1
|
Choi J, Lyons DB, Zilberman D. Histone H1 prevents non-CG methylation-mediated small RNA biogenesis in Arabidopsis heterochromatin. eLife 2021; 10:72676. [PMID: 34850679 PMCID: PMC8828055 DOI: 10.7554/elife.72676] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022] Open
Abstract
Flowering plants utilize small RNA (sRNA) molecules to guide DNA methyltransferases to genomic sequences. This RNA-directed DNA methylation (RdDM) pathway preferentially targets euchromatic transposable elements. However, RdDM is thought to be recruited by methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin. How RdDM is targeted to euchromatin despite an affinity for H3K9me is unclear. Here, we show that loss of histone H1 enhances heterochromatic RdDM, preferentially at nucleosome linker DNA. Surprisingly, this does not require SHH1, the RdDM component that binds H3K9me. Furthermore, H3K9me is dispensable for RdDM, as is CG DNA methylation. Instead, we find that non-CG methylation is specifically associated with sRNA biogenesis, and without H1 sRNA production quantitatively expands to non-CG-methylated loci. Our results demonstrate that H1 enforces the separation of euchromatic and heterochromatic DNA methylation pathways by excluding the sRNA-generating branch of RdDM from non-CG-methylated heterochromatin. Cells adapt to different roles by turning different groups of genes on and off. One way cells control which genes are on or off is by creating regions of active and inactive DNA, which are created and maintained by different groups of proteins. Genes in active DNA regions can be turned on, while genes in inactive regions are switched off or silenced. Silenced DNA regions also turn off ‘transposable elements’: pieces of DNA that can copy themselves and move to other regions of the genome if they become active. Transposons can be dangerous if they are activated, because they can disrupt genes or regulatory sequences when they move. There are different types of active and inactive DNA, but it is not always clear why these differences exist, or how they are maintained over time. In plants, such as the commonly-studied weed Arabidopsis thaliana, there are two types of inactive DNA, called E and H, that can silence transposons. In both types, DNA has small chemicals called methyl groups attached to it, which help inactivate the DNA. Type E DNA is methylated by a process called RNA-directed DNA methylation (RdDM), but RdDM is rarely seen in type H DNA. Choi, Lyons and Zilberman showed that RdDM is attracted to E and H regions by previously existing methylated DNA. However, in the H regions, a protein called histone H1 blocks RdDM from attaching methyl groups. This helps focus RdDM onto E regions where it is most needed, because E regions contain the types of transposons RdDM is best suited to silence. When Choi, Lyons and Zilberman examined genetically modified A. thaliana plants that do not produce histone H1, they found that RdDM happened in both E and H regions. There are many more H regions than E regions, so stretching RdDM across both made it less effective at silencing DNA. This work shows how different DNA silencing processes are focused onto specific genetic regions, helping explain why there are different types of active and inactive DNA within cells. RdDM has been studied as a way to affect crop growth and yield by altering DNA methylation. These results may help such studies by explaining how RdDM is naturally targeted.
