1
|
Radak BK, Lee TS, Harris ME, York DM. Assessment of metal-assisted nucleophile activation in the hepatitis delta virus ribozyme from molecular simulation and 3D-RISM. RNA (NEW YORK, N.Y.) 2015; 21:1566-1577. [PMID: 26170378 PMCID: PMC4536318 DOI: 10.1261/rna.051466.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
The hepatitis delta virus ribozyme is an efficient catalyst of RNA 2'-O-transphosphorylation and has emerged as a key experimental system for identifying and characterizing fundamental features of RNA catalysis. Recent structural and biochemical data have led to a proposed mechanistic model whereby an active site Mg(2+) ion facilitates deprotonation of the O2' nucleophile, and a protonated cytosine residue (C75) acts as an acid to donate a proton to the O5' leaving group as noted in a previous study. This model assumes that the active site Mg(2+) ion forms an inner-sphere coordination with the O2' nucleophile and a nonbridging oxygen of the scissile phosphate. These contacts, however, are not fully resolved in the crystal structure, and biochemical data are not able to unambiguously exclude other mechanistic models. In order to explore the feasibility of this model, we exhaustively mapped the free energy surfaces with different active site ion occupancies via quantum mechanical/molecular mechanical (QM/MM) simulations. We further incorporate a three-dimensional reference interaction site model for the solvated ion atmosphere that allows these calculations to consider not only the rate associated with the chemical steps, but also the probability of observing the system in the presumed active state with the Mg(2+) ion bound. The QM/MM results predict that a pathway involving metal-assisted nucleophile activation is feasible based on the rate-controlling transition state barrier departing from the presumed metal-bound active state. However, QM/MM results for a similar pathway in the absence of Mg(2+) are not consistent with experimental data, suggesting that a structural model in which the crystallographically determined Mg(2+) is simply replaced with Na(+) is likely incorrect. It should be emphasized, however, that these results hinge upon the assumption of the validity of the presumed Mg(2+)-bound starting state, which has not yet been definitively verified experimentally, nor explored in depth computationally. Thus, further experimental and theoretical study is needed such that a consensus view of the catalytic mechanism emerges.
Collapse
Affiliation(s)
- Brian K Radak
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Tai-Sung Lee
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA
| | - Michael E Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Darrin M York
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA
| |
Collapse
|
2
|
Riccitelli N, Lupták A. HDV family of self-cleaving ribozymes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 120:123-71. [PMID: 24156943 DOI: 10.1016/b978-0-12-381286-5.00004-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hepatitis delta virus (HDV) ribozymes are catalytic RNAs capable of cleaving their own sugar-phosphate backbone. The HDV virus possesses the ribozymes in both sense and antisense genomic transcripts, where they are essential for processing during replication. These ribozymes have been the subject of intense biochemical scrutiny and have yielded a wealth of mechanistic insights. In recent years, many HDV-like ribozymes have been identified in nearly all branches of life. The ribozymes are implicated in a variety of biological events, including episodic memory in mammals and retrotransposition in many eukaryotes. Detailed analysis of additional HDV-like ribozyme isolates will likely reveal many more biological functions and provide information about the evolution of this unique RNA.
Collapse
Affiliation(s)
- Nathan Riccitelli
- Department of Chemistry, University of California, Irvine, California, USA
| | | |
Collapse
|
3
|
Riccitelli NJ, Delwart E, Lupták A. Identification of minimal HDV-like ribozymes with unique divalent metal ion dependence in the human microbiome. Biochemistry 2014; 53:1616-26. [PMID: 24555915 DOI: 10.1021/bi401717w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
HDV-like self-cleaving ribozymes have been found in a wide variety of organisms, implicated in diverse biological processes, and their activity typically shows a strong divalent metal dependence, but little metal specificity. Recent studies suggested that very short variants of these ribozymes exist in nature, but their distribution and biochemical properties have not been established. To map out the distribution of small HDV-like ribozymes, the drz-Spur-3 sequence was minimized to yield a core construct for structure-based bioinformatic searches. These searches revealed several microbial ribozymes, particularly in the human microbiome. Kinetic profile of the smallest ribozyme revealed two distinct metal binding sites, only one of which promotes fast catalysis. Furthermore, this ribozyme showed markedly reduced activity in Ca(2+), even in the presence of physiological Mg(2+) concentrations. Our study substantially expands the number of microbial HDV-like ribozymes and provides an example of cleavage regulation by divalent metals.
