1
|
Torgasheva NA, Diatlova EA, Grin IR, Endutkin AV, Mechetin GV, Vokhtantsev IP, Yudkina AV, Zharkov DO. Noncatalytic Domains in DNA Glycosylases. Int J Mol Sci 2022; 23:ijms23137286. [PMID: 35806289 PMCID: PMC9266487 DOI: 10.3390/ijms23137286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Many proteins consist of two or more structural domains: separate parts that have a defined structure and function. For example, in enzymes, the catalytic activity is often localized in a core fragment, while other domains or disordered parts of the same protein participate in a number of regulatory processes. This situation is often observed in many DNA glycosylases, the proteins that remove damaged nucleobases thus initiating base excision DNA repair. This review covers the present knowledge about the functions and evolution of such noncatalytic parts in DNA glycosylases, mostly concerned with the human enzymes but also considering some unique members of this group coming from plants and prokaryotes.
Collapse
Affiliation(s)
- Natalia A. Torgasheva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
| | - Inga R. Grin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Ivan P. Vokhtantsev
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
| | - Anna V. Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
2
|
Abstract
DNA methylation is a significant regulator of gene expression, and its role in carcinogenesis recently has been a subject of remarkable interest. The aim of this review is to analyze the mechanism and cell regulatory effects of both hypo- and hyper-DNA methylation on cancer. In this review, we report new developments and their implications regarding the effects of DNA methylation on cancer development. Indeed, alteration of the pattern of DNA methylation has been a constant finding in cancer cells of the same type and differences in the pattern of DNA methylation not only occur in a variety of tumor types, but also in developmental processes Furthermore, the pattern of histone modification appears to be a predicator of the risk of recurrence of human cancers. It is well known that hypermethylation represses transcription of the promoter sections of tumor-suppressor genes leading to gene silencing. However, hypomethylation also has been identified as a cause of oncogenesis. Furthermore, experiments concerning the mechanism of methylation and its control have led to the discovery of many regulatory enzymes and proteins. This review reports on methods developed for the detection of 5-hydroxymethylcytosine methylation at the 5-methylcytosine of protein domains in the CpG context compared to non-methylated DNA, histone modification, and microRNA change.
Collapse
|
3
|
Santos ES, Raez LE, DeCesare T, Singal R. DNA methylation: its role in lung carcinogenesis and therapeutic implications. Expert Rev Anticancer Ther 2014; 5:667-79. [PMID: 16111467 DOI: 10.1586/14737140.5.4.667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new era in the treatment of malignant diseases has been observed through the use of biologic agents targeting growth factor receptors, signaling pathways, gene mutations and others. The results have been impressive in some diseases and modest in others. The discovery of new targets has expanded our knowledge of different mechanisms in tumorigenesis. One of these mechanisms has been DNA methylation, which is an important gene transcription regulator. Although the role of methylation in lung carcinogenesis is not well understood, there is an enormous quantity of evolving data suggesting its critical role in lung cancer. In this review, the authors will discuss methylation in lung carcinogenesis and its possible clinical implications.
Collapse
Affiliation(s)
- Edgardo S Santos
- Division of Hematology-Oncology, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL-78, New Orleans, LA 70112, USA.
| | | | | | | |
Collapse
|
4
|
TET2 plays an essential role in erythropoiesis by regulating lineage-specific genes via DNA oxidative demethylation in a zebrafish model. Mol Cell Biol 2014; 34:989-1002. [PMID: 24396069 DOI: 10.1128/mcb.01061-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although epigenetic modulation is critical for a variety of cellular activities, its role in erythropoiesis remains poorly understood. Ten-eleven translocation (TET) molecules participate in methylcytosine (5mC) hydroxylation, which results in DNA demethylation in several biological processes. In this research, the role of TETs in erythropoiesis was investigated by using the zebrafish model, where three TET homologs were identified. These homologs share conserved structural domains with their mammalian counterparts. Zebrafish TETs mediate the conversion of 5mC to hydroxymethylcytosine (5hmC) in zebrafish embryos, and the deletion of TET2 inhibits erythropoiesis by suppressing the expression of the scl, gata-1, and cmyb genes. TET2-upregulated lineage-specific genes and erythropoiesis are closely associated with the occurrence of 5hmC and demethylation in the intermediate CpG promoters (ICPs) of scl, gata-1, cmyb, which frequently occur at specific regions or CpG sites of these ICPs. Moreover, TET2 regulates the formation and differentiation of erythroid progenitors, and deletion of TET2 leads to erythrocyte dysplasia and anemia. Here, we preliminarily proved that TET2 plays an essential role in erythrocyte development by regulating lineage-specific genes via DNA oxidative demethylation. This report is anticipated to broaden current information on hematopoiesis and pathogenesis of hematopoiesis-related diseases.
Collapse
|
5
|
Zhang H, Zhu JK. Active DNA demethylation in plants and animals. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2012. [PMID: 23197304 DOI: 10.1101/sqb.2012.77.014936] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Active DNA demethylation regulates many vital biological processes, including early development and locus-specific gene expression in plants and animals. In Arabidopsis, bifunctional DNA glycosylases directly excise the 5-methylcytosine base and then cleave the DNA backbone at the abasic site. Recent evidence suggests that mammals utilize DNA glycosylases after 5-methylcytosine is oxidized and/or deaminated. In both cases, the resultant single-nucleotide gap is subsequently filled with an unmodified cytosine through the DNA base excision repair pathway. The enzymatic removal of 5-methylcytosine is tightly integrated with histone modifications and possibly noncoding RNAs. Future research will increase our understanding of the mechanisms and critical roles of active DNA demethylation in various cellular processes as well as inspire novel genetic and chemical therapies for epigenetic disorders.
Collapse
Affiliation(s)
- H Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
6
|
Imamura T. Epigenetic setting for long-term expression of estrogen receptor α and androgen receptor in cells. Horm Behav 2011; 59:345-52. [PMID: 20619266 DOI: 10.1016/j.yhbeh.2010.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 05/20/2010] [Accepted: 05/22/2010] [Indexed: 12/15/2022]
Abstract
Epigenetic regulation of the nuclear estrogen and androgen receptors, ER and AR, constitutes the molecular basis for the long-lasting effects of sex steroids on gene expression in cells. The effects prevail at hundreds of gene loci in the proximity of estrogen- and androgen-responsive elements and many more such loci through intra- and even inter-chromosomal level regulation. Such a memory system should be active in a flexible manner during the early development of vertebrates, and later replaced to establish more stable marks on genomic DNA. In mammals, DNA methylation is utilized as a very stable mark for silencing of the ERα and AR isoform expression during cancer cell and normal brain development. The factors affecting the DNA methylation of the ERα and AR genes in cells include estrogen and androgen. Since testosterone induces brain masculinization through its aromatization to estradiol in a narrow time window of the perinatal stage in rodents, the autoregulation of estrogen receptors, especially the predominant form of ERα, at the level of DNA methylation to set up the "cell memory" affecting the sexually differentiated status of brain function has been attracting increasing attention. The alternative usage of the androgen-AR system for brain masculinization and estrogenic regulation of AR expression in some species imply that the DNA methylation pattern of the AR gene can be established by closely related but different systems for sex steroid-induced phenomena, including brain masculinization.