Collapse
Affiliation(s)
- Jaemyung Choi
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - David B Lyons
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Daniel Zilberman
- Department of Cell and Developmental Biology, John Innes Centre, Klosterneuburg, Austria
| |
Collapse
|
2
|
DNA sequence-dependent positioning of the linker histone in a nucleosome: A single-pair FRET study. Biophys J 2021; 120:3747-3763. [PMID: 34293303 DOI: 10.1016/j.bpj.2021.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/25/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
Linker histones (LHs) bind to nucleosomes with their globular domain (gH) positioned in either an on- or an off-dyad binding mode. Here, we study the effect of the linker DNA (L-DNA) sequence on the binding of a full-length LH, Xenopus laevis H1.0b, to a Widom 601 nucleosome core particle (NCP) flanked by two 40 bp long L-DNA arms, by single-pair FRET spectroscopy. We varied the sequence of the 11 bp of L-DNA adjoining the NCP on either side, making the sequence either A-tract, purely GC, or mixed with 64% AT. The labeled gH consistently exhibited higher FRET efficiency with the labeled L-DNA containing the A-tract than that with the pure-GC stretch, even when the stretches were swapped. However, it did not exhibit higher FRET efficiency with the L-DNA containing 64% AT-rich mixed DNA when compared to the pure-GC stretch. We explain our observations with a model that shows that the gH binds on dyad and that two arginines mediate recognition of the A-tract via its characteristically narrow minor groove. To investigate whether this on-dyad minor groove-based recognition was distinct from previously identified off-dyad major groove-based recognition, a nucleosome was designed with A-tracts on both the L-DNA arms. One A-tract was complementary to thymine and the other to deoxyuridine. The major groove of the thymine-tract was lined with methyl groups that were absent from the major groove of the deoxyuridine tract. The gH exhibited similar FRET for both these A-tracts, suggesting that it does not interact with the thymine methyl groups exposed on the major groove. Our observations thus complement previous studies that suggest that different LH isoforms may employ different ways of recognizing AT-rich DNA and A-tracts. This adaptability may enable the LH to universally compact scaffold-associated regions and constitutive heterochromatin, which are rich in such sequences.
Collapse
|
3
|
Symonová R. Integrative rDNAomics-Importance of the Oldest Repetitive Fraction of the Eukaryote Genome. Genes (Basel) 2019; 10:genes10050345. [PMID: 31067804 PMCID: PMC6562748 DOI: 10.3390/genes10050345] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Nuclear ribosomal RNA (rRNA) genes represent the oldest repetitive fraction universal to all eukaryotic genomes. Their deeply anchored universality and omnipresence during eukaryotic evolution reflects in multiple roles and functions reaching far beyond ribosomal synthesis. Merely the copy number of non-transcribed rRNA genes is involved in mechanisms governing e.g., maintenance of genome integrity and control of cellular aging. Their copy number can vary in response to environmental cues, in cellular stress sensing, in development of cancer and other diseases. While reaching hundreds of copies in humans, there are records of up to 20,000 copies in fish and frogs and even 400,000 copies in ciliates forming thus a literal subgenome or an rDNAome within the genome. From the compositional and evolutionary dynamics viewpoint, the precursor 45S rDNA represents universally GC-enriched, highly recombining and homogenized regions. Hence, it is not accidental that both rDNA sequence and the corresponding rRNA secondary structure belong to established phylogenetic markers broadly used to infer phylogeny on multiple taxonomical levels including species delimitation. However, these multiple roles of rDNAs have been treated and discussed as being separate and independent from each other. Here, I aim to address nuclear rDNAs in an integrative approach to better assess the complexity of rDNA importance in the evolutionary context.
Collapse
Affiliation(s)
- Radka Symonová
- Faculty of Science, Department of Biology, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic.
| |
Collapse
|
4
|
Malik MQ, Bertke MM, Huber PW. Small ubiquitin-like modifier (SUMO)-mediated repression of the Xenopus Oocyte 5 S rRNA genes. J Biol Chem 2014; 289:35468-81. [PMID: 25368327 DOI: 10.1074/jbc.m114.609123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The 5 S rRNA gene-specific transcription factor IIIA (TFIIIA) interacts with the small ubiquitin-like modifier (SUMO) E3 ligase PIAS2b and with one of its targets, the transcriptional corepressor, XCtBP. PIAS2b is restricted to the cytoplasm of Xenopus oocytes but relocates to the nucleus immediately after fertilization. Following the midblastula transition, PIAS2b and XCtBP are present on oocyte-type, but not somatic-type, 5 S rRNA genes up through the neurula stage, as is a limiting amount of TFIIIA. Histone H3 methylation, coincident with the binding of XCtBP, also occurs exclusively on the oocyte-type genes. Immunohistochemical staining of embryos confirms the occupancy of a subset of the oocyte-type genes by TFIIIA that become positioned at the nuclear periphery shortly after the midblastula transition. Inhibition of SUMOylation activity relieves repression of oocyte-type 5 S rRNA genes and is correlated with a decrease in methylation of H3K9 and H3K27 and disruption of subnuclear localization. These results reveal a novel function for TFIIIA as a negative regulator that recruits histone modification activity through the CtBP repressor complex exclusively to the oocyte-type 5 S rRNA genes, leading to their terminal repression.
