; 21:4938-48. [PMID: 11438651 PMCID: PMC87221 DOI: 10.1128/mcb.21.15.4938-4948.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromosomal replicators in budding yeast contain an autonomously replicating sequence (ARS) that functions in a plasmid, but certain ARSs are silent as replication origins in their natural chromosomal context. In chromosome III, the HML ARS cluster (ARS302-ARS303-ARS320) and ARS301 flank the transcriptionally silent mating-type locus HML, and all of these ARSs are silent as replication origins. ARS301 and ARS302 function in transcriptional silencing mediated by the origin recognition complex (ORC) and a heterochromatin structure, while the functions of ARS303 and ARS320 are not known. In this work, we discovered replication fork pause sites at the HML ARS cluster and ARS301 by analyzing DNA replication intermediates from the chromosome via two-dimensional gel electrophoresis. The replication fork pause at the HML ARS cluster was independent of cis- and trans-acting mutations that abrogate transcriptional silencing at HML. Deletion of the HML ARS cluster led to loss of the pause site. Insertion of a single, heterologous ARS (ARS305) in place of the HML ARS cluster reconstituted the pause site, as did multiple copies of DNA elements (A and B1) that bind ORC. The orc2-1 mutation, known to alter replication timing at origins, did not detectably affect the pause but activated the silent origin at the HML ARS cluster in a minority of cells. Delaying the time of fork arrival at HML led to the elimination of the pause sites at the HML ARS cluster and at the copy of ARS305 inserted in place of the cluster. Loss of the pause sites was accompanied by activation of the silent origins in the majority of cells. Thus, replication fork movement near HML pauses at a silent origin which is competent for replication initiation but kept silent through Orc2p, a component of the replication initiator. Possible functions for replication fork pause sites in checkpoints, S-phase regulation, mating-type switching, and transcriptionally silent heterochromatin are discussed.
Collapse
Affiliation(s)
- Y Wang
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | |
Collapse
|
36
|
Theis JF, Newlon CS. Two compound replication origins in Saccharomyces cerevisiae contain redundant origin recognition complex binding sites. Mol Cell Biol 2001; 21:2790-801. [PMID: 11283258 PMCID: PMC86909 DOI: 10.1128/mcb.21.8.2790-2801.2001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While many of the proteins involved in the initiation of DNA replication are conserved between yeasts and metazoans, the structure of the replication origins themselves has appeared to be different. As typified by ARS1, replication origins in Saccharomyces cerevisiae are <150 bp long and have a simple modular structure, consisting of a single binding site for the origin recognition complex, the replication initiator protein, and one or more accessory sequences. DNA replication initiates from a discrete site. While the important sequences are currently less well defined, metazoan origins appear to be different. These origins are large and appear to be composed of multiple, redundant elements, and replication initiates throughout zones as large as 55 kb. In this report, we characterize two S. cerevisiae replication origins, ARS101 and ARS310, which differ from the paradigm. These origins contain multiple, redundant binding sites for the origin recognition complex. Each binding site must be altered to abolish origin function, while the alteration of a single binding site is sufficient to inactivate ARS1. This redundant structure may be similar to that seen in metazoan origins.
Collapse
Affiliation(s)
- J F Theis
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | |
Collapse
|
37
|
Abstract
Chromosomal origins of DNA replication in eukaryotic cells not only are crucial for understanding the basic process of DNA duplication but also provide a tool to analyze how cell cycle regulators are linked to the replication machinery. During the past decade much progress has been made in identifying replication origins in eukaryotic genomes. More recently, replication initiation point (RIP) mapping has allowed us to detect start sites for DNA synthesis at the nucleotide level and thus to monitor replication initiation events at the origin very precisely. Beyond giving us the precise positions of start sites, the application of RIP mapping in yeast and human cells has revealed a single, defined start point at which replication initiates, a scenario very reminiscent of transcription initiation. More importantly, studies in yeast have shown that the binding site for the initiator, the origin recognition complex (ORC), lies immediately adjacent to the replication start point, which suggests that ORC directs the initiation machinery to a distinct site. Therefore, in our pursuit of identifying ORC-binding sites in higher eukaryotes, RIP mapping may lead the way.