Collapse
Affiliation(s)
- Nathan J Riccitelli
- Department of Chemistry, ∥Department of Pharmaceutical Sciences, and ⊥Department of Molecular Biology and Biochemistry, University of California-Irvine , Irvine, California 92697, United States
| | | | | |
Collapse
|
4
|
Wrzesinski J, Wichłacz A, Nijakowska D, Rebowska B, Nawrot B, Ciesiołka J. Phosphate residues of antigenomic HDV ribozyme important for catalysis that are revealed by phosphorothioate modification. NEW J CHEM 2010. [DOI: 10.1039/b9nj00727j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Chen JH, Gong B, Bevilacqua PC, Carey PR, Golden BL. A catalytic metal ion interacts with the cleavage Site G.U wobble in the HDV ribozyme. Biochemistry 2009; 48:1498-507. [PMID: 19178151 DOI: 10.1021/bi8020108] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The HDV ribozyme self-cleaves by a chemical mechanism involving general acid-base catalysis to generate 2',3'-cyclic phosphate and 5'-hydroxyl termini. Biochemical studies from several laboratories have implicated C75 as the general acid and hydrated magnesium as the general base. We have previously shown that C75 has a pK(a) shifted >2 pH units toward neutrality [Gong, B., Chen, J. H., Chase, E., Chadalavada, D. M., Yajima, R., Golden, B. L., Bevilacqua, P. C., and Carey, P. R. (2007) J. Am. Chem. Soc. 129, 13335-13342], while in crystal structures, it is well-positioned for proton transfer. However, no evidence for a hydrated magnesium poised to serve as a general base in the reaction has been observed in high-resolution crystal structures of various reaction states and mutants. Herein, we use solution kinetic experiments and parallel Raman crystallographic studies to examine the effects of pH on the rate and Mg(2+) binding properties of wild-type and 7-deazaguanosine mutants of the HDV ribozyme. These data suggest that a previously unobserved hydrated magnesium ion interacts with N7 of the cleavage site G.U wobble base pair. Integrating this metal ion binding site with the available crystal structures provides a new three-dimensional model for the active site of the ribozyme that accommodates all available biochemical data and appears competent for catalysis. The position of this metal is consistent with a role of a magnesium-bound hydroxide as a general base as dictated by biochemical data.
Collapse
Affiliation(s)
- Jui-Hui Chen
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
6
|
Salehi-Ashtiani K, Lupták A, Litovchick A, Szostak JW. A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science 2006; 313:1788-92. [PMID: 16990549 DOI: 10.1126/science.1129308] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ribozymes are thought to have played a pivotal role in the early evolution of life, but relatively few have been identified in modern organisms. We performed an in vitro selection aimed at isolating self-cleaving RNAs from the human genome. The selection yielded several ribozymes, one of which is a conserved mammalian sequence that resides in an intron of the CPEB3 gene, which belongs to a family of genes regulating messenger RNA polyadenylation. The CPEB3 ribozyme is structurally and biochemically related to the human hepatitis delta virus (HDV) ribozymes. The occurrence of this ribozyme exclusively in mammals suggests that it may have evolved as recently as 200 million years ago. We postulate that HDV arose from the human transcriptome.