Collapse
Affiliation(s)
- Mariam Q Malik
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Michelle M Bertke
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Paul W Huber
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
5
|
Cui F, Zhurkin VB. Distinctive sequence patterns in metazoan and yeast nucleosomes: implications for linker histone binding to AT-rich and methylated DNA. Nucleic Acids Res 2009; 37:2818-29. [PMID: 19282449 PMCID: PMC2685081 DOI: 10.1093/nar/gkp113] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/21/2009] [Accepted: 02/09/2009] [Indexed: 11/17/2022] Open
Abstract
Linker histones (LHs) bind to the DNA entry/exit points of nucleosomes and demonstrate preference for AT-rich DNA, although the recognized sequence patterns remain unknown. These patterns are expected to be more pronounced in metazoan nucleosomes with abundant LHs, compared to yeast nucleosomes with few LHs. To test this hypothesis, we compared the nucleosome core particle (NCP) sequences from chicken, Drosophila and yeast, extending them by the flanking sequences extracted from the genomes. We found that the known approximately 10-bp periodic oscillation of AT-rich elements goes beyond the ends of yeast nucleosomes, but is distorted in metazoan sequences where the 'out-of-phase' AT-peaks appear at the NCP ends. The observed difference is likely to be associated with sequence-specific LH binding. We therefore propose a new structural model for LH binding to metazoan nucleosomes, postulating that the highly conserved nonpolar 'wing' region of the LH globular domain (tetrapeptide GVGA) recognizes AT-rich fragments through hydrophobic interactions with the thymine methyl groups. These interactions lead to DNA bending at the NCP ends and formation of a 'stem-like' structure. The same mechanism accounts for the high affinity of LH to methylated DNA-a feature critical for stabilization of the higher-order structure of chromatin and for repression of transcription.
Collapse
Affiliation(s)
| | - Victor B. Zhurkin
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
The linker histones. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
7
|
Abstract
Here we propose a new determinant for localization of nucleosomes along genomic DNA, in addition to sequence-dependent features. The new specific class of chromatin scaling signals involves curved DNA. According to the observed positional distribution of DNA curvature, the new synchronizing signal occurs once per four nucleosomes on average. This new factor in nucleosome positioning should substantially influence the efficiency of biological reactions through regulatory factors microscopically and the entire chromatin structure through the 30 nm fiber structure macroscopically. Allocation of the new type of signals is found to be fixed evolutionarily although they could be shifted in accordance with the hierarchy of functional genomic structures.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Ibaraki, Japan.
| | | |
Collapse
|
8
|
Suzuki T, Michishita E, Ogino H, Fujii M, Ayusawa D. Synergistic induction of the senescence-associated genes by 5-bromodeoxyuridine and AT-binding ligands in HeLa cells. Exp Cell Res 2002; 276:174-84. [PMID: 12027447 DOI: 10.1006/excr.2002.5524] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
5-Bromodeoxyuridine induces a senescence-like phenomenon in mammalian cells. This effect was dramatically potentiated by AT-binding ligands such as distamycin A, netropsin, and Hoechst 33258. The genes most remarkably affected by these ligands include the widely used senescence-associated genes and were located on or nearby Giemsa-dark bands of human chromosomes. We hypothesize that AT-rich scaffold/nuclear matrix attachment region sequences are involved in this phenomenon. In fact, upon substitution of thymine with 5-bromouracil, a rat S/MAR sequence reduced its degree of bending and became insensitive to cancellation of the bending by distamycin A. The S/MAR sequence containing 5-bromouracil also bound more tightly to nuclear scaffold proteins in vitro and this binding was not inhibited by distamycin A. Under the same conditions, the S/MAR sequence containing thymine easily dissociated from the nuclear scaffold proteins. Taken together, the synergistic induction of the genes may be explained not only by opening of condensed chromatin by distamycin A but also by increase in the binding of 5-bromouracil-containing S/MAR sequences to the nuclear scaffolds.