Collapse
Affiliation(s)
- Takuya Imamura
- Laboratory for Biodiversity, Global COE Program, Division of Biological Science, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
7
|
Sytnikova YA, Kubarenko AV, Schäfer A, Weber ANR, Niehrs C. Gadd45a is an RNA binding protein and is localized in nuclear speckles. PLoS One 2011; 6:e14500. [PMID: 21249130 PMCID: PMC3017548 DOI: 10.1371/journal.pone.0014500] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 12/09/2010] [Indexed: 01/06/2023] Open
Abstract
Background The Gadd45 proteins play important roles in growth control, maintenance of genomic stability, DNA repair, and apoptosis. Recently, Gadd45 proteins have also been implicated in epigenetic gene regulation by promoting active DNA demethylation. Gadd45 proteins have sequence homology with the L7Ae/L30e/S12e RNA binding superfamily of ribosomal proteins, which raises the question if they may interact directly with nucleic acids. Principal Findings Here we show that Gadd45a binds RNA but not single- or double stranded DNA or methylated DNA in vitro. Sucrose density gradient centrifugation experiments demonstrate that Gadd45a is present in high molecular weight particles, which are RNase sensitive. Gadd45a displays RNase-sensitive colocalization in nuclear speckles with the RNA helicase p68 and the RNA binding protein SC35. A K45A point mutation defective in RNA binding was still active in DNA demethylation. This suggests that RNA binding is not absolutely essential for demethylation of an artificial substrate. A point mutation at G39 impared RNA binding, nuclear speckle localization and DNA demethylation, emphasizing its relevance for Gadd45a function. Significance The results implicate RNA in Gadd45a function and suggest that Gadd45a is associated with a ribonucleoprotein particle.
Collapse
Affiliation(s)
- Yuliya A. Sytnikova
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Krebsforschungszentrum, Heidelberg, Germany
| | - Andriy V. Kubarenko
- Division of Toll-like Receptors and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Andrea Schäfer
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Krebsforschungszentrum, Heidelberg, Germany
| | - Alexander N. R. Weber
- Division of Toll-like Receptors and Cancer, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Krebsforschungszentrum, Heidelberg, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
- * E-mail:
| |
Collapse
|
8
|
Abstract
DNA methylation is one of the best-characterized epigenetic modifications and has been implicated in numerous biological processes, including transposable element silencing, genomic imprinting and X chromosome inactivation. Compared with other epigenetic modifications, DNA methylation is thought to be relatively stable. Despite its role in long-term silencing, DNA methylation is more dynamic than originally thought as active DNA demethylation has been observed during specific stages of development. In the past decade, many enzymes have been proposed to carry out active DNA demethylation and growing evidence suggests that, depending on the context, this process may be achieved by multiple mechanisms. Insight into how DNA methylation is dynamically regulated will broaden our understanding of epigenetic regulation and have great implications in somatic cell reprogramming and regenerative medicine.
Collapse
|
9
|
Abstract
Active DNA demethylation is involved in many vital developmental and physiological processes of plants and animals. Recent genetic and biochemical studies in Arabidopsis have demonstrated that a subfamily of DNA glycosylases function to promote DNA demethylation through a base excision-repair pathway. These specialized bifunctional DNA glycosylases remove the 5-methylcytosine base and then cleave the DNA backbone at the abasic site, resulting in a gap that is then filled with an unmethylated cytosine nucleotide by as yet unknown DNA polymerase and ligase enzymes. Evidence suggests that active DNA demethylation in mammalian cells is also mediated at least in part by a base excision repair pathway where the AID/Apobec family of deaminases convert 5-methylcytosine to thymine followed by G/T mismatch repair by the DNA glycosylase MBD4 or TDG. This review also discusses other possible mechanisms of active DNA demethylation, how genome DNA methylation status might be sensed to regulate the expression of demethylase genes, and the targeting of demethylases by small RNAs.
Collapse
Affiliation(s)
- Jian-Kang Zhu
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
10
|
Active DNA demethylation and DNA repair. Differentiation 2008; 77:1-11. [PMID: 19281759 DOI: 10.1016/j.diff.2008.09.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 06/19/2008] [Accepted: 07/07/2008] [Indexed: 12/17/2022]
Abstract
DNA methylation on cytosine is an epigenetic modification and is essential for gene regulation and genome stability in vertebrates. Traditionally DNA methylation was considered as the most stable of all heritable epigenetic marks. However, it has become clear that DNA methylation is reversible by enzymatic "active" DNA demethylation, with examples in plant cells, animal development and immune cells. It emerges that "pruning" of methylated cytosines by active DNA demethylation is an important determinant for the DNA methylation signature of a cell. Work in plants and animals shows that demethylation occurs by base excision and nucleotide excision repair. Far from merely protecting genomic integrity from environmental insult, DNA repair is therefore at the heart of an epigenetic activation process.
Collapse
|
11
|
Boland MJ, Christman JK. Characterization of Dnmt3b:thymine-DNA glycosylase interaction and stimulation of thymine glycosylase-mediated repair by DNA methyltransferase(s) and RNA. J Mol Biol 2008; 379:492-504. [PMID: 18452947 PMCID: PMC2705441 DOI: 10.1016/j.jmb.2008.02.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 02/21/2008] [Accepted: 02/25/2008] [Indexed: 11/22/2022]
Abstract
Methylation of cytosine residues in CpG dinucleotides plays an important role in epigenetic regulation of gene expression and chromatin structure/stability in higher eukaryotes. DNA methylation patterns are established and maintained at CpG dinucleotides by DNA methyltransferases (Dnmt1, Dnmt3a, and Dnmt3b). In mammals and many other eukaryotes, the CpG dinucleotide is underrepresented in the genome. This loss is postulated to be the result of unrepaired deamination of cytosine and 5-methylcytosine to uracil and thymine, respectively. Two thymine glycosylases are believed to reduce the impact of 5-methylcytosine deamination. G/T mismatch-specific thymine-DNA glycosylase (Tdg) and methyl-CpG binding domain protein 4 can both excise uracil or thymine at U.G and T.G mismatches to initiate base excision repair. Here, we report the characterization of interactions between Dnmt3b and both Tdg and methyl-CpG binding domain protein 4. Our results demonstrate (1) that both Tdg and Dnmt3b are colocalized to heterochromatin and (2) reduction of T.G mismatch repair efficiency upon loss of DNA methyltransferase expression, as well as a requirement for an RNA component for correct T.G mismatch repair.
Collapse
Affiliation(s)
- Michael J. Boland
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE. 68198
| | - Judith K. Christman
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE. 68198
- The Eppley Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE. 68198
- UNMC/Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE. 68198
| |
Collapse
|
12
|
Latham T, Gilbert N, Ramsahoye B. DNA methylation in mouse embryonic stem cells and development. Cell Tissue Res 2007; 331:31-55. [PMID: 18060563 DOI: 10.1007/s00441-007-0537-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 10/17/2007] [Indexed: 01/01/2023]
Abstract
Mammalian development is associated with considerable changes in global DNA methylation levels at times of genomic reprogramming. Normal DNA methylation is essential for development but, despite considerable advances in our understanding of the DNA methyltransferases, the reason that development fails when DNA methylation is deficient remains unclear. Furthermore, although much is known about the enzymes that cause DNA methylation, comparatively little is known about the mechanisms or significance of active demethylation in early development. In this review, we discuss the roles of the various DNA methyltransferases and their likely functions in development.
