1
|
Watkins KP, Williams-Carrier R, Chotewutmontri P, Friso G, Teubner M, Belcher S, Ruwe H, Schmitz-Linneweber C, van Wijk KJ, Barkan A. Exploring the proteome associated with the mRNA encoding the D1 reaction center protein of Photosystem II in plant chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:369-382. [PMID: 31793101 DOI: 10.1111/tpj.14629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 05/13/2023]
Abstract
Synthesis of the D1 reaction center protein of Photosystem II is dynamically regulated in response to environmental and developmental cues. In chloroplasts, much of this regulation occurs at the post-transcriptional level, but the proteins responsible are largely unknown. To discover proteins that impact psbA expression, we identified proteins that associate with maize psbA mRNA by: (i) formaldehyde cross-linking of leaf tissue followed by antisense oligonucleotide affinity capture of psbA mRNA; and (ii) co-immunoprecipitation with HCF173, a psbA translational activator that is known to bind psbA mRNA. The S1 domain protein SRRP1 and two RNA Recognition Motif (RRM) domain proteins, CP33C and CP33B, were enriched with both approaches. Orthologous proteins were also among the enriched protein set in a previous study in Arabidopsis that employed a designer RNA-binding protein as a psbA RNA affinity tag. We show here that CP33B is bound to psbA mRNA in vivo, as was shown previously for CP33C and SRRP1. Immunoblot, pulse labeling, and ribosome profiling analyses of mutants lacking CP33B and/or CP33C detected some decreases in D1 protein levels under some conditions, but no change in psbA RNA abundance or translation. However, analogous experiments showed that SRRP1 represses psbA ribosome association in the dark, represses ycf1 ribosome association, and promotes accumulation of ndhC mRNA. As SRRP1 is known to harbor RNA chaperone activity, we postulate that SRRP1 mediates these effects by modulating RNA structures. The uncharacterized proteins that emerged from our analyses provide a resource for the discovery of proteins that impact the expression of psbA and other chloroplast genes.
Collapse
Affiliation(s)
- Kenneth P Watkins
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | | | | | - Giulia Friso
- Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Marlene Teubner
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115, Berlin, Germany
| | - Susan Belcher
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Hannes Ruwe
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115, Berlin, Germany
| | | | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| |
Collapse
|
2
|
Teubner M, Lenzen B, Espenberger LB, Fuss J, Nickelsen J, Krause K, Ruwe H, Schmitz-Linneweber C. The Chloroplast Ribonucleoprotein CP33B Quantitatively Binds the psbA mRNA. PLANTS 2020; 9:plants9030367. [PMID: 32192026 PMCID: PMC7154868 DOI: 10.3390/plants9030367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 01/25/2023]
Abstract
Chloroplast RNAs are stabilized and processed by a multitude of nuclear-encoded RNA-binding proteins, often in response to external stimuli like light and temperature. A particularly interesting RNA-based regulation occurs with the psbA mRNA, which shows light-dependent translation. Recently, the chloroplast ribonucleoprotein CP33B was identified as a ligand of the psbA mRNA. We here characterized the interaction of CP33B with chloroplast RNAs in greater detail using a combination of RIP-chip, quantitative dot-blot, and RNA-Bind-n-Seq experiments. We demonstrate that CP33B prefers psbA over all other chloroplast RNAs and associates with the vast majority of the psbA transcript pool. The RNA sequence target motif, determined in vitro, does not fully explain CP33B's preference for psbA, suggesting that there are other determinants of specificity in vivo.
Collapse
Affiliation(s)
- Marlene Teubner
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany; (M.T.); (B.L.); (L.B.E.); (H.R.)
| | - Benjamin Lenzen
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany; (M.T.); (B.L.); (L.B.E.); (H.R.)
| | - Lucas Bernal Espenberger
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany; (M.T.); (B.L.); (L.B.E.); (H.R.)
| | - Janina Fuss
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway; (J.F.); (K.K.)
| | - Jörg Nickelsen
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, 82152 Planegg-Martinsried, Germany;
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway; (J.F.); (K.K.)
| | - Hannes Ruwe
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany; (M.T.); (B.L.); (L.B.E.); (H.R.)
| | - Christian Schmitz-Linneweber
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany; (M.T.); (B.L.); (L.B.E.); (H.R.)
- Correspondence: ; Tel.: ++49-30-2093-49700
| |
Collapse
|
3
|
Nakamura M, Hibi Y, Okamoto T, Sugiura M. Cooperation between the chloroplast psbA 5'-untranslated region and coding region is important for translational initiation: the chloroplast translation machinery cannot read a human viral gene coding region. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:772-80. [PMID: 26931095 DOI: 10.1111/tpj.13150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
Chloroplast mRNA translation is regulated by the 5'-untranslated region (5'-UTR). Chloroplast 5'-UTRs also support translation of the coding regions of heterologous genes. Using an in vitro translation system from tobacco chloroplasts, we detected no translation from a human immunodeficiency virus tat coding region fused directly to the tobacco chloroplast psbA 5'-UTR. This lack of apparent translation could have been due to rapid degradation of mRNA templates or synthesized protein products. Replacing the psbA 5'-UTR with the E. coli phage T7 gene 10 5'-UTR, a highly active 5'-UTR, and substituting synonymous codons led to some translation of the tat coding region. The Tat protein thus synthesized was stable during translation reactions. No significant degradation of the added tat mRNAs was observed after translation reactions. These results excluded the above two possibilities and confirmed that the tat coding region prevented its own translation. The tat coding region was then fused to the psbA 5'-UTR with a cognate 5'-coding segment. Significant translation was detected from the tat coding region when fused after 10 or more codons. That is, translation could be initiated from the tat coding region once translation had started, indicating that the tat coding region inhibits translational initiation but not elongation. Hence, cooperation/compatibility between the 5'-UTR and its coding region is important for translational initiation.