Collapse
Affiliation(s)
- A K Bielinsky
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
38
|
Abstract
Sequence-specific conformational strains (SSCS) of biopolymers that carry free energy and genetic information have been called conformons, a term coined independently by two groups over two and a half decades ago [Green, D.E., Ji, S., 1972. The electromechanochemical model of mitochondrial structure and function. In: Schultz, J., Cameron, B.F. (Eds.), Molecular Basis of Electron Transport. Academic Press, New York, pp. 1-44; Volkenstein, M.V., 1972. The Conformon. J. Theor. Biol. 34, 193-195]. Conformons provide the molecular mechanisms necessary and sufficient to account for all biological processes in the living cell on the molecular level in principle--including the origin of life, enzymic catalysis, control of gene expression, oxidative phosphorylation, active transport, and muscle contraction. A clear example of SSCS is provided by SIDD (strain-induced duplex destabilization) in DNA recently reported by Benham [Benham, C.J., 1996a. Duplex destabilization in superhelical DNA is predicted to occur at specific transcriptional regulatory regions. J. Mol. Biol. 255, 425-434; Benham, C.J., 1996b. Computation of DNA structural variability--a new predictor of DNA regulatory regions. CABIOS 12(5), 375-381]. Experimental as well as theoretical evidence indicates that conformons in proteins carry 8-16 kcal/mol of free energy and 40-200 bits of information, while those in DNA contain 500-2500 kcal/mol of free energy and 200-600 bits of information. The similarities and differences between conformons and solitons have been analyzed on the basis of the generalized Franck-Condon principle [Ji, S., 1974a. A general theory of ATP synthesis and utilization. Ann. N.Y. Acad. Sci. 227, 211-226; Ji, S., 1974b. Energy and negentropy in enzymic catalysis. Ann. N.Y. Acad. Sci. 227, 419-437]. To illustrate a practical application, the conformon theory was applied to the molecular-clamp model of DNA gyrase proposed by Berger and Wang [Berger, J.M., Wang, J.C., 1996. Recent developments in DNA topoisomerases II structure and mechanism. Curr. Opin. Struct. Biol. 6(1), 84-90], leading to the proposal of an eight-step molecular mechanism for the action of the enzyme. Finally, a set of experimentally testable predictions has been formulated on the basis of the conformon theory.
Collapse
Affiliation(s)
- S Ji
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08855, USA.
| |
Collapse
|
39
|
Kohzaki H, Ito Y, Murakami Y. Context-dependent modulation of replication activity of Saccharomyces cerevisiae autonomously replicating sequences by transcription factors. Mol Cell Biol 1999; 19:7428-35. [PMID: 10523631 PMCID: PMC84736 DOI: 10.1128/mcb.19.11.7428] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Evidence for transcription factor involvement in the initiation of DNA replication at certain replication origins in Saccharomyces cerevisiae mainly comes from an indirect assay which measures the mitotic stability of plasmids containing an autonomously replicating sequence (ARS), a selectable marker gene, and a centromere. In order to eliminate the effect of transcription factor binding to the selectable marker gene or centromere in such assays, we have adapted the DpnI assay to directly measure ARS replication activity in vivo by using ARS plasmids devoid of extraneous transcription elements. Using this assay, we found that the B3 element of ARS1, which serves as a binding site for the transcription factor Abf1p, does not stimulate ARS activity on plasmids lacking a centromere and a selectable marker gene. We also found with such plasmids that exogenous expression of the strong transcriptional activators Gal4 and Gal4-VP16 inhibited the replication activity of ARS1 when B3 was replaced by the Gal4 binding site, although these activators had previously been shown to stimulate replication activity in the stability assay. Moreover, a chromosomally inactive ARS, ARS301, which was active by itself on a plasmid, was inactivated by placing an Abf1p binding site in its vicinity. These results indicate that the sequences surrounding the ARS as well as properties of the ARS element itself determine its response to transcription factors.