Collapse
Affiliation(s)
- Tom Latham
- Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
13
|
Vos LJ, Famulski JK, Chan GKT. How to build a centromere: from centromeric and pericentromeric chromatin to kinetochore assembly. Biochem Cell Biol 2007; 84:619-39. [PMID: 16936833 DOI: 10.1139/o06-078] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The assembly of the centromere, a specialized region of DNA along with a constitutive protein complex which resides at the primary constriction and is the site of kinetochore formation, has been puzzling biologists for many years. Recent advances in the fields of chromatin, microscopy, and proteomics have shed a new light on this complex and essential process. Here we review recently discovered mechanisms and proteins involved in determining mammalian centromere location and assembly. The centromeric core protein CENP-A, a histone H3 variant, is hypothesized to designate centromere localization by incorporation into centromere-specific nucleosomes and is essential for the formation of a functional kinetochore. It has been found that centromere localization of centromere protein A (CENP-A), and therefore centromere determination, requires proteins involved in histone deacetylation, as well as base excision DNA repair pathways and proteolysis. In addition to the incorporation of CENP-A at the centromere, the formation of heterochromatin through histone methylation and RNA interference is also crucial for centromere formation. The assembly of the centromere and kinetochore is complex and interdependent, involving epigenetics and hierarchical protein-protein interactions.
Collapse
Affiliation(s)
- Larissa J Vos
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| | | | | |
Collapse
|
14
|
Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta Rev Cancer 2006; 1775:138-62. [PMID: 17045745 DOI: 10.1016/j.bbcan.2006.08.007] [Citation(s) in RCA: 327] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 08/24/2006] [Accepted: 08/27/2006] [Indexed: 12/14/2022]
Abstract
Changes in human DNA methylation patterns are an important feature of cancer development and progression and a potential role in other conditions such as atherosclerosis and autoimmune diseases (e.g., multiple sclerosis and lupus) is being recognised. The cancer genome is frequently characterised by hypermethylation of specific genes concurrently with an overall decrease in the level of 5 methyl cytosine. This hypomethylation of the genome largely affects the intergenic and intronic regions of the DNA, particularly repeat sequences and transposable elements, and is believed to result in chromosomal instability and increased mutation events. This review examines our understanding of the patterns of cancer-associated hypomethylation, and how recent advances in understanding of chromatin biology may help elucidate the mechanisms underlying repeat sequence demethylation. It also considers how global demethylation of repeat sequences including transposable elements and the site-specific hypomethylation of certain genes might contribute to the deleterious effects that ultimately result in the initiation and progression of cancer and other diseases. The use of hypomethylation of interspersed repeat sequences and genes as potential biomarkers in the early detection of tumors and their prognostic use in monitoring disease progression are also examined.
Collapse
Affiliation(s)
- Ann S Wilson
- Preventative Health National Research Flagship, North Ryde, NSW, Australia
| | | | | |
Collapse
|
15
|
Costa FF. Non-coding RNAs: New players in eukaryotic biology. Gene 2005; 357:83-94. [PMID: 16111837 DOI: 10.1016/j.gene.2005.06.019] [Citation(s) in RCA: 234] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 04/28/2005] [Accepted: 06/02/2005] [Indexed: 11/21/2022]
Abstract
The completion of the human, mouse and other eukaryotic genomes were important scientific milestones, but they were just small steps towards the understanding of eukaryotic biology. Recent transcriptome analysis and different experimental approaches have identified a surprisingly large number of non-coding RNAs (ncRNAs) in eukaryotic cells. ncRNAs comprise microRNAs, anti-sense transcripts and other Transcriptional Units containing a high density of stop codons and lacking any extensive "Open Reading Frame". They have been shown to regulate gene expression by novel mechanisms such as RNA interference, gene co-suppression, gene silencing, imprinting and DNA demethylation. It is becoming clear that these novel RNAs perform critical functions during development and cell differentiation. There is also mounting evidence of their involvement in cancer and neurological diseases. Together, all this information indicates that ncRNAs are emerging as a new class of functional transcripts in eukaryotes. Therefore, great challenges lie in the years ahead: understanding the molecular biology of higher organisms will require revealing all proteins (Proteome), all ncRNAs (RNome) and their interactions (Interactome) in the complex molecular scenario within eukaryotic cells.
Collapse
Affiliation(s)
- Fabrício F Costa
- Molecular Neurogenetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
16
|
Stenøien HK, Pedersen B. Mutation and epimutation load in haploid and diploid life forms. J Theor Biol 2005; 233:119-26. [PMID: 15615625 DOI: 10.1016/j.jtbi.2004.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2004] [Revised: 09/03/2004] [Accepted: 09/23/2004] [Indexed: 11/29/2022]
Abstract
Epigenetic differentiation is the potentially heritable changes in levels of gene expression not caused by DNA sequence changes. Here, a classification scheme of mutations and epimutations is introduced, enabling a simple analysis of mutation and epimutation load in haploid and diploid organisms. It is found that the deleterious effect of epimutations is mainly determined by epimutation rate and degree of reversibility. Inherited epimutations have the same fitness consequences as inherited mutations. With complete reversibility and no inheritance, then epimutations have the same fitness consequences as somatic mutations. It is argued that organisms with somatic inheritance may experience more genetic load than organisms without somatic inheritance due to inherited epimutations in the former. This may partly explain the maintenance of soma/germ differentiation in many life forms. It is also argued that masking of deleterious somatic mutations may not necessarily explain the evolution of diploidy in life forms with inherited epimutations.
Collapse
Affiliation(s)
- Hans K Stenøien
- Plant Ecology/Department of Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Villav. 14, Uppsala, SE-752 36, Sweden.
| | | |
Collapse
|
17
|
Abstract
DNA methylation is an important regulator of gene transcription, and its role in carcinogenesis has been a topic of considerable interest in the last few years. Alterations in DNA methylation are common in a variety of tumors as well as in development. Of all epigenetic modifications, hypermethylation, which represses transcription of the promoter regions of tumor suppressor genes leading to gene silencing, has been most extensively studied. However, global hypomethylation has also been recognized as a cause of oncogenesis. New information concerning the mechanism of methylation and its control has led to the discovery of many regulatory proteins and enzymes. The contribution of dietary folate and methylene terahydrofolate reductase polymorphisms to methylation patterns in normal and cancer tissues is under intense investigation. As methylation occurs early and can be detected in body fluids, it may be of potential use in early detection of tumors and for determining the prognosis. Because DNA methylation is reversible, drugs like 5'-azacytidine, decitabine, and histone deacetylase inhibitors are being used to treat a variety of tumors. Novel demethylating agents such as antisense DNA methyl transferase and small interference RNA are being developed, making the field of DNA methylation wider and more exciting.