Collapse
Affiliation(s)
- Masayuki Nakamura
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho-ku, Nagoya, 467-8501, Japan
| | - Yurina Hibi
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takashi Okamoto
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Masahiro Sugiura
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho-ku, Nagoya, 467-8501, Japan
| |
Collapse
|
4
|
Kuroda H, Sugiura M. Processing of the 5'-UTR and existence of protein factors that regulate translation of tobacco chloroplast psbN mRNA. PLANT MOLECULAR BIOLOGY 2014; 86:585-93. [PMID: 25201100 DOI: 10.1007/s11103-014-0248-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/31/2014] [Indexed: 05/28/2023]
Abstract
The chloroplast psbB operon includes five genes encoding photosystem II and cytochrome b 6 /f complex components. The psbN gene is located on the opposite strand. PsbN is localized in the thylakoid and is present even in the dark, although its level increases upon illumination and then decreases. However, the translation mechanism of the psbN mRNA remains unclear. Using an in vitro translation system from tobacco chloroplasts and a green fluorescent protein as a reporter protein, we show that translation occurs from a tobacco primary psbN 5'-UTR of 47 nucleotides (nt). Unlike many other chloroplast 5'-UTRs, the psbN 5'-UTR has two processing sites, at -39 and -24 upstream from the initiation site. Processing at -39 enhanced the translation rate fivefold. In contrast, processing at -24 did not affect the translation rate. These observations suggest that the two distinct processing events regulate, at least in part, the level of PsbN during development. The psbN 5'-UTR has no Shine-Dalgarno (SD)-like sequence. In vitro translation assays with excess amounts of the psbN 5'-UTR or with deleted psbN 5'-UTR sequences demonstrated that protein factors are required for translation and that their binding site is an 18 nt sequence in the 5'-UTR. Mobility shift assays using 10 other chloroplast 5'-UTRs suggested that common or similar proteins are involved in translation of a set of mRNAs lacking SD-like sequences.
Collapse
Affiliation(s)
- Hiroshi Kuroda
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho-ku, Nagoya, 467-8501, Japan,
| | | |
Collapse
|
5
|
Ruhlman TA, Rajasekaran K, Cary JW. Expression of chloroperoxidase from Pseudomonas pyrrocinia in tobacco plastids for fungal resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:98-106. [PMID: 25438790 DOI: 10.1016/j.plantsci.2014.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/31/2014] [Accepted: 02/19/2014] [Indexed: 06/04/2023]
Abstract
The chloroperoxidase (cpo) gene from Pseudomonas pyrrocinia was transformed into the plastid genome (plastome) of Nicotiana tabacum var. Petit Havana and transplastomic lines were compared with a nuclear transformant for the same gene. Southern analysis confirmed integration in the plastome and western blotting confirmed the presence of the chloroperoxidase protein (CPO) in higher abundance in transplastomic plants than in cpo nuclear transformants. Northern analysis of primary plastome transformants for cpo showed 15-fold higher transcript abundance than in the nuclear transformant, yet this extent of enhancement was not observed in western blot, enzyme or bioassay, indicating a bottleneck at the post-transcriptional level. Representative plants from the two transplastomic lines showed resistance to fungal pathogens in vitro (Aspergillus flavus, Fusarium verticillioides, and Verticillium dahliae) and in planta (Alternaria alternata).
Collapse
Affiliation(s)
- Tracey A Ruhlman
- USDA, ARS, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124-4305, United States.
| | - Kanniah Rajasekaran
- USDA, ARS, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124-4305, United States.
| | - Jeffrey W Cary
- USDA, ARS, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124-4305, United States.
| |
Collapse
|
6
|
Abstract
Overall translational machinery in plastids is similar to that of E. coli. Initiation is the crucial step for translation and this step in plastids is somewhat different from that of E. coli. Unlike the Shine-Dalgarno sequence in E. coli, cis-elements for translation initiation are not well conserved in plastid mRNAs. Specific trans-acting factors are generally required for translation initiation and its regulation in plastids. During translation elongation, ribosomes pause sometimes on photosynthesis-related mRNAs due probably to proper insertion of nascent polypeptides into membrane complexes. Codon usage of plastid mRNAs is different from that of E. coli and mammalian cells. Plastid mRNAs do not have the so-called rare codons. Translation efficiencies of several synonymous codons are not always correlated with codon usage in plastid mRNAs.
Collapse
|
7
|
Link S, Engelmann K, Meierhoff K, Westhoff P. The atypical short-chain dehydrogenases HCF173 and HCF244 are jointly involved in translational initiation of the psbA mRNA of Arabidopsis. PLANT PHYSIOLOGY 2012; 160:2202-18. [PMID: 23027666 PMCID: PMC3510141 DOI: 10.1104/pp.112.205104] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The related proteins D1 and D2 together build up the photosystem II reaction center. Synthesis of D1 (PsbA) is highly regulated in all photosynthetic organisms. The mechanisms and specific protein factors involved in controlled expression of the psbA gene in higher plants are highly elusive. Here, we report on the identification of a chloroplast-located protein, HCF244 (for high chlorophyll fluorescence244), which is essentially required for translational initiation of the psbA messenger RNA in Arabidopsis (Arabidopsis thaliana). The factor is highly conserved between land plants, algae, and cyanobacteria. HCF244 was identified by coexpression analysis of HCF173, which encodes a protein that is also necessary for psbA translational initiation and in addition for stabilization of this messenger RNA. Phenotypic characterization of the mutants hcf244 and hcf173 suggests that the corresponding proteins operate cooperatively during psbA translation. Immunolocalization studies detected the majority of the two proteins at the thylakoid membrane. Both HCF244 and HCF173 are members of the atypical short-chain dehydrogenase/reductase superfamily, a modified group, which has lost enzyme activity but acquires new functions in the metabolism of the cell.
Collapse
|
8
|
Gimpel JA, Mayfield SP. Analysis of heterologous regulatory and coding regions in algal chloroplasts. Appl Microbiol Biotechnol 2012. [PMID: 23179624 DOI: 10.1007/s00253-012-4580-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The basic photosynthetic apparatus is highly conserved across all photosynthetic organisms, and this conservation can be seen in both protein composition and amino acid sequence. Conservation of regulatory elements also seems possible in chloroplast genes, as many mRNA untranslated regions (UTRs) appear to have similar structural elements. The D1 protein of Photosystem II (psbA gene) is a highly conserved core reaction center protein that shows very similar regulation from cyanobacteria through higher plants. We engineered full and partial psbA genes from a diverse set of photosynthetic organisms into a psbA deficient strain of Chlamydomonas reinhardtii. Analysis of D1 protein accumulation and photosynthetic growth revealed that coding sequences and promoters are interchangeable even between anciently diverged species. On the other hand functional recognition of 5' UTRs is limited to closely related organisms. Furthermore transformation of heterologous promoters and 5' UTRs from the atpA, tufA and psbD genes conferred psbA mRNA accumulation but not translation. Overall, our results show that heterologous D1 proteins can be expressed and complement Photosystem II function in green algae, while RNA regulatory elements appear to be very specific and function only from closely related species. Nonetheless, there is great potential for the expression of heterologous photosynthetic coding sequences for studying and modifying photosynthesis in C. reinhardtii chloroplasts.