Collapse
Affiliation(s)
- H Kohzaki
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
40
|
Austin RJ, Orr-Weaver TL, Bell SP. Drosophila ORC specifically binds to ACE3, an origin of DNA replication control element. Genes Dev 1999; 13:2639-49. [PMID: 10541550 PMCID: PMC317108 DOI: 10.1101/gad.13.20.2639] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the yeast Saccharomyces cerevisiae, sequence-specific DNA binding by the origin recognition complex (ORC) is responsible for selecting origins of DNA replication. In metazoans, origin selection is poorly understood and it is unknown whether specific DNA binding by metazoan ORC controls replication. To address this problem, we used in vivo and in vitro approaches to demonstrate that Drosophila ORC (DmORC) binds to replication elements that direct repeated initiation of replication to amplify the Drosophila chorion gene loci in the follicle cells of egg chambers. Using immunolocalization, we observe that ACE3, a 440-bp chorion element that contains information sufficient to drive amplification, directs DmORC localization in follicle cells. Similarly, in vivo cross-linking and chromatin immunoprecipitation assays demonstrate association of DmORC with both ACE3 and two other amplification control elements, AER-d and ACE1. To demonstrate that the in vivo localization of DmORC is related to its DNA-binding properties, we find that purified DmORC binds to ACE3 and AER-d in vitro, and like its S. cerevisiae counterpart, this binding is dependent on ATP. Our findings suggest that sequence-specific DNA binding by ORC regulates initiation of metazoan DNA replication. Furthermore, adaptation of this experimental approach will allow for the identification of additional metazoan ORC DNA-binding sites and potentially origins of replication.
Collapse
Affiliation(s)
- R J Austin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
41
|
Vujcic M, Miller CA, Kowalski D. Activation of silent replication origins at autonomously replicating sequence elements near the HML locus in budding yeast. Mol Cell Biol 1999; 19:6098-109. [PMID: 10454557 PMCID: PMC84529 DOI: 10.1128/mcb.19.9.6098] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the budding yeast, Saccharomyces cerevisiae, replicators can function outside the chromosome as autonomously replicating sequence (ARS) elements; however, within chromosome III, certain ARSs near the transcriptionally silent HML locus show no replication origin activity. Two of these ARSs comprise the transcriptional silencers E (ARS301) and I (ARS302). Another, ARS303, resides between HML and the CHA1 gene, and its function is not known. Here we further localized and characterized ARS303 and in the process discovered a new ARS, ARS320. Both ARS303 and ARS320 are competent as chromosomal replication origins since origin activity was seen when they were inserted at a different position in chromosome III. However, at their native locations, where the two ARSs are in a cluster with ARS302, the I silencer, no replication origin activity was detected regardless of yeast mating type, special growth conditions that induce the transcriptionally repressed CHA1 gene, trans-acting mutations that abrogate transcriptional silencing at HML (sir3, orc5), or cis-acting mutations that delete the E and I silencers containing ARS elements. These results suggest that, for the HML ARS cluster (ARS303, ARS320, and ARS302), inactivity of origins is independent of local transcriptional silencing, even though origins and silencers share key cis- and trans-acting components. Surprisingly, deletion of active replication origins located 25 kb (ORI305) and 59 kb (ORI306) away led to detection of replication origin function at the HML ARS cluster, as well as at ARS301, the E silencer. Thus, replication origin silencing at HML ARSs is mediated by active replication origins residing at long distances from HML in the chromosome. The distal active origins are known to fire early in S phase, and we propose that their inactivation delays replication fork arrival at HML, providing additional time for HML ARSs to fire as origins.
Collapse
Affiliation(s)
- M Vujcic
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | |
Collapse
|
42
|
Theis JF, Yang C, Schaefer CB, Newlon CS. DNA sequence and functional analysis of homologous ARS elements of Saccharomyces cerevisiae and S. carlsbergensis. Genetics 1999; 152:943-52. [PMID: 10388814 PMCID: PMC1460646 DOI: 10.1093/genetics/152.3.943] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ARS elements of Saccharomyces cerevisiae are the cis-acting sequences required for the initiation of chromosomal DNA replication. Comparisons of the DNA sequences of unrelated ARS elements from different regions of the genome have revealed no significant DNA sequence conservation. We have compared the sequences of seven pairs of homologous ARS elements from two Saccharomyces species, S. cerevisiae and S. carlsbergensis. In all but one case, the ARS308-ARS308(carl) pair, significant blocks of homology were detected. In the cases of ARS305, ARS307, and ARS309, previously identified functional elements were found to be conserved in their S. carlsbergensis homologs. Mutation of the conserved sequences in the S. carlsbergensis ARS elements revealed that the homologous sequences are required for function. These observations suggested that the sequences important for ARS function would be conserved in other ARS elements. Sequence comparisons aided in the identification of the essential matches to the ARS consensus sequence (ACS) of ARS304, ARS306, and ARS310(carl), though not of ARS310.