Collapse
Affiliation(s)
- Partha M Das
- Department of Medicine, Miami VA Medical Center, Miami, FL, USA
| | | |
Collapse
|
18
|
Watson RE, Curtin GM, Hellmann GM, Doolittle DJ, Goodman JI. Increased DNA methylation in the HoxA5 promoter region correlates with decreased expression of the gene during tumor promotion. Mol Carcinog 2004; 41:54-66. [PMID: 15352125 DOI: 10.1002/mc.20043] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Promoter-region DNA methylation inhibits transcription. A two-stage SENCAR (sensitive to mouse carcinogenesis) mouse skin carcinogenicity model was used to examine gene-specific changes in methylation during skin tumor promotion. Analysis was performed on 7,12-dimethylbenz[a]anthracene (DMBA)-initiated skin promoted with 9, 18, 27, or 36 mg cigarette smoke condensate (CSC) for 9 wk, or 27 mg CSC for 9 wk and sacrificed 6 wk afterwards (recovery group). Additionally, tumors arising following promotion with 27 mg CSC for 29 wk were assessed. Gene array analysis identified differentially expressed genes. Expression of HoxA5, a tumor suppressor gene, was decreased following 9 wk of treatment with 27 mg CSC, and returned to control levels during recovery. HoxA5 promoter methylation was measured with the enzymatic regional methylation assay (ERMA). DNA was bisulfite-modified, PCR-amplified with primers containing dam sites, incubated with [14C-methyl] S-adenosyl-L-methionine (SAM) and dam methyltransferase for DNA quantification, then incubated with [3H-methyl] SAM and SssI methylase to quantify methylation status. Higher 3H/14C ratios indicate increased methylation. The 3H/14C ratios of animals promoted with 27 or 36 mg CSC (48.2 +/- 6.9 and 24.2 +/- 6.1, respectively) were higher than the control or recovery group ratios (12.3 +/- 0.1 and 12.6 +/- 0.3, respectively); sequence analysis supported these findings. Increased methylation of p16 or O6 methylguanine methyltranferase (MGMT) was detected in 4/8 (50%) of the tumor samples from mice promoted with 27 mg CSC. These data suggest that increased DNA methylation contributes to the downregulation of HoxA5, and combined with hypermethylation of p16 or MGMT, this might facilitate the clonal expansion of increasingly aberrant cells during promotion.
Collapse
Affiliation(s)
- Rebecca E Watson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
19
|
Imamura T, Yamamoto S, Ohgane J, Hattori N, Tanaka S, Shiota K. Non-coding RNA directed DNA demethylation of Sphk1 CpG island. Biochem Biophys Res Commun 2004; 322:593-600. [PMID: 15325271 DOI: 10.1016/j.bbrc.2004.07.159] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Indexed: 10/26/2022]
Abstract
The formation of DNA methylation patterns is one of the epigenetic events that underlie mammalian development. The Sphk1 CpG island is a target for tissue-dependent DNA methylation as well as a template for generating multiple subtypes. The number of mammalian non-coding RNA genes is rapidly expanding. In this study, we found endogenous antisense transcripts, Khps1 subtypes with different sizes (600-20,000nt). A subtype, Khps1a, was a 1290-bp, non-coding, 5'-capped and 3'-polyadenylated RNA that originated from the CpG island and overlapped with a tissue-dependent differentially methylated region (T-DMR) of Sphk1. Intriguingly, overexpression of two fragments of Khps1 caused demethylation of CG sites in the T-DMR. Furthermore, this RNA-directed demethylation was associated with DNA methylation at three CC(A/T)GG sites in the T-DMR. The link between the RNA-directed CG demethylation and non-CG methylation provides a novel mechanism of epigenetic regulation and potential tool for epigenetic manipulation of mammalian cells.
Collapse
Affiliation(s)
- Takuya Imamura
- Laboratory of Cellular Biochemistry, Veterinary Medical Science/Animal Resource Science, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Vairapandi M. Characterization of DNA demethylation in normal and cancerous cell lines and the regulatory role of cell cycle proteins in human DNA demethylase activity. J Cell Biochem 2004; 91:572-83. [PMID: 14755686 DOI: 10.1002/jcb.10749] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA methylation/demethylation constitutes a major consequence in all biological processes involving transcription, differentiation, development, DNA repair, recombination, and chromosome organization. Our earlier studies established that demethylation of CpG rich sequence by human DNA demethylase activity (5-methylcytosine-DNA glycosylase (5MeC-DNA glycosylase)) resembles "base excision DNA repair activity" and creates single-strand breaks on DNA that is associated with proliferating cell nuclear antigen (PCNA). Here in this report, we have identified differential DNA demethylation targets (hemi-methylated vs. fully-methylated) in normal cell lines and cancerous cell lines, and a shortened G(0)/G(1) resting time in cancerous cell lines than the normal cell lines. We have identified that in normal HFL1 fibroblast cell line, DNA demethylase activity targets hemi-methylated CpG specific sites on DNA. This normal cell line DNA demethylase activity associates with PCNA immune complex that is inhibited by CDKI proteins p21(waf1)/Gadd45alpha and Gadd45beta. While in cancerous LnCap and BT20 cell lines DNA demethylase activity targets fully-methylated CpG specific sites on DNA. This cancer cell line DNA demethylase activity is not associated with PCNA immune complex and is not inhibited by CDKI proteins p21(waf1)/Gadd45alpha and Gadd45beta. We have also identified that the fully-methylated CpG specific DNA demethylase activity from cancerous cell lines to associate with p300/CBP protein. These significant observations of variable targets of DNA demethylation and alternate partner proteins for DNA demethylase activity in cancerous cell lines are discussed in terms of double-strand DNA breaks versus single-strand DNA breaks and their role in the exit of G(1)/G(2) cell cycle stages. Also, the inability of cell cycle regulatory proteins like PCNA, p21(waf1), and Gadd45 to control DNA demethylase activity in cancerous cell lines is discussed in terms of accelerated G(1)/G(2) cell cycle stage exit to facilitate unregulated cellular proliferation, loss of control of chromosomal organization, and the development of oncogenesis in cancerous cell lines.
Collapse
Affiliation(s)
- Mariappan Vairapandi
- The Fels Institute for Cancer Research and Molecular Biology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA.
| |
Collapse
|
21
|
Baker EK, El-Osta A. The rise of DNA methylation and the importance of chromatin on multidrug resistance in cancer. Exp Cell Res 2003; 290:177-94. [PMID: 14567978 DOI: 10.1016/s0014-4827(03)00342-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, the different classes of drugs and regimens used clinically have provided an improvement in tumour management. However, treatment is often palliative for the majority of cancer patients. Transformed cells respond poorly to chemotherapy mainly due to the development of the multidrug resistance (MDR) phenotype. Response to treatment does not generally result in complete remission and disease cure is uncommon for patients presenting with advanced stage cancer. Successful treatment of cancer requires a clearer understanding of chemotherapeutic resistance. Here, we examine what is known of one of the most extensively studied mechanisms of cellular drug resistance. The human multidrug resistance gene 1 (MDR1) is associated with expression of p-glycoprotein (Pgp). A transmembrane protein, Pgp acts as an efflux pump and reduces intracellular drug levels and thus its effectiveness as an antitumor agent. The precise mechanism of transcriptional regulation has been unclear due to the complex regulatory nature of the gene. It has become increasingly apparent that trans-activation or genetic amplification is by no means the only mechanism of activation. Consequently, alternative pathways have received more attention in the area of epigenetics to help explain transcriptional competence at a higher level of organization. The goal of this article is to highlight important findings in the field of methylation and explain how they impinge on MDR1 gene regulation. In this review, we cover the current information and postulate that epigenetic modification of MDR1 chromatin influences gene transcription in leukaemia. Finally, we explore transcriptional regulation and highlight recent progress with engineered ZFP's (zinc finger proteins).