Collapse
Affiliation(s)
- Javier A Gimpel
- San Diego Center for Algae Biotechnology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0368, USA
| | | |
Collapse
|
9
|
Mulo P, Sakurai I, Aro EM. Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:247-57. [PMID: 21565160 DOI: 10.1016/j.bbabio.2011.04.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/06/2011] [Accepted: 04/07/2011] [Indexed: 11/26/2022]
Abstract
The Photosystem (PS) II of cyanobacteria, green algae and higher plants is prone to light-induced inactivation, the D1 protein being the primary target of such damage. As a consequence, the D1 protein, encoded by the psbA gene, is degraded and re-synthesized in a multistep process called PSII repair cycle. In cyanobacteria, a small gene family codes for the various, functionally distinct D1 isoforms. In these organisms, the regulation of the psbA gene expression occurs mainly at the level of transcription, but the expression is fine-tuned by regulation of translation elongation. In plants and green algae, the D1 protein is encoded by a single psbA gene located in the chloroplast genome. In chloroplasts of Chlamydomonas reinhardtii the psbA gene expression is strongly regulated by mRNA processing, and particularly at the level of translation initiation. In chloroplasts of higher plants, translation elongation is the prevalent mechanism for regulation of the psbA gene expression. The pre-existing pool of psbA transcripts forms translation initiation complexes in plant chloroplasts even in darkness, while the D1 synthesis can be completed only in the light. Replacement of damaged D1 protein requires also the assistance by a number of auxiliary proteins, which are encoded by the nuclear genome in green algae and higher plants. Nevertheless, many of these chaperones are conserved between prokaryotes and eukaryotes. Here, we describe the specific features and fundamental differences of the psbA gene expression and the regeneration of the PSII reaction center protein D1 in cyanobacteria, green algae and higher plants. This article is part of a Special Issue entitled Photosystem II.
Collapse
Affiliation(s)
- Paula Mulo
- Department of Biochemistry and Food Chemistry, University of Turku, Finland.
| | | | | |
Collapse
|
10
|
Ruhlman T, Verma D, Samson N, Daniell H. The role of heterologous chloroplast sequence elements in transgene integration and expression. PLANT PHYSIOLOGY 2010; 152:2088-104. [PMID: 20130101 PMCID: PMC2850035 DOI: 10.1104/pp.109.152017] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 01/30/2010] [Indexed: 05/15/2023]
Abstract
Heterologous regulatory elements and flanking sequences have been used in chloroplast transformation of several crop species, but their roles and mechanisms have not yet been investigated. Nucleotide sequence identity in the photosystem II protein D1 (psbA) upstream region is 59% across all taxa; similar variation was consistent across all genes and taxa examined. Secondary structure and predicted Gibbs free energy values of the psbA 5' untranslated region (UTR) among different families reflected this variation. Therefore, chloroplast transformation vectors were made for tobacco (Nicotiana tabacum) and lettuce (Lactuca sativa), with endogenous (Nt-Nt, Ls-Ls) or heterologous (Nt-Ls, Ls-Nt) psbA promoter, 5' UTR and 3' UTR, regulating expression of the anthrax protective antigen (PA) or human proinsulin (Pins) fused with the cholera toxin B-subunit (CTB). Unique lettuce flanking sequences were completely eliminated during homologous recombination in the transplastomic tobacco genomes but not unique tobacco sequences. Nt-Ls or Ls-Nt transplastomic lines showed reduction of 80% PA and 97% CTB-Pins expression when compared with endogenous psbA regulatory elements, which accumulated up to 29.6% total soluble protein PA and 72.0% total leaf protein CTB-Pins, 2-fold higher than Rubisco. Transgene transcripts were reduced by 84% in Ls-Nt-CTB-Pins and by 72% in Nt-Ls-PA lines. Transcripts containing endogenous 5' UTR were stabilized in nonpolysomal fractions. Stromal RNA-binding proteins were preferentially associated with endogenous psbA 5' UTR. A rapid and reproducible regeneration system was developed for lettuce commercial cultivars by optimizing plant growth regulators. These findings underscore the need for sequencing complete crop chloroplast genomes, utilization of endogenous regulatory elements and flanking sequences, as well as optimization of plant growth regulators for efficient chloroplast transformation.
Collapse
Affiliation(s)
| | | | | | - Henry Daniell
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, Florida 32816–2364
| |
Collapse
|
11
|
Chloroplast ribonucleoprotein CP31A is required for editing and stability of specific chloroplast mRNAs. Proc Natl Acad Sci U S A 2009; 106:6002-7. [PMID: 19297624 DOI: 10.1073/pnas.0808529106] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chloroplast ribonucleoproteins (cpRNPs) are nuclear-encoded, highly abundant, and light-regulated RNA binding proteins. They have been shown to be involved in chloroplast RNA processing and stabilization in vitro and are phylogenetically related to the well-described heterogeneous nuclear ribonucleoproteins (hnRNPs). cpRNPs have been found associated with mRNAs present in chloroplasts and have been regarded as nonspecific stabilizers of chloroplast transcripts. Here, we demonstrate that null mutants of the cpRNP family member CP31A exhibit highly specific and diverse defects in chloroplast RNA metabolism. First, analysis of cp31a and cp31a/cp31b double mutants uncovers that these 2 paralogous genes participate nonredundantly in a combinatorial fashion in processing a subset of chloroplast editing sites in vivo. Second, a genome-wide analysis of chloroplast transcript accumulation in cp31a mutants detected a virtually complete loss of the chloroplast ndhF mRNA and lesser reductions for specific other mRNAs. Fluorescence analyses show that the activity of the NADH dehydrogenase complex, which also includes the NdhF subunit, is defective in cp31a mutants. This indicates that cpRNPs are important in vivo for calibrating the expression levels of specific chloroplast mRNAs and impact chloroplast physiology. Taken together, the specificity and combinatorial aspects of cpRNP functions uncovered suggest that these chloroplast proteins are functional equivalents of nucleocytosolic hnRNPs.
Collapse
|
12
|
Schult K, Meierhoff K, Paradies S, Töller T, Wolff P, Westhoff P. The nuclear-encoded factor HCF173 is involved in the initiation of translation of the psbA mRNA in Arabidopsis thaliana. THE PLANT CELL 2007; 19:1329-46. [PMID: 17435084 PMCID: PMC1913763 DOI: 10.1105/tpc.106.042895] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 03/08/2007] [Accepted: 03/22/2007] [Indexed: 05/14/2023]
Abstract
To gain insight into the biogenesis of photosystem II (PSII) and to identify auxiliary factors required for this process, we characterized the mutant hcf173 of Arabidopsis thaliana. The mutant shows a high chlorophyll fluorescence phenotype (hcf) and is severely affected in the accumulation of PSII subunits. In vivo labeling experiments revealed a drastically decreased synthesis of the reaction center protein D1. Polysome association experiments suggest that this is primarily caused by reduced translation initiation of the corresponding psbA mRNA. Comparison of mRNA steady state levels indicated that the psbA mRNA is significantly reduced in hcf173. Furthermore, the determination of the psbA mRNA half-life revealed an impaired RNA stability. The HCF173 gene was identified by map-based cloning, and its identity was confirmed by complementation of the hcf phenotype. HCF173 encodes a protein with weak similarities to the superfamily of the short-chain dehydrogenases/reductases. The protein HCF173 is localized in the chloroplast, where it is mainly associated with the membrane system and is part of a higher molecular weight complex. Affinity chromatography of an HCF173 fusion protein uncovered the psbA mRNA as a component of this complex.