Collapse
Affiliation(s)
- J F Theis
- Department of Microbiology and Molecular Genetics, New Jersey Medical School and Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
43
|
Huberman JA. Genetic methods for characterizing the cis-acting components of yeast DNA replication origins. Methods 1999; 18:356-67. [PMID: 10454997 DOI: 10.1006/meth.1999.0792] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Small circular plasmids containing replication origins and, in some cases, centromeres, can replicate autonomously in the nuclei of all tested yeast species. Because this autonomous replication is dependent on the replication origin within the plasmid, measurements of the efficiency of autonomous replication (by the methods summarized here) permit evaluation of the effects of mutations on origin function. Although alternative methods are available for genetic characterization of replication origins in other organisms, the simplicity of the autonomous replication assay in yeasts has permitted development of the deepest understanding to date of eukaryotic replication origin structure. This information has come primarily from studies with Saccharomyces cerevisiae. However, there are many other yeast species, each with its own variety of replication origins. Use of the methods summarized here to characterize origins in other yeast species is likely to provide additional insights into eukaryotic replication origin structure.
Collapse
Affiliation(s)
- J A Huberman
- Department of Genetics, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, New York 14263-0001, USA.
| |
Collapse
|
44
|
van Brabant AJ, Fangman WL, Brewer BJ. Active role of a human genomic insert in replication of a yeast artificial chromosome. Mol Cell Biol 1999; 19:4231-40. [PMID: 10330163 PMCID: PMC104382 DOI: 10.1128/mcb.19.6.4231] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Yeast artificial chromosomes (YACs) are a common tool for cloning eukaryotic DNA. The manner by which large pieces of foreign DNA are assimilated by yeast cells into a functional chromosome is poorly understood, as is the reason why some of them are stably maintained and some are not. We examined the replication of a stable YAC containing a 240-kb insert of DNA from the human T-cell receptor beta locus. The human insert contains multiple sites that serve as origins of replication. The activity of these origins appears to require the yeast ARS consensus sequence and, as with yeast origins, additional flanking sequences. In addition, the origins in the human insert exhibit a spacing, a range of activation efficiencies, and a variation in times of activation during S phase similar to those found for normal yeast chromosomes. We propose that an appropriate combination of replication origin density, activation times, and initiation efficiencies is necessary for the successful maintenance of YAC inserts.
Collapse
Affiliation(s)
- A J van Brabant
- Department of Genetics, University of Washington, Seattle, Washington 98195-7360, USA
| | | | | |
Collapse
|
45
|
Hurst ST, Rivier DH. Identification of a compound origin of replication at the HMR-E locus in Saccharomyces cerevisiae. J Biol Chem 1999; 274:4155-9. [PMID: 9933610 DOI: 10.1074/jbc.274.7.4155] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic chromosomal origins of replication are best defined in Saccharomyces cerevisiae. Previous analysis of yeast origins suggests that they are relatively simple structures comprised of three or four small DNA sequence elements contained within approximately 100-200-base pair regions (Gilbert, D. M. (1998) Curr. Opin. Genet. Dev. 8, 194-199). In contrast, the sequence elements that may comprise origins in multicellular eukaryotes are largely unknown. The yeast HMR-E region is both a chromosomal origin of replication and a silencer that represses transcription of adjacent genes through a position effect. The analysis presented here indicated that HMR-E had a novel DNA structure that was more complex than defined for other yeast origins, and thus revealed that there is variation in the structural complexity of yeast origins. In contrast to "simple" yeast origins, the origin at HMR-E consisted of at least three independent subregions that had the capacity to initiate replication. We have termed HMR-E a compound origin to reflect its structural complexity. Furthermore, only one origin within the compound origin was a silencer.