Collapse
Affiliation(s)
- Emma K Baker
- The Alfred Medical Research and Education Precinct, Baker Medical Research Institute, Epigenetics in Human Health and Disease Laboratory, Second Floor, Commercial Road, Prahran, Victoria 3181, Australia
| | | |
Collapse
|
22
|
Bruniquel D, Schwartz RH. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol 2003; 4:235-40. [PMID: 12548284 DOI: 10.1038/ni887] [Citation(s) in RCA: 351] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2002] [Accepted: 12/21/2002] [Indexed: 11/09/2022]
Abstract
A role for DNA demethylation in transcriptional regulation of genes expressed in differentiated somatic cells remains controversial. Here, we define a small region in the promoter-enhancer of the interleukin-2 (Il2) gene that demethylates in T lymphocytes following activation, and remains demethylated thereafter. This epigenetic change was necessary and sufficient to enhance transcription in reporter plasmids. The demethylation process started as early as 20 minutes after stimulation and was not prevented by a G1 to S phase cell cycle inhibitor that blocks DNA replication. These results imply that this demethylation process proceeds by an active enzymatic mechanism.
Collapse
Affiliation(s)
- Denis Bruniquel
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0420, USA
| | | |
Collapse
|
23
|
Patkin EL. Epigenetic mechanisms for primary differentiation in mammalian embryos. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 216:81-129. [PMID: 12049211 DOI: 10.1016/s0074-7696(02)16004-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review examines main developments related to the interface between primary mammalian cell differentiation and various aspects of chromosomal structure changes, such as heterochromatin dynamics, DNA methylation, mitotic recombination, and inter- and intrachromosomal differentiation. In particular, X chromosome difference, imprinting, chromosomal banding, methylation pattern, single-strand DNA breaks, sister chromatid exchanges (SCEs), and sister chromatid asymmetry are considered. A hypothesis is put forward which implies the existence of an epigenetic asymmetry versus mirror symmetry of sister chromatids for any DNA sequences. Such epigenetic asymmetry appears as a result of asymmetry of sister chromatid organization and of SCE and is a necessary (not sufficient) condition for creating cell diversity. The sister chromatid asymmetry arises as a result of consecutive rounds of active and passive demethylation which leads after chromatin assembly events to chromatid difference. Single-strand DNA breaks that emerge during demethylation trigger reparation machinery, provend as sister chromatid exchanges, which are not epigenetically neutral in this case. Taken together, chromatid asymmetry and SCE lead to cell diversity regarding their future fate. Such cells are considered pluripotent stem cells which after interplay between a set of chromosomal domains and certain substances localized within the cytoplasmic compartments (and possibly cell interactions) can cause sister cells to express different gene chains. A model is suggested that may be useful for stem cell technology and studies of carcinogenesis.
Collapse
Affiliation(s)
- Eugene L Patkin
- Department of Molecular Genetics, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St Petersburg
| |
Collapse
|
24
|
Abstract
This review focuses on the role that DNA methylation plays in the regulation of normal and aberrant gene expression and on how, in a hypothesis-driven fashion, altered DNA methylation may be viewed as a secondary mechanism involved in carcinogenesis. Research aimed at discerning the mechanisms by which chemicals can transform normal cells into frank carcinomas has both theoretical and practical implications. Through an increased understanding of the mechanisms by which chemicals affect the carcinogenic process, we learn more about basic biology while, at the same time, providing the type of information required to make more rational safety assessment decisions concerning their actual potential to cause cancer under particular conditions of exposure. One key question is: does the mechanism of action of the chemical in question involve a secondary mechanism and, if so, what dose may be below its threshold?
Collapse
Affiliation(s)
- Jay I Goodman
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
25
|
Zluvova J, Janousek B, Vyskot B. Immunohistochemical study of DNA methylation dynamics during plant development. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:2265-73. [PMID: 11709576 DOI: 10.1093/jexbot/52.365.2265] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DNA methylation represents one of the key processes that play an important role in the transcriptional control of gene expression. The role of cytosine methylation in plant development has been demonstrated by at least three different kinds of evidence: parent-specific expression of some genes in developing seeds, control of flowering time and floral morphogenesis, and correlation with silencing of intrusive DNA sequences (mobile genetic elements and transgenes). In this work global changes in DNA methylation during seed germination and shoot apical meristem development in Silene latifolia have been studied using an indirect immunohistochemical approach. The data presented show that a rapid decrease in global DNA methylation during seed germination occurs first in endosperm tissue and subsequently in the hypocotyl. Using 5-bromo-2'-deoxyuridine pulses, it has been demonstrated that these demethylation events occurred before cell division had begun. In the early post-germination period, a decrease in DNA methylation was detected in cotyledons, also before cell division was observed. Taken together, these results indicate that DNA demethylation takes place in a non-replicative way, probably by an active mechanism. The central zone of the shoot apical meristem remains highly methylated during the whole period of vegetative growth and in this region, only a low cell division activity was found. However, upon the transition of the shoot apical meristem to the floral bud, the meristem both decreased its high methylation status and its cells started to divide. These data indicate that the central zone of the shoot apical meristem can represent a relatively quiescent 'germ-line' which is activated upon flowering to form spores and gametes.
Collapse
Affiliation(s)
- J Zluvova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska str. 135, CZ-612 65 Brno, Czech Republic
| | | | | |
Collapse
|
26
|
Kress C, Thomassin H, Grange T. Local DNA demethylation in vertebrates: how could it be performed and targeted? FEBS Lett 2001; 494:135-40. [PMID: 11311228 DOI: 10.1016/s0014-5793(01)02328-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In vertebrates, cytosine methylation is an epigenetic DNA modification that participates in genome stability and gene repression. Methylation patterns are either maintained throughout cell division, or modified by global or local de novo methylation and demethylation. Site-specific demethylation is a rather elusive process that occurs mainly in parallel to gene activation during development. In light of our studies of the glucocorticoid-dependent DNA demethylation of the tyrosine aminotransferase gene, we discuss the potential biochemical mechanisms allowing DNA demethylation and its targeting to specific sequences by transcription factors as well as possible links to DNA replication and chromatin remodelling.
Collapse
Affiliation(s)
- C Kress
- Institut Jacques Monod du CNRS, Universités Paris 6-7, Tour 43, 2 Place Jussieu, 75251 Paris Cedex 05, France
| | | | | |
Collapse
|
27
|
Zhu B, Zheng Y, Angliker H, Schwarz S, Thiry S, Siegmann M, Jost JP. 5-Methylcytosine DNA glycosylase activity is also present in the human MBD4 (G/T mismatch glycosylase) and in a related avian sequence. Nucleic Acids Res 2000; 28:4157-65. [PMID: 11058112 PMCID: PMC113156 DOI: 10.1093/nar/28.21.4157] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A 1468 bp cDNA coding for the chicken homolog of the human MBD4 G/T mismatch DNA glycosylase was isolated and sequenced. The derived amino acid sequence (416 amino acids) shows 46% identity with the human MBD4 and the conserved catalytic region at the C-terminal end (170 amino acids) has 90% identity. The non-conserved region of the avian protein has no consensus sequence for the methylated DNA binding domain. The recombinant proteins from human and chicken have G/T mismatch as well as 5-methylcytosine (5-MeC) DNA glycosylase activities. When tested by gel shift assays, human recombinant protein with or without the methylated DNA binding domain binds equally well to symmetrically, hemimethylated DNA and non-methylated DNA. However, the enzyme has only 5-MeC DNA glycosylase activity with the hemimethylated DNA. Footprinting of human MBD4 and of an N-terminal deletion mutant with partially depurinated and depyrimidinated substrate reveal a selective binding of the proteins to the modified substrate around the CpG. As for 5-MeC DNA glycosylase purified from chicken embryos, MBD4 does not use oligonucleotides containing mCpA, mCpT or mCpC as substrates. An mCpG within an A+T-rich oligonucleotide is a much better substrate than an A+T-poor sequence. The K:(m) of human MBD4 for hemimethylated DNA is approximately 10(-7) M with a V:(max) of approximately 10(-11) mol/h/microgram protein. Deletion mutations show that G/T mismatch and 5-MeC DNA glycosylase are located in the C-terminal conserved region. In sharp contrast to the 5-MeC DNA glycosylase isolated from the chicken embryo DNA demethylation complex, the two enzymatic activities of MBD4 are strongly inhibited by RNA. In situ hybridization with antisense RNA indicate that MBD4 is only located in dividing cells of differentiating embryonic tissues.