Collapse
Affiliation(s)
- Kerstin Schult
- Institut für Entwicklungs und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Translation and translational regulation in chloroplasts. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0234] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Wang BC, Wang HX, Feng JX, Meng DZ, Qu LJ, Zhu YX. Post-translational modifications, but not transcriptional regulation, of major chloroplast RNA-binding proteins are related to Arabidopsis seedling development. Proteomics 2006; 6:2555-63. [PMID: 16548064 DOI: 10.1002/pmic.200500657] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chloroplast RNA-binding proteins are involved in stabilizing stored chloroplast mRNAs and in recruiting site-specific factors that mediate RNA metabolism. In the present study, we characterized two major chloroplast RNA-binding proteins, cp29A and cp29B, by MALDI-TOF MS, N-terminal sequencing, and ESI-MS/MS following 2D-PAGE separation. Polypeptides derived from cp29A were recovered with free N-terminus or with N-terminal acetylation. In addition to the two isoforms found for cp29A, an isoform derived from cp29B was also observed to have five amino acids cleaved from its N-terminus. Results of quantitative real-time RT-PCR indicate that both genes reached maximal rates of transcription 96 h after commencement of germination and maintained relatively high levels throughout the whole life cycle. Transcription of cp29A and cp29B did not vary significantly under light or dark conditions, although production of the acetylated and N-terminally cleaved protein isoforms exhibited light dependence. Exposure of etiolated Arabidopsis seedlings to light conditions for as short as 9 h restored the modified isoforms to levels similar to those found in green plants. Identification of post-translational modifications in major chloroplast RNA-binding proteins may help elucidate their roles in seedling development and in plant RNA stabilization during the greening process.
Collapse
Affiliation(s)
- Bai-Chen Wang
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
15
|
Hirose T, Sugiura M. Multiple elements required for translation of plastid atpB mRNA lacking the Shine-Dalgarno sequence. Nucleic Acids Res 2004; 32:3503-10. [PMID: 15229294 PMCID: PMC443550 DOI: 10.1093/nar/gkh682] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 06/16/2004] [Accepted: 06/16/2004] [Indexed: 11/13/2022] Open
Abstract
The mechanism of translational initiation differs between prokaryotes and eukaryotes. Prokaryotic mRNAs generally contain within their 5'-untranslated region (5'-UTR) a Shine-Dalgarno (SD) sequence that serves as a ribosome-binding site. Chloroplasts possess prokaryotic-like translation machinery, and many chloroplast mRNAs have an SD-like sequence, but its position is variable. Tobacco chloroplast atpB mRNAs contain no SD-like sequence and are U-rich in the 5'-UTR (-20 to -1 with respect to the start codon). In vitro translation assays with mutated mRNAs revealed that an unstructured sequence encompassing the start codon, the AUG codon and its context are required for translation. UV crosslinking experiments showed that a 50 kDa protein (p50) binds to the 5'-UTR. Insertion of an additional initiation region (SD-sequence and AUG) in the 5'-UTR, but not downstream, arrested translation from the authentic site; however, no inhibition was observed by inserting only an AUG triplet. We hypothesize for translational initiation of the atpB mRNA that the ribosome enters an upstream region, slides to the start codon and forms an initiation complex with p50 and other components.
Collapse
Affiliation(s)
- Tetsuro Hirose
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | | |
Collapse
|
16
|
Lezhneva L, Meurer J. The nuclear factor HCF145 affects chloroplast psaA-psaB-rps14 transcript abundance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:740-753. [PMID: 15144376 DOI: 10.1111/j.1365-313x.2004.02081.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The high chlorophyll fluorescence (hcf)145 mutant of Arabidopsis thaliana is specifically affected in photosystem (PS)I function as judged from spectroscopic analysis of PSII and PSI activity. The defect is because of a severe deficiency of PSI core subunits, whereas levels of the four outer antenna subunits of PSI were less reduced in hcf145. Pulse labelling of chloroplast proteins indicated that synthesis of the two largest PSI reaction-centre polypeptides, Psa (photosystem I subunit) A and PsaB, is significantly affected by the mutation. A comparison of stationary transcript levels with rates of transcription demonstrates that hcf145 induces a decreased stability and, probably, transcription of the tricistronic psaA-psaB-rps (small-subunit ribosomal protein)14 mRNA, which is generated by the plastid-encoded RNA polymerase. Translation inhibition experiments excluded translational defects as primary cause of impaired mRNA stability. Larger primary transcripts, which also contain sequences of the ycf3 (hypothetical chloroplast reading frame) gene located upstream of the psaA-psaB-rps14 operon and generated by the action of the nuclear-encoded RNA polymerase, are not targeted by the mutation. Real-time reverse transcription (RT)-PCR analysis has successfully been applied to quantify defined intervals of the tricistronic transcript and it was established that the psaA region is less stable than the rps14 region in hcf145. The hcf145 gene has been mapped on the upper part of chromosome 5.
Collapse
Affiliation(s)
- Lina Lezhneva
- Department Biologie I, Ludwig-Maximilians-Universität, Botanik, Menzingerstr. 67, 80638 München, Germany
| | | |
Collapse
|
17
|
Merendino L, Falciatore A, Rochaix JD. Expression and RNA binding properties of the chloroplast ribosomal protein S1 from Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 2003; 53:371-82. [PMID: 14750525 DOI: 10.1023/b:plan.0000006941.56233.42] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The gene encoding the chloroplast ribosomal protein S1 from Chlamydomonas reinhardtii, CreS1, was cloned and the RNA binding properties and the expression patterns were studied. Gel-shift analysis revealed that CreS1 binds AU-rich 5'-untranslated regions (5'-UTR) of chloroplast mRNAs with higher affinity than the corresponding sequence of a GC-rich nuclear transcript. The binding affinity of CreS1 for a mutant form of the psbD 5'-UTR with a deletion of a U-rich stretch that is required for translation decreases 4-fold as compared to the wild-type 5'-UTR. Our results suggest that CreS1 protein interacts with U-rich sequences. Most of CreS1 is bound to high-molecular-weight complexes which co-migrate with the 30S small ribosomal subunit, and only a small fraction of CreS1 exists in its free form. CreS1 is localized mainly to the chloroplast stroma albeit a significant fraction is associated with chloroplast membranes. The results suggest that most of CreS1 is associated with the 30S ribosomal subunit throughout the translation process. Upon a shift of cells from the dark to the light, the mRNA levels of CreS1 and Psrp-7, both components of the 30S ribosomal subunit, increase transiently and return to the dark levels after 8 h. However, during this dark-to-light transition the levels of CreS1 and of other components of the 30S subunit remain the same suggesting that either protein synthesis or degradation is regulated. The possible implications of these findings are discussed.