Collapse
Affiliation(s)
- Toshikazu Suzuki
- Kihara Institute for Biological Research and Graduate School of Integrated Science, Yokohama City University, Maioka-cho 641-12, Yokohama 244-0813, Japan
| | | | | | | | | |
Collapse
|
9
|
Suzuki T, Yaginuma M, Oishi T, Michishita E, Ogino H, Fujii M, Ayusawa D. 5-Bromodeoxyuridine suppresses position effect variegation of transgenes in HeLa cells. Exp Cell Res 2001; 266:53-63. [PMID: 11339824 DOI: 10.1006/excr.2001.5194] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An ectopic gene integrated in the host genome is occasionally silenced due to a position effect of its adjacent chromatin structure. We found that 5-bromodeoxyuridine clearly activated such a transgene in HeLa cells. The transgene was also activated to various degrees by inhibitors of histone deacetylase, DNA topoisomerases, or DNA methyltransferase. The peptide antibiotic distamycin A potentiated markedly the effect of 5-bromodeoxyuridine. Transient expression of an artificial AT-hook protein termed MATH20 also potentiated its effect although significantly activated the transgene alone. Since distamycin A and MATH20 are able to displace histone H1 and other DNA-binding proteins bound to specific AT-rich sequences by a dominant, mutually exclusive fashion, these results suggest that 5-bromodeoxyuridine targets such an AT-rich sequence located adjacent to the silenced transgene, resulting in chromatin accessibility.
Collapse
Affiliation(s)
- T Suzuki
- Kihara Institute for Biological Research, Yokohama City University, Maioka-cho 641-12, Yokohama 244-0813, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Favis R, McCaffery I, Ehrenkaufer G, Rutherford CL. Transcription of the Dictyostelium glycogen phosphorylase-2 gene is induced by three large promoter domains. DEVELOPMENTAL GENETICS 2000; 23:230-46. [PMID: 9842717 DOI: 10.1002/(sici)1520-6408(1998)23:3<230::aid-dvg8>3.0.co;2-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The promoter of the Dictyostelium glycogen phosphorylase-2 (gp2) gene possesses a profound AT-bias, typical of promoters in this organism. To understand how Dictyostelium achieves specificity during transcriptional regulation under the constraint of this highly biased nucleotide composition, we have documented the changes in chromatin structure associated with developmental induction of gp2 gene expression. DNase I hypersensitive analyses indicated the presence of several developmentally regulated nuclease-sensitive sites located upstream of the start codon: two strong sites at approximately -250 bp and -350 bp and three substantially weaker sites at -290 bp, -445 bp, and -505 bp. In vitro footprint analyses using nuclear extracts derived from several stages of development (corresponding to varying levels of gp2 expression) revealed three large regions of occupation that were developmentally regulated and corresponded to these nuclease-sensitive sites: -227 to -294 bp (domain 1), -327 to -383 bp (domain 2), and -416 to -534 bp (domain 3). The presence and the extent of the three regulatory domains was confirmed by in vivo footprint analyses spanning the same developmental time points. Southwestern analyses using probes encompassing these footprints demonstrated that probes corresponding to domains 1 and 3 both interacted with 83 and 77 kDa peptides. The domain 3 probe also interacted with a 92 kDa peptide, while only a 62 kDa peptide is recognized by the domain 2 probe. In all cases, peptides capable of binding these probes were found in nuclear extracts derived from differentiated cells and not in undifferentiated cell nuclear extract. Using nuclear extract from differentiated cells and probes corresponding to the three domains, gel mobility shift analyses detected ladders of retarded bands for both domains 1 and 3 and three major retarded bands for domain 2. These results suggest that specificity in transcriptional activation in the AT-rich promoters of Dictyostelium may be achieved by requiring multiple protein-DNA and/or protein-protein interactions to occur before induction can proceed.