Collapse
Affiliation(s)
- B Zhu
- Friedrich Miescher-Institut, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
We have partially purified and characterized the 5-methylcytosine removing activity (5-meC-DNA Glycosylase) from HeLa cells with 700-fold enrichment. This activity cleaves DNA specifically at fully methylated CpG sites. The mechanism of 5-meC removal is base excision from fully methylated CpG loci on DNA, producing abasic sites. Hemi-methylated DNA is not a substrate. A prominent 52 KDa protein is present in all partially purified fractions. This activity is tightly associated with other nuclear factors and proteins, which resulted in differential fractionation of this activity on ion exchange columns. One nuclear factor associated with this activity is identified as RNA. Another nuclear protein, proliferating cell nuclear antigen (PCNA) is also associated with this enzyme. Glycosylic removal of 5-meC from DNA by this activity could be involved in the regulation of transcription, replication, differentiation, and development through resultant hypomethylation of DNA.
Collapse
Affiliation(s)
- M Vairapandi
- The Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | | | | | |
Collapse
|
29
|
Schwarz S, Bourgeois C, Soussaline F, Homsy C, Podestà A, Jost JP. A CpG-rich RNA and an RNA helicase tightly associated with the DNA demethylation complex are present mainly in dividing chick embryo cells. Eur J Cell Biol 2000; 79:488-94. [PMID: 10961448 DOI: 10.1078/0171-9335-00070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the developing chicken embryo, active DNA demethylation requires both RNA and proteins (Nucleic Acids Res. 25, 2375-2380, 1997; ibid. 25, 4545-4550, 1997, FEBS Lett. 449, 251-254, 1999a). In vitro assays indicate that in the 5- and 12-day-old embryos the highest specific activity of 5-methylcytosine DNA glycosylase is found in the brain, the eyes and the skin. In situ hybridization with antisense CpG-rich RNA tightly associated to the DNA demethylation complex shows a restricted expression pattern only in proliferating tissues such as the neuroepithelia of the brain in 5-day-old embryos. The RNA is absent in differentiated tissues like the skeletal and heart muscle, liver and the crystallin-producing cells in the lens. The CpG-rich RNA is transcribed in a developmental stage-specific rather than in a cell-specific manner. In contrast transcripts of DNA methyltransferase are found in dividing and quiescent cells. In situ hybridization with a probe of a RNA helicase which is also associated with the DNA demethylation complex shows a very similar localization in mitotically active tissues as the CpG-rich RNA. The content of 5-methylcytosine in individual cells was determined with a specific monoclonal antibody and cytometric analysis on tissue sections. The results indicate that proliferating cells have on the average 15% more methylated cytosines than non-dividing cells. This represents roughly 3x10(6) more methylation sites per haploid genome.
Collapse
Affiliation(s)
- S Schwarz
- Friedrich-Miescher-Institut, Basel/Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Zhu B, Zheng Y, Hess D, Angliker H, Schwarz S, Siegmann M, Thiry S, Jost JP. 5-methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo DNA demethylation complex. Proc Natl Acad Sci U S A 2000; 97:5135-9. [PMID: 10779566 PMCID: PMC25794 DOI: 10.1073/pnas.100107597] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/1999] [Accepted: 03/10/2000] [Indexed: 11/18/2022] Open
Abstract
We previously have shown that DNA demethylation by chicken embryo 5-methylcytosine DNA glycosylase (5-MCDG) needs both RNA and proteins. One of these proteins is a RNA helicase. Further peptides were sequenced, and three of them are identical to the mammalian G/T mismatch DNA glycosylase. A 3,233-bp cDNA coding for the chicken homologue of human G/T mismatch DNA glycosylase was isolated and sequenced. The derived amino acid sequence (408 aa) shows 80% identity with the human G/T mismatch DNA glycosylase, and both the C and N-terminal parts have about 50% identity. As for the highly purified chicken embryo DNA demethylation complex the recombinant protein expressed in Escherichia coli has both G/T mismatch and 5-MCDG activities. The recombinant protein has the same substrate specificity as the chicken embryo 5-MCDG where hemimethylated DNA is a better substrate than symmetrically methylated CpGs. The activity ratio of G/T mismatch and 5-MCDG is about 30:1 for the recombinant protein expressed in E. coli and 3:1 for the purified enzyme from chicken embryos. The incubation of a recombinant CpG-rich RNA isolated from the purified DNA demethylation complex with the recombinant enzyme strongly inhibits G/T mismatch glycosylase while slightly stimulating the activity of 5-MCDG. Deletion mutations indicate that G/T mismatch and 5-MCDG activities share the same areas of the N- and C-terminal parts of the protein. In reconstitution experiments RNA helicase in the presence of recombinant RNA and ATP potentiates the activity of 5-MCDG.
Collapse
Affiliation(s)
- B Zhu
- Friedrich Miescher-Institut, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
DNA methylation, or the covalent addition of a methyl group to cytosine within the context of the CpG dinucleotide, has profound effects on the mammalian genome. These effects include transcriptional repression via inhibition of transcription factor binding or the recruitment of methyl-binding proteins and their associated chromatin remodeling factors, X chromosome inactivation, imprinting and the suppression of parasitic DNA sequences. DNA methylation is also essential for proper embryonic development; however, its presence can add an additional burden to the genome. Normal methylation patterns are frequently disrupted in tumor cells with global hypomethylation accompanying region-specific hypermethylation. When these hypermethylation events occur within the promoter of a tumor suppressor gene they will silence the gene and provide the cell with a growth advantage in a manner akin to deletions or mutations. Recent work indicating that DNA methylation is an important player in both DNA repair and genome stability as well as the discovery of a new family of DNA methyltransferases makes now a very exciting period for the methylation field. This review will highlight the major findings in the methylation field over the past 20 years then summarize the most important and interesting future directions the field is likely to take in the next millennium.