Collapse
Affiliation(s)
- Livia Merendino
- Department of Molecular Biology, University of Geneva, 30, Quai Ernest Ansermet, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
18
|
Nickelsen J. Chloroplast RNA-binding proteins. Curr Genet 2003; 43:392-9. [PMID: 12955455 DOI: 10.1007/s00294-003-0425-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Revised: 06/20/2003] [Accepted: 06/23/2003] [Indexed: 10/26/2022]
Abstract
Chloroplast gene expression is regulated by nucleus-encoded factors, which mainly act at the post-transcriptional level. Plastid RNA-binding proteins (RBPs) represent good candidates for mediating these functions. The picture emerging from recent analyses is that of a great number of differentially regulated RBPs, which are organized in distinct, spatially separated supramolecular complexes. This reflects the complexity of the regulatory network that underlies the intracellular communication system between the nucleus and the chloroplast.
Collapse
Affiliation(s)
- Jörg Nickelsen
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany.
| |
Collapse
|
19
|
Yamaguchi K, Subramanian AR. Proteomic identification of all plastid-specific ribosomal proteins in higher plant chloroplast 30S ribosomal subunit. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:190-205. [PMID: 12605670 DOI: 10.1046/j.1432-1033.2003.03359.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Six ribosomal proteins are specific to higher plant chloroplast ribosomes [Subramanian, A.R. (1993) Trends Biochem. Sci.18, 177-180]. Three of them have been fully characterized [Yamaguchi, K., von Knoblauch, K. & Subramanian, A. R. (2000) J. Biol. Chem. 275, 28455-28465; Yamaguchi, K. & Subramanian, A. R. (2000) J. Biol. Chem. 275, 28466-28482]. The remaining three plastid-specific ribosomal proteins (PSRPs), all on the small subunit, have now been characterized (2D PAGE, HPLC, N-terminal/internal peptide sequencing, electrospray ionization MS, cloning/ sequencing of precursor cDNAs). PSRP-3 exists in two forms (alpha/beta, N-terminus free and blocked by post-translational modification), whereas PSRP-2 and PSRP-4 appear, from MS data, to be unmodified. PSRP-2 contains two RNA-binding domains which occur in mRNA processing/stabilizing proteins (e.g. U1A snRNP, poly(A)-binding proteins), suggesting a possible role for it in the recruiting of stored chloroplast mRNAs for active protein synthesis. PSRP-3 is the higher plant orthologue of a hypothetical protein (ycf65 gene product), first reported in the chloroplast genome of a red alga. The ycf65 gene is absent from the chloroplast genomes of higher plants. Therefore, we suggest that Psrp-3/ycf65, encoding an evolutionarily conserved chloroplast ribosomal protein, represents an example of organelle-to-nucleus gene transfer in chloroplast evolution. PSRP-4 shows strong homology with Thx, a small basic ribosomal protein of Thermus thermophilus 30S subunit (with a specific structural role in the subunit crystallographic structure), but its orthologues are absent from Escherichia coli and the photosynthetic bacterium Synechocystis. We would therefore suggest that PSRP-4 is an example of gene capture (via horizontal gene transfer) during chloro-ribosome emergence. Orthologues of all six PSRPs are identifiable in the complete genome sequence of Arabidopsis thaliana and in the higher plant expressed sequence tag database. All six PSRPs are nucleus-encoded. The cytosolic precursors of PSRP-2, PSRP-3, and PSRP-4 have average targeting peptides (62, 58, and 54 residues long), and the mature proteins are of 196, 121, and 47 residues length (molar masses, 21.7, 13.8 and 5.2 kDa), respectively. Functions of the PSRPs as active participants in translational regulation, the key feature of chloroplast protein synthesis, are discussed and a model is proposed.
Collapse
Affiliation(s)
- Kenichi Yamaguchi
- Max-Planck-Institut fuer molekulare Genetik, Berlin-Dahlem, Germany.
| | | |
Collapse
|
20
|
Ossenbühl F, Hartmann K, Nickelsen J. A chloroplast RNA binding protein from stromal thylakoid membranes specifically binds to the 5' untranslated region of the psbA mRNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3912-9. [PMID: 12180968 DOI: 10.1046/j.1432-1033.2002.03057.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The intrachloroplastic localization of post-transcriptional gene expression steps represents one key determinant for the regulation of chloroplast development. We have characterized an RNA binding protein of 63 kDa (RBP63) from Chlamydomonas reinhardtii chloroplasts, which cofractionates with stromal thylakoid membranes. Solubility properties suggest that RBP63 is a peripheral membrane protein. Among RNA probes from different 5' untranslated regions of chloroplast transcripts, RBP63 preferentially binds to the psbA leader. This binding is dependent on a region comprising seven consecutive A residues, which is required for D1 protein synthesis. A possible role for this newly discovered RNA binding protein in membrane targeting of psbA gene expression is discussed.
Collapse
Affiliation(s)
- Friedrich Ossenbühl
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | | | | |
Collapse
|
21
|
Katz YS, Danon A. The 3'-untranslated region of chloroplast psbA mRNA stabilizes binding of regulatory proteins to the leader of the message. J Biol Chem 2002; 277:18665-9. [PMID: 11904302 DOI: 10.1074/jbc.m201033200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5'-leader and 3'-tail of chloroplast mRNAs have been suggested to play a role in posttranscriptional regulation of expression of the message. The regulation is thought to be mediated, at least in part, by regulatory proteins that are encoded by the nuclear genome and targeted to the chloroplast where they interact with chloroplast mRNAs. Previous studies identified high affinity binding of the 5'-untranslated region (UTR) of the chloroplast psbA mRNA by Chlamydomonas reinhardtii proteins. Here we tested whether the 3'-UTR of psbA mRNA alone or linked in cis with the 5'-UTR of the mRNA affects the high affinity binding of the message in vitro. We did not detect high affinity binding that is unique to the 3'-UTR. However, we show that the cis-linked 3'-UTR increases the stability of the 5'-UTR binding complex. This effect could provide a means for translational discrimination against mRNAs that are incorrectly processed.