Collapse
Affiliation(s)
- R Favis
- Dept. of Biology, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA
| | | | | | | |
Collapse
|
11
|
Prymakowska-Bosak M, Przewłoka MR, Slusarczyk J, Kuraś M, Lichota J, Kiliańczyk B, Jerzmanowski A. Linker histones play a role in male meiosis and the development of pollen grains in tobacco. THE PLANT CELL 1999; 11:2317-29. [PMID: 10590161 PMCID: PMC144134 DOI: 10.1105/tpc.11.12.2317] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To examine the function of linker histone variants, we produced transgenic tobacco plants in which major somatic histone variants H1A and H1B were present at approximately 25% of their usual amounts in tobacco chromatin. The decrease in these major variants was accompanied by a compensatory increase in the four minor variants, namely, H1C to H1F. These minor variants are smaller and less highly charged than the major variants. This change offered a unique opportunity to examine the consequences to a plant of major remodeling of its chromatin set of linker histones. Plants with markedly altered proportions of H1 variants retained normal nucleosome spacing, but their chromosomes were less tightly packed than those of control plants. The transgenic plants grew normally but showed characteristic aberrations in flower development and were almost completely male sterile. These features correlated with changes in the temporal but not the spatial pattern of expression of developmental genes that could be linked to the abnormal flower phenotypes. Preceding these changes in flower morphology were strong aberrations in male gametogenesis. The earliest symptoms may have resulted from disturbances in correct pairing or segregation of homologous chromosomes during meiosis. No aberrations were observed during mitosis. We conclude that in plants, the physiological stoichiometry and distribution of linker histone variants are crucial for directing male meiosis and the subsequent development of functional pollen grains.
Collapse
Affiliation(s)
- M Prymakowska-Bosak
- Laboratory of Plant Molecular Biology, Warsaw University, Pawinskiego 5A, 02-106 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
In developing Xenopus laevis embryos the multiple-copy oocyte-type 5S RNA genes are progressively shut down. Results presented in three recent articles 1-3 together demonstrate that replacement of the cleavage stage linker histone B4 by somatic H1 leads to chromatosomes positioned directly over these genes and adjacent sequences so as to occlude the binding site for the critical transcription factor TFIIIA. In contrast, on the somatic-type 5S genes the somatic H1 positions chromatosomes about 65 bp further upstream, thereby leaving the TFIIIA binding site exposed and the genes active. The somatic linker histone thus functions as a specific gene repressor.
Collapse
|
13
|
Bonnefoy E, Bandu MT, Doly J. Specific binding of high-mobility-group I (HMGI) protein and histone H1 to the upstream AT-rich region of the murine beta interferon promoter: HMGI protein acts as a potential antirepressor of the promoter. Mol Cell Biol 1999; 19:2803-16. [PMID: 10082546 PMCID: PMC84073 DOI: 10.1128/mcb.19.4.2803] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The high-mobility-group I (HMGI) protein is a nonhistone component of active chromatin. In this work, we demonstrate that HMGI protein specifically binds to the AT-rich region of the murine beta interferon (IFN-beta) promoter localized upstream of the murine virus-responsive element (VRE). Contrary to what has been described for the human promoter, HMGI protein did not specifically bind to the VRE of the murine IFN-beta promoter. Stably transfected promoters carrying mutations on this HMGI binding site displayed delayed virus-induced kinetics of transcription. When integrated into chromatin, the mutated promoter remained repressed and never reached normal transcriptional activity. Such a phenomenon was not observed with transiently transfected promoters upon which chromatin was only partially reconstituted. Using UV footprinting, we show that the upstream AT-rich sequences of the murine IFN-beta promoter constitute a preferential binding region for histone H1. Transfection with a plasmid carrying scaffold attachment regions as well as incubation with distamycin led to the derepression of the IFN-beta promoter stably integrated into chromatin. In vitro, HMGI protein was able to displace histone H1 from the upstream AT-rich region of the wild-type promoter but not from the promoter carrying mutations on the upstream high-affinity HMGI binding site. Our results suggest that the binding of histone H1 to the upstream AT-rich region of the promoter might be partly responsible for the constitutive repression of the promoter. The displacement by HMGI protein of histone H1 could help to convert the IFN-beta promoter from a repressed to an active state.