Collapse
Affiliation(s)
- K D Robertson
- University of Southern California, Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, MS 83, Los Angeles, CA 90033, USA
| | | |
Collapse
|
32
|
Turker MS. The establishment and maintenance of DNA methylation patterns in mouse somatic cells. Semin Cancer Biol 1999; 9:329-37. [PMID: 10547341 DOI: 10.1006/scbi.1999.0133] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Somatic cell DNA methylation patterns in mammals are established during embryonic development and are then maintained somewhat faithfully for the remainder of the individual's lifetime. Pattern formation can be divided into a series of linked steps that include demethylation, de novo methylation, methylation spreading, methylation blocking, and maintenance methylation. In this review, these steps will be combined to present a model for the formation and maintenance of a methylation pattern in the 5' region of the mouse Aprt gene. This model suggests that an apparently 'stable' methylation pattern results from a dynamic equilibrium between forces that promote and inhibit methylation spreading.
Collapse
Affiliation(s)
- M S Turker
- Center for Research on Occupational and Environmental Toxicology (CROET), L606, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97201, USA.
| |
Collapse
|
33
|
Antequera F, Bird A. CpG islands as genomic footprints of promoters that are associated with replication origins. Curr Biol 1999; 9:R661-7. [PMID: 10508580 DOI: 10.1016/s0960-9822(99)80418-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The primary target for DNA methylation in mammalian genomes is cytosine in the dinucleotide CpG. High densities of CpG dinucleotides are found in CpG islands, but paradoxically CpG islands are normally in a non-methylated state. Here, we speculate why CpG islands are immune to methylation and why they are so rich in guanine and cytosine relative to the surrounding DNA. We propose that CpG islands are associated with promoters that are transcriptionally active at totipotent stages of development and can also act as origins of DNA replication. CpG islands may be 'footprints' caused by early DNA replication intermediates at dual function promoters of this kind.
Collapse
Affiliation(s)
- F Antequera
- Instituto de Microbiología Bioquímica, CSIC/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno 37007, Salamanca, Spain.
| | | |
Collapse
|
34
|
Jost JP, Schwarz S, Hess D, Angliker H, Fuller-Pace FV, Stahl H, Thiry S, Siegmann M. A chicken embryo protein related to the mammalian DEAD box protein p68 is tightly associated with the highly purified protein-RNA complex of 5-MeC-DNA glycosylase. Nucleic Acids Res 1999; 27:3245-52. [PMID: 10454630 PMCID: PMC148556 DOI: 10.1093/nar/27.16.3245] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have shown previously that DNA demethylation by chick embryo 5-methylcytosine (5-MeC)-DNA glycosylase needs both protein and RNA. Amino acid sequences of nine peptides derived from a highly purified 5-MeC-DNA glycosylase complex were identified by Nanoelectrospray ionisation mass spectrometry to be identical to the mammalian nuclear DEAD box protein p68 RNA helicase. Antibodies directed against human p68 helicase cross-reacted with the purified 5-MeC-DNA glycosylase complex and immunoprecipitated the glycosylase activity. A 2690 bp cDNA coding for the chicken homologue of mammalian p68 was isolated and sequenced. Its derived amino acid sequence is almost identical to the human p68 DEAD box protein up to amino acid position 473 (from a total of 595). This sequence contains all the essential conserved motifs from the DEAD box proteins which are the ATPase, RNA unwinding and RNA binding motifs. The rest of the 122 amino acids in the C-terminal region rather diverge from the human p68 RNA helicase sequence. The recombinant chicken DEAD box protein expressed in Escherichia coli cross-reacts with the same p68 antibodies as the purified chicken embryo 5-MeC-DNA glycosylase complex. The recombinant protein has an RNA-dependent ATPase and an ATP-dependent helicase activity. However, in the presence or absence of RNA the recombinant protein had no 5-MeC-DNA glycosylase activity. In situ hybridisation of 5 day-old chicken embryos with antisense probes of the chicken DEAD box protein shows a high abundance of its transcripts in differentiating embryonic tissues.
Collapse
Affiliation(s)
- J P Jost
- Friedrich Miescher-Institute, PO Box 2543, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ramchandani S, Bhattacharya SK, Cervoni N, Szyf M. DNA methylation is a reversible biological signal. Proc Natl Acad Sci U S A 1999; 96:6107-12. [PMID: 10339549 PMCID: PMC26843 DOI: 10.1073/pnas.96.11.6107] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/1999] [Accepted: 03/19/1999] [Indexed: 11/18/2022] Open
Abstract
The pattern of DNA methylation plays an important role in regulating different genome functions. To test the hypothesis that DNA methylation is a reversible biochemical process, we purified a DNA demethylase from human cells that catalyzes the cleavage of a methyl residue from 5-methyl cytosine and its release as methanol. We show that similar to DNA methyltransferase, DNA demethylase shows CpG dinucleotide specificity, can demethylate mdCpdG sites in different sequence contexts, and demethylates both fully methylated and hemimethylated DNA. Thus, contrary to the commonly accepted model, DNA methylation is a reversible signal, similar to other physiological biochemical modifications.
Collapse
Affiliation(s)
- S Ramchandani
- Department of Pharmacology, McGill University, 3655 Drummond Street, Montreal H3G 1Y6, Canada
| | | | | | | |
Collapse
|
36
|
Jost JP, Siegmann M, Thiry S, Jost YC, Benjamin D, Schwarz S. A re-investigation of the ribonuclease sensitivity of a DNA demethylation reaction in chicken embryo and G8 mouse myoblasts. FEBS Lett 1999; 449:251-4. [PMID: 10338142 DOI: 10.1016/s0014-5793(99)00454-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recently published results (Nucleic Acids Res. 26, 5573-5580, 1998) suggest that the ribonuclease sensitivity of the DNA demethylation reaction may be an experimental artifact due to the possible tight binding of the nucleases to the methylated DNA substrate. Using an improved protocol we show for two different systems that demethylation of hemimethylated DNA is indeed sensitive to micrococcal nuclease, requires RNA and is not an experimental artifact. The purified 5-MeC-DNA glycosylase from chicken embryos and G8 mouse myoblasts was first incubated for 5 min at 37 degrees C with micrococcal nuclease in the presence of Ca2+ in the absence of the DNA substrate. Upon blocking the nuclease activity by the addition of 25 mM EGTA, the DNA demethylation reaction was initiated by adding the labeled hemimethylated DNA substrate to the reaction mixture. Under these conditions the DNA demethylation reaction was abolished. In parallel controls, where the purified 5-MeC-DNA glycosylase was pre-incubated at 37 degrees C with the nuclease, Ca2+ and EGTA or with the nuclease and EGTA, RNA was not degraded and no inhibition of the demethylation reaction was obtained. As has already been shown for chicken embryos, the loss of 5-MeC-DNA glycosylase activity from G8 myoblasts following nuclease treatment can also be restored by the addition of synthetic RNA complementary to the methylated strand of the substrate DNA. No reactivation of 5-MeC-DNA glycosylase is obtained by complementation with a random RNA sequence, the RNA sequence complementary to the non-methylated strand or DNA, thus ruling out a non-specific competition of the RNA for the binding of the nuclease to the labeled DNA substrate.