Collapse
Affiliation(s)
- Yael S Katz
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
22
|
Agrawal GK, Kato H, Asayama M, Shirai M. An AU-box motif upstream of the SD sequence of light-dependent psbA transcripts confers mRNA instability in darkness in cyanobacteria. Nucleic Acids Res 2001; 29:1835-43. [PMID: 11328866 PMCID: PMC37257 DOI: 10.1093/nar/29.9.1835] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2001] [Accepted: 03/08/2001] [Indexed: 11/14/2022] Open
Abstract
The psbA2 gene of a unicellular cyanobacterium, Microcystis aeruginosa K-81, encodes a D1 protein homolog in the reaction center of photosynthetic Photosystem II. The expression of the psbA2 transcript has been shown to be light-dependent as assessed under light and dark (12/12 h) cycling conditions. We aligned the 5'-untranslated leader regions (UTRs) of psbAs from different photosynthetic organisms and identified a conserved sequence, UAAAUAAA or the 'AU-box', just upstream of the SD sequences. To clarify the role of 5'-upstream cis-elements containing the AU-box for light-dependent expression of psbA2, a series of deletion and point mutations in the region were introduced into the genome of heterologous cyanobacterium Synechococcus sp. strain PCC 7942, and psbA2 expression was examined. A clear pattern of light-dependent expression was observed in recombinant cyanobacteria carrying the K-81 psbA2 -38/+36 region (which includes the minimal promoter element and a light-dependent cis-element with the AU-box), +1 indicating the transcription start site. A constitutive pattern of expression, in which the transcripts remained almost stable under dark conditions, was obtained in cells harboring the -38/+14 region (the minimal element), indicating that the +14/+36 region with the AU-box is important for the observed light-dependent expression. Point mutations analyses within the AU-box also revealed that changes in number, direction and identity (as assayed by adenine/uridine nucleotide substitutions) influenced the light-dependent pattern of expression. The level of psbA2 transcripts increased markedly in CG- or deletion-box mutants in the dark, strongly indicating that the AU- (AT-) box acts as a negative cis-element. Furthermore, characterization of transcript accumulation in cells treated with rifampicin suggests that psbA2 5'-mRNA is unstable in the dark, supporting the view that the light-dependent expression is controlled at the post-transcriptional level. We discuss various mechanisms that may lead to altered mRNA stability such as the binding of factor(s) or ribosomes to the 5'-UTR and possible roles of the AU-box motif and the SD sequence.
Collapse
Affiliation(s)
- G K Agrawal
- Laboratory of Molecular Genetics, School of Agriculture, Ibaraki University, Ami 3-21-1, Inashiki, Ibaraki 300-0332, Japan
| | | | | | | |
Collapse
|
23
|
McCormac DJ, Litz H, Wang J, Gollnick PD, Berry JO. Light-associated and processing-dependent protein binding to 5' regions of rbcL mRNA in the chloroplasts of a C4 plant. J Biol Chem 2001; 276:3476-83. [PMID: 11076953 DOI: 10.1074/jbc.m009236200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In amaranth, a C(4) dicotyledonous plant, the plastid rbcL gene (encoding the large subunit of ribulose-1,5-bisphosphate carboxylase) is regulated post-transcriptionally during many developmental processes, including light-mediated development. To identify post-transcriptional regulators of rbcL expression, three types of analyses (polysome heel printing, gel retardation, and UV cross-linking) were utilized. These approaches revealed that multiple proteins interact with 5' regions of rbcL mRNA in light-grown, but not etiolated, amaranth plants. Light-associated binding of a 47-kDa protein (p47), observed by UV cross-linking, was highly specific for the rbcL 5' RNA. Binding of p47 occurred only with RNAs corresponding to mature processed rbcL transcripts (5'-untranslated region (UTR) terminating at -66); transcripts with longer 5'-UTRs did not associate with p47 in vitro. Variations in the length of the rbcL 5'-UTR were found to occur in vivo, and these different 5' termini may prevent or enhance light-associated p47 binding, possibly affecting rbcL expression as well. p47 binding correlates with light-dependent rbcL polysome association of the fully processed transcripts in photosynthetic leaves and cotyledons but not with cell-specific rbcL mRNA accumulation in bundle sheath and mesophyll chloroplasts.
Collapse
Affiliation(s)
- D J McCormac
- Department of Biological Sciences, State University of New York, Buffalo, New York 14260, USA
| | | | | | | | | |
Collapse
|
24
|
Nakamura T, Ohta M, Sugiura M, Sugita M. Chloroplast ribonucleoproteins function as a stabilizing factor of ribosome-free mRNAs in the stroma. J Biol Chem 2001; 276:147-52. [PMID: 11038367 DOI: 10.1074/jbc.m008817200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-transcriptional RNA processing is an important step in the regulation of chloroplast gene expression, and a number of chloroplast ribonucleoproteins (cpRNPs) are likely to be involved in this process. The major tobacco cpRNPs are composed of five species: cp28, cp29A, cp29B, cp31, and cp33 and these are divided into three groups (I, II, and III). By immunoprecipitation, gel filtration, and Western blot analysis, we demonstrated that these cpRNPs are abundant stromal proteins that exist as complexes with ribosome-free mRNAs. Many ribosome-free psbA mRNAs coprecipitate with cpRNPs, indicating that the majority of stromal psbA mRNAs are associated with cpRNPs. In addition, an in vitro mRNA degradation assay indicated that exogenous psbA mRNA is more rapidly degraded in cpRNP-depleted extracts than in nondepleted extracts. When the depleted extract was reconstituted with recombinant cpRNPs, the psbA mRNA in the extract was protected from degradation to a similar extent as the psbA mRNA in the nondepleted extract. Moreover, restoration of the stabilizing activity varied following addition of individual group-specific cpRNPs alone or in combination. When the five cpRNPs were supplemented in the depleted extract, full activity was restored. We propose that these cpRNPs act as stabilizing factors for nonribosome-bound mRNAs in the stroma.
Collapse
Affiliation(s)
- T Nakamura
- Center for Gene Research, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
25
|
Kuroda H, Maliga P. Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts. PLANT PHYSIOLOGY 2001; 125:430-6. [PMID: 11154350 PMCID: PMC61023 DOI: 10.1104/pp.125.1.430] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2000] [Revised: 07/15/2000] [Accepted: 08/15/2000] [Indexed: 05/19/2023]
Abstract
The objective of this study was to determine if mRNA sequences downstream of the translation initiation codon are important for translation of plastid mRNAs. We have employed a transgenic approach, measuring accumulation of the neomycin phosphotransferase (NPTII) reporter enzyme translationally fused with 14 N-terminal amino acids encoded in the rbcL or atpB plastid genes. NPTII accumulation from wild-type and mutant rbcL and atpB segments was compared. We report that silent mutations in the rbcL segment reduced NPTII accumulation 35-fold. In contrast, mutations in the atpB mRNA reduced NPTII accumulation only moderately from approximately 7% (w/w) to approximately 4% (w/w) of the total soluble cellular protein, indicating that the importance of sequences downstream of the translation initiation codon are dependent on the individual mRNA. Information provided here will facilitate transgene design for high-level expression of recombinant proteins in chloroplasts by translational fusion with the N-terminal segment of highly expressed plastid genes or by introduction of silent mutations in the N-terminal part of the coding region.