Collapse
Affiliation(s)
- S T Hurst
- Department of Cell and Structural Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
46
|
Kim SM, Huberman JA. Multiple orientation-dependent, synergistically interacting, similar domains in the ribosomal DNA replication origin of the fission yeast, Schizosaccharomyces pombe. Mol Cell Biol 1998; 18:7294-303. [PMID: 9819416 PMCID: PMC109311 DOI: 10.1128/mcb.18.12.7294] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/1998] [Accepted: 08/19/1998] [Indexed: 11/20/2022] Open
Abstract
Previous investigations have shown that the fission yeast, Schizosaccharomyces pombe, has DNA replication origins (500 to 1500 bp) that are larger than those in the budding yeast, Saccharomyces cerevisiae (100 to 150 bp). Deletion and linker substitution analyses of two fission yeast origins revealed that they contain multiple important regions with AT-rich asymmetric (abundant A residues in one strand and T residues in the complementary strand) sequence motifs. In this work we present the characterization of a third fission yeast replication origin, ars3001, which is relatively small ( approximately 570 bp) and responsible for replication of ribosomal DNA. Like previously studied fission yeast origins, ars3001 contains multiple important regions. The three most important of these regions resemble each other in several ways: each region is essential for origin function and is at least partially orientation dependent, each region contains similar clusters of A+T-rich asymmetric sequences, and the regions can partially substitute for each other. These observations suggest that ars3001 function requires synergistic interactions between domains binding similar proteins. It is likely that this requirement extends to other fission yeast origins, explaining why such origins are larger than those of budding yeast.
Collapse
Affiliation(s)
- S M Kim
- Department of Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | |
Collapse
|
47
|
van Brabant AJ, Hunt SY, Fangman WL, Brewer BJ. Identifying sites of replication initiation in yeast chromosomes: looking for origins in all the right places. Electrophoresis 1998; 19:1239-46. [PMID: 9694258 DOI: 10.1002/elps.1150190803] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
DNA fragments that contain an active origin of replication generate bubble-shaped replication intermediates with diverging forks. We describe two methods that use two-dimensional (2-D) agarose gel electrophoresis along with DNA sequence information to identify replication origins in natural and artificial Saccharomyces cerevisiae chromosomes. The first method uses 2-D gels of overlapping DNA fragments to locate an active chromosomal replication origin within a region known to confer autonomous replication on a plasmid. A variant form of 2-D gels can be used to determine the direction of fork movement, and the second method uses this technique to find restriction fragments that are replicated by diverging forks, indicating that a bidirectional replication origin is located between the two fragments. Either of these two methods can be applied to the analysis of any genomic region for which there is DNA sequence information or an adequate restriction map.
Collapse
Affiliation(s)
- A J van Brabant
- Department of Genetics, University of Washington, Seattle 98195-7360, USA
| | | | | | | |
Collapse
|
48
|
Sanchez JP, Murakami Y, Huberman JA, Hurwitz J. Isolation, characterization, and molecular cloning of a protein (Abp2) that binds to a Schizosaccharomyces pombe origin of replication (ars3002). Mol Cell Biol 1998; 18:1670-81. [PMID: 9488484 PMCID: PMC108882 DOI: 10.1128/mcb.18.3.1670] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/1997] [Accepted: 12/02/1997] [Indexed: 02/06/2023] Open
Abstract
The autonomously replicating sequence (ARS) element ars3002 is associated with the most active replication origin within a cluster of three closely spaced origins on chromosome III of Schizosaccharomyces pombe. A 361-bp portion of ars3002 containing detectable ARS activity includes multiple near matches to the S. pombe ARS consensus sequence previously reported by Maundrell et al. (K. Maundrell, A. Hutchison, and S. Shall, EMBO J. 7:2203-2209, 1988). Using a gel shift assay with a multimer of an oligonucleotide containing three overlapping matches to the Maundrell ARS consensus sequence, we have detected several proteins in S. pombe crude extracts that bind to the oligonucleotide and ars3002. One of these proteins, ARS binding protein 1, was previously described (Abpl [Y. Murakami, J. A. Huberman, and J. Hurwitz, Proc. Natl. Acad. Sci. USA 93:502-507, 1996]). In this report the isolation, characterization, and cloning of a second binding activity, designated ARS binding protein 2 (Abp2), are described. Purified Abp2 has an apparent molecular mass of 75 kDa. Footprinting analyses revealed that it binds preferentially to overlapping near matches to the Maundrell ARS consensus sequence. The gene abp2 was isolated, sequenced, and overexpressed in Escherichia coli. The DNA binding activity of overexpressed Abp2 was similar to that of native Abp2. The deduced amino acid sequence contains a region similar to a proline-rich motif (GRP) present in several proteins that bind A+T-rich DNA sequences. Replacement of amino acids within this motif with alanine either abolished or markedly reduced the DNA binding activity of the mutated Abp2 protein, indicating that this motif is essential for the DNA binding activity of Abp2. Disruption of the abp2 gene showed that the gene is not essential for cell viability. However, at elevated temperatures the null mutant was less viable than the wild type and exhibited changes in nuclear morphology. The null mutant entered mitosis with delayed kinetics when DNA replication was blocked with hydroxyurea, and advancement through mitosis led to the loss of cell viability and aberrant formation of septa. The null mutant was also sensitive to UV radiation, suggesting that Abp2 may play a role in regulating the cell cycle response to stress signals.