Collapse
Affiliation(s)
- J P Jost
- Friedrich-Miescher-Institut, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
37
|
Tebbs RS, Flannery ML, Meneses JJ, Hartmann A, Tucker JD, Thompson LH, Cleaver JE, Pedersen RA. Requirement for the Xrcc1 DNA base excision repair gene during early mouse development. Dev Biol 1999; 208:513-29. [PMID: 10191063 DOI: 10.1006/dbio.1999.9232] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Surveillance and repair of DNA damage are essential for maintaining the integrity of the genetic information that is needed for normal development. Several multienzyme pathways, including the excision repair of damaged or missing bases, carry out DNA repair in mammals. We determined the developmental role of the X-ray cross-complementing (Xrcc)-1 gene, which is central to base excision repair, by generating a targeted mutation in mice. Heterozygous matings produced Xrcc1-/- embryos at early developmental stages, but not Xrcc1-/- late-stage fetuses or pups. Histology showed that mutant (Xrcc1-/-) embryos arrested at embryonic day (E) 6.5 and by E7.5 were morphologically abnormal. The most severe abnormalities observed in mutant embryos were in embryonic tissues, which showed increased cell death in the epiblast and an altered morphology in the visceral embryonic endoderm. Extraembryonic tissues appeared relatively normal at E6.5-7.5. Even without exposure to DNA-damaging agents, mutant embryos showed increased levels of unrepaired DNA strand breaks in the egg cylinder compared with normal embryos. Xrcc1-/- cell lines derived from mutant embryos were hypersensitive to mutagen-induced DNA damage. Xrcc1 mutant embryos that were also made homozygous for a null mutation in Trp53 underwent developmental arrest after only slightly further development, thus revealing a Trp53-independent mechanism of embryo lethality. These results show that an intact base excision repair pathway is essential for normal early postimplantation mouse development and implicate an endogenous source of DNA damage in the lethal phenotype of embryos lacking this repair capacity.
Collapse
Affiliation(s)
- R S Tebbs
- Department of Dermatology, University of California at San Francisco, San Francisco, California, 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
DNA methylation and chromatin modification are two global mechanisms that regulate gene expression. Recent studies provide insight into the mechanism of transcriptional silencing by a methyl-CpG binding protein, MeCP2. MeCP2 is shown to interact with the Sin3/histone deacetylase co-repressor complex. Thus, this interaction can provide a mechanistic explanation for the long-known relationship between DNA methylation and chromatin structure. Moreover, several studies have shown that inhibition of histone deacetylases by specific inhibitors can reactivate endogenous genes or reporter constructs previously silenced by DNA methylation. Taken together, the data strongly suggest that DNA methylation can pattern chromatin modification.
Collapse
Affiliation(s)
- H H Ng
- Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JR, UK.
| | | |
Collapse
|
39
|
Hsieh CL. Evidence that protein binding specifies sites of DNA demethylation. Mol Cell Biol 1999; 19:46-56. [PMID: 9858530 PMCID: PMC83864 DOI: 10.1128/mcb.19.1.46] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/1998] [Accepted: 09/17/1998] [Indexed: 11/20/2022] Open
Abstract
It has been hypothesized that protein factors may protect CpG islands from methyltransferase during development and that demethylation may involve protein-DNA interactions at demethylated sites. However, direct evidence has been lacking. In this study, demethylation at the EBNA-1 binding sites of the Epstein-Barr virus latent replication origin, oriP, was investigated by using human cells. Several novel findings are discussed. First, there are specific preferential demethylation sites within the oriP region. Second, the DNA sequence of oriP alone is not the target of an active demethylation process. Third, EBNA-1 binding is required for the site-specific demethylation in oriP. Interestingly, CpG sites adjacent to and between the EBNA-1 sites do not become demethylated. Fourth, demethylation of the first DNA strand in oriP at the EBNA-1 binding sites involves a passive (replication-dependent) mechanism. The second-strand demethylation appears to occur through an active mechanism. That is, EBNA-1 protein binding prevents the EBNA-1 binding sites from being remethylated after one round of DNA replication, and it appears that an active demethylase then demethylates these hemimethylated sites. This study provides clear evidence that protein binding specifies sites of DNA demethylation and provides insights into the sequence of steps and the mechanism of demethylation.
Collapse
Affiliation(s)
- C L Hsieh
- Department of Urology and Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California 90033, USA.
| |
Collapse
|
40
|
Abstract
The regulation of eukaryotic gene expression is a complicated process involving the interaction of a large number of transacting factors with specific cis-regulatory elements. DNA methylation plays a role in this scheme by acting in cis to modulate protein-DNA interactions. Several lines of evidence indicate that methylation serves to silence transcription, mainly through indirect mechanisms involving the assembly of repressive nucleoprotein complexes. DNA demethylation is mostly an active enzymatic process, controlled by cis regulatory elements which provide binding sites for trans demethylation factors. In the immune system DNA methylation plays multiple roles, such as regulating both gene expression and gene rearrangement
Collapse
Affiliation(s)
- Y Bergman
- The Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
41
|
Abstract
It is now generally accepted that the presence of 5-methylcytosine (5mC) in human DNA has both a genetic and an epigenetic effect on cellular development, differentiation and transformation. First, 5mC is more unstable than its unmethylated counterpart cytosine. Hydrolytic deamination of 5mC leads to a G/T mismatch and subsequently, if unrepaired, to a C-->T transition mutation. Sites of DNA methylation are mutational hotspots in many human tumors. Second, DNA methylation of promoter regions is often correlated with the down regulation of the corresponding gene. Both of these effects have fundamental consequences for basic functions of the cell like cellular differentiation, the development of cancer and possibly other diseases, and on the evolutionary process. Recent hypotheses also propose a role for methylation in the process of aging. In this review we will describe recent findings and hypotheses about the function of 5mC in DNA with the focus on its involvement in human carcinogenesis.
Collapse
Affiliation(s)
- C Schmutte
- Thomas Jefferson University, Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | | |
Collapse
|
42
|
Jost JP, Frémont M, Siegmann M, Hofsteenge J. The RNA moiety of chick embryo 5-methylcytosine- DNA glycosylase targets DNA demethylation. Nucleic Acids Res 1997; 25:4545-50. [PMID: 9358164 PMCID: PMC147099 DOI: 10.1093/nar/25.22.4545] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have previously shown that DNA demethylation by chick embryo 5-methylcytosine (5-MeC)-DNA glycosylase needs both protein and RNA. RNA from enzyme purified by SDS-PAGE was isolated and cloned. The clones have an insert ranging from 240 to 670 bp and contained on average one CpG per 14 bases. All six clones tested had different sequences and did not have any sequence homology with any other known RNA. RNase-inactivated 5-MeC-DNA glycosylase regained enzyme activity when incubated with recombinant RNA. However, when recombinant RNA was incubated with the DNA substrate alone there was no demethylation activity. Short sequences complementary to the labeled DNA substrate are present in the recombinant RNA. Small synthetic oligoribonucleotides (11 bases long) complementary to the region of methylated CpGs of the hemimethylated double-stranded DNA substrate restore the activity of the RNase-inactivated 5-MeC-DNA glycosylase. The corresponding oligodeoxyribonucleotide or the oligoribonucleotide complementary to the non-methylated strand of the same DNA substrate are inactive when incubated in the complementation test. A minimum of 4 bases complementary to the CpG target sequence are necessary for reactivation of RNase-treated 5-MeC-DNA glycosylase. Complementation with double-stranded oligoribonucleotides does not restore 5-MeC-DNA glycosylase activity. An excess of targeting oligoribonucleotides cannot change the preferential substrate specificity of the enzyme for hemimethylated double-stranded DNA.
Collapse
Affiliation(s)
- J P Jost
- Friedrich Miescher Institute, PO Box 2543, CH-4002 Basel, Switzerland.
| | | | | | | |
Collapse
|