Collapse
Affiliation(s)
- H Kuroda
- Waksman Institute, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, New Jersey 08854-8020, USA
| | | |
Collapse
|
26
|
|
27
|
Horlitz M, Klaff P. Gene-specific trans-regulatory functions of magnesium for chloroplast mRNA stability in higher plants. J Biol Chem 2000; 275:35638-45. [PMID: 10918066 DOI: 10.1074/jbc.m005622200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In higher plant chloroplasts the accumulation of plastid-encoded mRNAs during leaf maturation is regulated via gene-specific mRNA stabilization. The half-lives of chloroplast RNAs are specifically affected by magnesium ions. psbA mRNA (D1 protein of photosystem II), rbcL mRNA (large subunit of ribulose-1,5-bisphosphate carboxylase), 16 S rRNA, and tRNA(His) gain stability at specific magnesium concentrations in an in vitro degradation system from spinach chloroplasts. Each RNA exhibits a typical magnesium concentration-dependent stabilization profile. It shows a cooperative response of the stability-regulated psbA mRNA and a saturation curve for the other RNAs. The concentration of free Mg(2+) rises during chloroplast development within a range sufficient to mediate gene-specific mRNA stabilization in vivo as observed in vitro. We suggest that magnesium ions are a trans-acting factor mediating differential mRNA stability.
Collapse
Affiliation(s)
- M Horlitz
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Federal Republic of Germany
| | | |
Collapse
|
28
|
Ossenbühl F, Nickelsen J. cis- and trans-Acting determinants for translation of psbD mRNA in Chlamydomonas reinhardtii. Mol Cell Biol 2000; 20:8134-42. [PMID: 11027283 PMCID: PMC86423 DOI: 10.1128/mcb.20.21.8134-8142.2000] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chloroplast translation is mediated by nucleus-encoded factors that interact with distinct cis-acting RNA elements. A U-rich sequence within the 5' untranslated region of the psbD mRNA has previously been shown to be required for its translation in Chlamydomonas reinhardtii. By using UV cross-linking assays, we have identified a 40-kDa RNA binding protein, which binds to the wild-type psbD leader, but is unable to recognize a nonfunctional leader mutant lacking the U-rich motif. RNA binding is restored in a chloroplast cis-acting suppressor. The functions of several site-directed psbD leader mutants were analyzed with transgenic C. reinhardtii chloroplasts and the in vitro RNA binding assay. A clear correlation between photosynthetic activity and the capability to bind RNA by the 40-kDa protein was observed. Furthermore, the data obtained suggest that the poly(U) region serves as a molecular spacer between two previously characterized cis-acting elements, which are involved in RNA stabilization and translation. RNA-protein complex formation depends on the nuclear Nac2 gene product that is part of a protein complex required for the stabilization of the psbD mRNA. The sedimentation properties of the 40-kDa RNA binding protein suggest that it interacts directly with this Nac2 complex and, as a result, links processes of chloroplast RNA metabolism and translation.
Collapse
Affiliation(s)
- F Ossenbühl
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | |
Collapse
|
29
|
Shteiman-Kotler A, Schuster G. RNA-binding characteristics of the chloroplast S1-like ribosomal protein CS1. Nucleic Acids Res 2000; 28:3310-5. [PMID: 10954599 PMCID: PMC110697 DOI: 10.1093/nar/28.17.3310] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The chloroplast ribosomal protein CS1, the homolog of the bacterial ribosomal protein S1, is believed to be involved in the process of ribosome binding to mRNA during translation. Since translation control is an important step in chloroplast gene expression, and in order to study initiation complex formation, we studied the RNA-binding properties of CS1 protein. We found that most of the CS1 protein in spinach chloroplast co-purified with the 30S ribosomal subunit. The relative binding affinity of RNA to CS1 was determined using the UV-crosslinking competition assay. CS1 protein binds the ribohomopolymer poly(U) with a relatively high binding affinity. Very low binding affinities were obtained for the other ribohomopolymers, poly(G), poly(A) and poly(C). In addition, no specific binding of CS1, either in the 30S complex or as a recombinant purified protein, was obtained to the 5'-untranslated region of the mRNA in comparison to the other parts. RNA-binding experiments, in which the N- and C-termini of the protein were analyzed, revealed that the RNA-binding site is located in the C-terminus half of the protein. These results suggest that CS1 does not direct the 30S complex to the initiation codon of the translation site by specific binding to the 5'-untranslated region. In bacteria, specific binding is derived by base pairing between 16S rRNA and the Shine-Dalagarno sequences. In the chloroplast, nuclear encoded and gene-specific translation factors may be involved in the determination of specific binding of the 30S subunit to the initiator codon.
Collapse
Affiliation(s)
- A Shteiman-Kotler
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
30
|
Abstract
The conversion of genetic information stored in DNA into a protein product proceeds through the obligatory intermediate of messenger RNA. The steady-state level of an mRNA is determined by its relative synthesis and degradation rates, i.e., an interplay between transcriptional regulation and control of RNA stability. When the biological status of an organism requires that a gene product's abundance varies as a function of developmental stage, environmental factors or intracellular signals, increased or decreased RNA stability can be the determining factor. RNA stability and processing have long been known as important regulatory points in chloroplast gene expression. Here we summarize current knowledge and prospects relevant to these processes, emphasizing biochemical data. The extensive literature on nuclear mutations affecting chloroplast RNA metabolism is reviewed in another article in this volume (Barkan and Goldschmidt-Clermont, this issue).
Collapse
Affiliation(s)
- R A Monde
- Boyce Thompson Institute for Plant Research, Tower Rd., Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
31
|
Abstract
The expression of the plastid genome is dependent on a large number of nucleus-encoded factors. Some of these factors have been identified through biochemical assays, and many others by genetic screens in Arabidopsis, Chlamydomonas and maize. Nucleus-encoded factors function in each step in plastid gene expression, including transcription, RNA editing, RNA splicing, RNA processing, RNA degradation, and translation. Many of the factors discovered via biochemical approaches play general roles as components of the basic gene expression machinery, whereas the majority of those identified by genetic approaches are specifically required for the expression of small subsets of chloroplast genes and are involved in post-transcriptional steps. Some of the nucleus-encoded factors may play regulatory roles and modulate chloroplast gene expression in response to developmental or environmental cues. They may also serve to couple chloroplast gene expression with the assembly of the protein products into the large complexes of the photosynthetic apparatus. The convergence of biochemical approaches with those of classical and reverse genetics, and the contributions from large scale genomic sequencing should result in rapid advances in our understanding of the regulatory interactions that govern plastid gene expression.