Collapse
Affiliation(s)
- E Bonnefoy
- Laboratoire de Régulation de l'Expression des Gènes Eucaryotes, CNRS, UPR37, UFR Biomédicale, Université René Descartes, 75270 Paris Cedex 06, France.
| | | | | |
Collapse
|
14
|
Abstract
Selection of a pathway of differentiation in multipotent progenitor cells may depend on the amount of histone H1 or H1 zero relative to the core histones. With low levels of these linker histones, it is proposed that an evolutionarily more ancient cell differentiation occurs. Greater repetition of AT-rich regulatory motifs allows more frequent, hence earlier, transcription of genes, accounting for this type of cell differentiation. It is further proposed that a decrease of total cell protein accumulation leads to an increase of histone H1 or H1 zero relative to the core histones. It is suggested that these linker histones preferentially bind the more AT-rich regulatory sequences, thereby restricting the phylogenetically more ancient differentiation potency. This allows differentiation of an evolutionarily younger cell type.
Collapse
Affiliation(s)
- R A Flickinger
- Department of Biological Sciences, State University of New York, Buffalo, USA
| |
Collapse
|
15
|
Abstract
A protein responsible for enhanced transcription by RNA polymerase III was identified in extracts from Xenopus oocytes. This protein, called EP3, interacts with a specific DNA sequence adjacent to the 3'-end of a Xenopus somatic 5S RNA gene and forms a distinct band shift complex with a unique DNase I footprint. Enhanced transcription was observed from both 5S RNA and tRNA reporter genes when EP3 binding sites were inserted at different locations and orientations. Removal of the EP3 protein from an oocyte extract abolished this enhanced transcription. In addition, EP3 was shown to stimulate transcription by increasing the rate of transcription complex assembly. EP3 directly discriminates between the somatic and oocyte 5S RNA gene families and may play a significant role in their differential expression during early Xenopus development.
Collapse
Affiliation(s)
- M R Sturges
- California Institute of Technology, Division of Biology, 147-75, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
16
|
Panetta G, Buttinelli M, Flaus A, Richmond TJ, Rhodes D. Differential nucleosome positioning on Xenopus oocyte and somatic 5 S RNA genes determines both TFIIIA and H1 binding: a mechanism for selective H1 repression. J Mol Biol 1998; 282:683-97. [PMID: 9737930 DOI: 10.1006/jmbi.1998.2087] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Xenopus somatic cells histone H1 effects the transcriptional repression of oocyte type 5 S RNA genes, without altering the transcription of the somatic type 5 S RNA genes. Using an unambiguous nucleosome mapping method we find substantial differences between the multiple in vitro nucleosome positions on the two types of genes. These nucleosome positions determine both transcription factor and H1 binding, allowing TFIIIA to bind more efficiently to nucleosomes containing the somatic 5 S RNA gene than to nucleosomes on the oocyte 5 S RNA gene. Significantly, in a binding competition between TFIIIA and H1, TFIIIA preferentially binds to the somatic nucleosome whereas H1 preferentially binds to the oocyte nucleosome, excluding TFIIIA binding. These results strongly suggest that nucleosome positioning plays a key role in the regulation of transcription of 5 S RNA genes and provide a molecular mechanism for the selective repression of the oocyte 5 S RNA genes by H1.