Collapse
Affiliation(s)
- Kourosh Salehi-Ashtiani
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology (CCIB), 7215 Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
7
|
Vörtler LC, Eckstein F. Phosphorothioate modification of RNA for stereochemical and interference analyses. Methods Enzymol 2000; 317:74-91. [PMID: 10829273 DOI: 10.1016/s0076-6879(00)17007-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- L C Vörtler
- Max-Planck-Institut für Experimentelle Medizin, Göttingen, Germany
| | | |
Collapse
|
8
|
Wittberger D, Berens C, Hammann C, Westhof E, Schroeder R. Evaluation of uranyl photocleavage as a probe to monitor ion binding and flexibility in RNAs. J Mol Biol 2000; 300:339-52. [PMID: 10873469 DOI: 10.1006/jmbi.2000.3747] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In order to evaluate uranyl photocleavage as a tool to identify and characterize structural and dynamic properties in RNA, we compared uranyl cleavage sites in five RNA molecules with known X-ray structures, namely the hammerhead and hepatitis delta virus ribozymes, the P4-P6 domain of the Tetrahymena group I intron, as well as tRNA(Phe) and tRNA(Asp) from yeast. Uranyl photocleavage was observed at specific positions in all molecules investigated. In order to characterize the sites, photocleavage was performed in the absence and in increasing amounts of MgCl(2). Uranyl photocleavage correlates well with sites of low calculated accessibility, suggesting that uranyl ions bind in tight RNA pockets formed by close approach of phosphate groups. RNA foldings require ion binding, usually magnesium ions. Thus, upon the adoption of the native structure, uranyl ions can no longer bind well except in flexible and open to the solvent regions that can undergo induced-fit without disrupting the native fold. Uranyl photocleavage was compared to N-ethyl-N-nitrosourea and lead-induced cleavages in the context of the three-dimensional X-ray structures. Overall, the regions protected from ENU attack are sites of uranyl cleavage, indicating sites of low accessibility which can form ion binding sites. On the contrary, lead cleavages occur at flexible and accessible sites and correlate with the unspecific cleavages prevalent in dynamic and open regions. Applied in a magnesium-dependent manner, and only in combination with other backbone probing agents such as N-ethyl-N-nitrosourea, lead and Fenton cleavage, uranyl probing has the potential to reveal high-affinity metal ion environments, as well as regions involved in conformational transitions.
Collapse
MESH Headings
- Animals
- Base Pairing
- Base Sequence
- Ethylnitrosourea/metabolism
- Hepatitis Delta Virus/genetics
- Hydrogen Peroxide/metabolism
- Introns/genetics
- Ions/metabolism
- Iron/metabolism
- Lead/metabolism
- Magnesium Chloride/pharmacology
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Photolysis/drug effects
- Pliability
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/genetics
- RNA, Transfer, Asp/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Solvents
- Tetrahymena/genetics
- Uranyl Nitrate/metabolism
- Yeasts/genetics
Collapse
Affiliation(s)
- D Wittberger
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
9
|
Miller CL, Burmeister M, Thompson RC. Antisense expression of the human pro-melanin-concentrating hormone genes. Brain Res 1998; 803:86-94. [PMID: 9729295 DOI: 10.1016/s0006-8993(98)00626-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Expression of transcripts for human pro-melanin concentrating hormone (pMCH) were studied in the hypothalamus, the primary location for pMCH producing cells in the mammalian CNS. Human hypothalamic tissue was extracted for total RNA and the cDNA generated with reverse transcriptase (RT). PCR amplification with primers spanning exons 2 and 3 of the pMCH human-variant genes (pMCHL), yielded an unspliced product, confirming prior work [T.B. Campbell, C.K. McDonald, M. Hagen, The effect of structure in a long target RNA on ribozyme cleavage efficiency, Nucleic Acids Res. 25 (1997) 4985-4993]. In addition, this product was shown to be exclusively antisense, and to be derived from the 5p (pMCHL1), not the 5q (pMCHL2) locus. Thus, there is no evidence that the MCH peptide-precursor molecule is produced in the brain by the human-variant pMCHL loci. In contrast, corresponding RT-PCR for pMCH RNA generated by the locus on 12q, demonstrated the presence of both sense and antisense spliced RNA. Partial sequencing of the spliced product confirmed that production of at least the two C-terminal peptides would occur from the 12q pMCH locus. The significance of the findings for pMCH and pMCHL1 are discussed relative to what is known about the function of endogenous antisense RNA.
Collapse
Affiliation(s)
- C L Miller
- Mental Health Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|