Collapse
Affiliation(s)
- J P Sanchez
- Graduate Program in Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
49
|
Sanchez JA, Kim SM, Huberman JA. Ribosomal DNA replication in the fission yeast, Schizosaccharomyces pombe. Exp Cell Res 1998; 238:220-30. [PMID: 9457075 DOI: 10.1006/excr.1997.3835] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have employed genetic and two-dimensional (2D) gel electrophoretic methods to identify replication initiation, pausing, and termination sites in the tandem ribosomal DNA (rDNA) repeats of the fission yeast, Schizosaccharomyces pombe. An autonomously replicating sequence (ARS) element, ars3001, maps to a 2.3-kb restriction fragment spanning the junction between the nontranscribed spacer (NTS) and the external transcribed spacer upstream of the ribosomal RNA genes, and 2D gel analysis shows that replication initiates in the NTS portion of the same fragment. A pause region at the 3' end of the rRNA genes inhibits forks from entering these genes counter to the direction of transcription. Thus, most forks move through the genes in the same direction as transcription. In these respects, fission yeast rDNA replication resembles that in the budding yeast, Saccharomyces cerevisiae, and in multicellular eukaryotic organisms. A feature which, so far, has been detected only in fission yeast is the pausing of replication forks in a broad region near the 5.8S rRNA gene.
Collapse
Affiliation(s)
- J A Sanchez
- Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| | | | | |
Collapse
|
50
|
Raychaudhuri S, Byers R, Upton T, Eisenberg S. Functional analysis of a replication origin from Saccharomyces cerevisiae: identification of a new replication enhancer. Nucleic Acids Res 1997; 25:5057-64. [PMID: 9396816 PMCID: PMC147147 DOI: 10.1093/nar/25.24.5057] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Yeast replication origins have a modular arrangement of essential DNA sequences containing the ARS consensus sequence (ACS) flanked by auxiliary DNA elements which stimulate origin function. One of the auxiliary elements identified at several origins is a DNA replication enhancer that binds the Abf1p protein. We have isolated an ARS sequence from Saccharomyces cerevisiae based on its ability to bind Abf1p. Here we present a detailed molecular dissection of this ARS, designated ARS 1501, and we demonstrate that it functions as a genomic replication origin on chromosome XV . Mutagenesis of the Abf1p DNA-binding sites revealed that these sequences did not contribute significantly to ARS function. Instead, a new DNA element important for replication, designated REN1501, has been located 5' to the T-rich strand of the ACS. We show that REN1501 functions in either orientation and at variable distances from the ACS, defining this element as a DNA replication enhancer. Most significantly, point mutations within this element decreased the stability of plasmids bearing ARS 1501, suggesting that REN1501 binds a protein important for replication initiation. Only three elements found at origins are known to specifically bind proteins. These include the ARS essential sequences and the Abf1p and Rap1p DNA-binding sites. We show that the function of REN1501 at the origin cannot be replaced by a Rap1p DNA-binding site or a site that binds the transcriptional factor Gal4p and can only be partially substituted for by an Abf1p recognition sequence. This implies that the role of the REN1501 element at the ARS 1501 origin is specific, and suggest that the frequency of origin firing in eukaryotic cells may be regulated by origin-specific enhancers.
Collapse
Affiliation(s)
- S Raychaudhuri
- Department of Microbiology, School of Medicine, The University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|