Collapse
Affiliation(s)
- G Panetta
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, England
| | | | | | | | | |
Collapse
|
17
|
Sera T, Wolffe AP. Role of histone H1 as an architectural determinant of chromatin structure and as a specific repressor of transcription on Xenopus oocyte 5S rRNA genes. Mol Cell Biol 1998; 18:3668-80. [PMID: 9632749 PMCID: PMC108949 DOI: 10.1128/mcb.18.7.3668] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/1998] [Accepted: 04/09/1998] [Indexed: 02/07/2023] Open
Abstract
We explore the role of histone H1 as a DNA sequence-dependent architectural determinant of chromatin structure and of transcriptional activity in chromatin. The Xenopus laevis oocyte- and somatic-type 5S rRNA genes are differentially transcribed in embryonic chromosomes in vivo depending on the incorporation of somatic histone H1 into chromatin. We establish that this effect can be reconstructed at the level of a single nucleosome. H1 selectively represses oocyte-type 5S rRNA genes by directing the stable positioning of a nucleosome such that transcription factors cannot bind to the gene. This effect does not occur on the somatic-type genes. Histone H1 binds to the 5' end of the nucleosome core on the somatic 5S rRNA gene, leaving key regulatory elements in the promoter accessible, while histone H1 binds to the 3' end of the nucleosome core on the oocyte 5S rRNA genes, specifically blocking access to a key promoter element (the C box). TFIIIA can bind to the somatic 5S rRNA gene assembled into a nucleosome in the presence of H1. Because H1 binds with equivalent affinities to nucleosomes containing either gene, we establish that it is the sequence-selective assembly of a specific repressive chromatin structure on the oocyte 5S rRNA genes that accounts for differential transcriptional repression. Thus, general components of chromatin can determine the assembly of specific regulatory nucleoprotein complexes.
Collapse
Affiliation(s)
- T Sera
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-5431, USA
| | | |
Collapse
|
18
|
Howe L, Ausió J. Nucleosome translational position, not histone acetylation, determines TFIIIA binding to nucleosomal Xenopus laevis 5S rRNA genes. Mol Cell Biol 1998; 18:1156-62. [PMID: 9488430 PMCID: PMC108828 DOI: 10.1128/mcb.18.3.1156] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We sought to study the binding constraints placed on the nine-zinc-finger protein transcription factor IIIA (TFIIIA) by a histone octamer. To this end, five overlapping fragments of the Xenopus laevis oocyte and somatic 5S rRNA genes were reconstituted into nucleosomes, and it was subsequently shown that nucleosome translational positioning is a major determinant of the binding of TFIIIA to the 5S rRNA genes. Furthermore, it was found that histone acetylation cannot override the TFIIIA binding constraints imposed by unfavorable translational positions.
Collapse
Affiliation(s)
- L Howe
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | | |
Collapse
|
19
|
Salvini M, Dalle Lucche T, Durante M. A thermal denaturation study of macronuclear chromatin in Blepharisma japonicum (Protozoa, Ciliophora, Heterotrichida). FEMS Microbiol Lett 1997; 153:341-7. [PMID: 9271861 DOI: 10.1111/j.1574-6968.1997.tb12594.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The macronuclear chromatin of the ciliate Blepharisma japonicum, in two starvation states, was studied by thermal denaturation analysis. The behaviour of B. japonicum chromatin, native and reconstituted with Tetrahymena pyriformis H1 histone, was analysed. The data obtained are consistent with the hypothesis that B. japonicum macronuclear chromatin contains a H1-like peptide associated with the linker DNA, although this peptide is reduced in amount and/or chromatin stabilising ability when compared to Tetrahymena macronuclear H1.
Collapse
Affiliation(s)
- M Salvini
- Scuola Normale Superiore di Pisa, Italy.
| | | | | |
Collapse
|