Collapse
Affiliation(s)
- A Barkan
- Institute of Molecular Biology, University of Oregon, OR 97403, Eugene, USA
| | | |
Collapse
|
32
|
Abstract
The discovery that chloroplasts have semi-autonomous genetic systems has led to many insights into the biogenesis of these organelles and their evolution from free-living photosynthetic bacteria. Recent developments of our understanding of the molecular mechanisms of translation in chloroplasts suggest selective pressures that have maintained the 100-200 genes of the ancestral endosymbiont in chloroplast genomes. The ability to introduce modified genes into chloroplast genomes by homologous recombination and the recent development of an in vitro chloroplast translation system have been exploited for analyses of the cis-acting requirements for chloroplast translation. Trans-acting translational factors have been identified by genetic and biochemical approaches. Several studies have suggested that chloroplast mRNAs are translated in association with membranes.
Collapse
Affiliation(s)
- W Zerges
- Concordia University, 1455 de Maisonneuve W., H3G 1M8, Quebec, Montreal, Canada.
| |
Collapse
|
33
|
Cahoon AB, Timko MP. yellow-in-the-dark mutants of Chlamydomonas lack the CHLL subunit of light-independent protochlorophyllide reductase. THE PLANT CELL 2000; 12:559-68. [PMID: 10760244 PMCID: PMC139853 DOI: 10.1105/tpc.12.4.559] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/1999] [Accepted: 02/29/2000] [Indexed: 05/19/2023]
Abstract
Light-independent protochlorophyllide reduction leading to chlorophyll formation in the dark requires both chloroplast and nuclear gene expression in Chlamydomonas reinhardtii. Mutations in any one of the plastid (chlL, chlN, and chlB) or nuclear (y-1 to y-10) genes required for this process result in the phenotype of the yellow-in-the-dark or y mutants. Analysis of the chlL, chlN, and chlB transcript levels in both light- and dark-grown wild-type and y mutant cells showed that the y mutations have no effect on the transcription of these plastid genes. Protein gel blot analysis showed that the CHLN and CHLB proteins are present in similar amounts in light- and dark-grown wild-type cells, whereas CHLL is present only in wild-type cells grown in the dark or at light intensities < or =15 micromol m(-2) sec(-1). Analysis of chlL transcript distribution on polysome profiles and rates of protein turnover in chloramphenicol-treated cells suggested that CHLL formation is most probably blocked at translation initiation or elongation. Furthermore, treatment of cells with metabolic inhibitors and uncouplers of photosynthetic electron transport showed that regulation of CHLL formation is linked to the physiologic status of the chloroplast. Similar to wild-type cells, y mutants contain nearly identical amounts of CHLN and CHLB when grown in either light or darkness. However, no CHLL is present in any of the y mutants except y-7, which contains an immunoreactive CHLL smaller than the expected size. Our findings indicate that CHLL translation is negatively photoregulated by the energy state or redox potential within the chloroplast in wild-type cells and that nuclear y genes are required for synthesis or accumulation of the CHLL protein.
Collapse
Affiliation(s)
- A B Cahoon
- Department of Biology, University of Virginia, Charlottesville, Virginia 22903, USA
| | | |
Collapse
|
34
|
Richard S, Drevet C, Jouanin L, Séguin A. Isolation and characterization of a cDNA clone encoding a putative white spruce glycine-rich RNA binding protein. Gene 1999; 240:379-88. [PMID: 10580158 DOI: 10.1016/s0378-1119(99)00426-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A presumably full-length cDNA encoding a putative glycine-rich RNA binding protein was isolated from a lambdaZAP cDNA library prepared from mRNAs extracted from needles of 2year old white spruce seedlings, which had been either wounded or jasmonate-treated. The cDNA, designated PgRNP (Picea glauca RNP protein), presents a 468bp open reading frame encoding a 155 amino acid protein. This polypeptide possesses an RNA binding domain (RNP-CS) and a glycine-rich domain. Comparative alignment reveals extensive homologies to glycine-rich RNA binding proteins containing an RNP-CS found in other angiosperm species. Genomic hybridization experiments suggest that the PgRNP gene is part of a small multigene family with at least four members. RNA blot analysis revealed that the PgRNP transcript is expressed in all tissues from non-stressed plants. Constitutive mRNA level was found in needle tissue from control as well as methyl-jasmonate treated plants. Wounding had no clear induction effect. Jasmonic acid treatment and systemic wound response had a positive effect on transcript accumulation. Transcript accumulation was slightly induced by cold in needles, and repressed by drought stress in both needle and root tissues of 2year old plants. Finally, the level of PgRNP accumulation was induced by wounding and repressed in 2week old dark-grown seedlings upon jasmonate treatments.
Collapse
MESH Headings
- Acetates/pharmacology
- Amino Acid Sequence
- Base Sequence
- Blotting, Southern
- Cloning, Molecular
- Cycadopsida/chemistry
- Cycadopsida/genetics
- Cycadopsida/growth & development
- Cyclopentanes/pharmacology
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Plant/analysis
- DNA, Plant/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Molecular Sequence Data
- Oxylipins
- Plant Proteins/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Stress, Mechanical
- Tissue Distribution
- Transcription, Genetic
Collapse
Affiliation(s)
- S Richard
- Centre de recherche en biologie forestière, Pavillon C.-E.-Marchand, Université Laval, Sainte-Foy, Canada
| | | | | | | |
Collapse
|
35
|
Eibl C, Zou Z, Beck A, Kim M, Mullet J, Koop HU. In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 19:333-345. [PMID: 10476080 DOI: 10.1046/j.1365-313x.1999.00543.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
5' and 3' untranslated regions (UTRs) of plastid RNAs act as regulatory elements for post-transcriptional control of gene expression. Polyethylene glycol-mediated plastid transformation with UTR-GUS reporter gene fusions was used to study the function of the psbA, rbcL and rpl32 UTRs in vivo. All gene fusions were expressed from the same promoter, i.e. the promoter of the 16S-rRNA gene, such that variations in RNA and protein levels would be due to the involved UTR elements alone. Transgenic tobacco lines containing different combinations of UTRs showed fivefold variation in the uidA-mRNA level (RNA stability) and approximately 100-fold differences in GUS activity, a measure of translation activity. The rbcL 5'-UTR conferred greater mRNA stability than the psbA 5'-UTR on uidA transcripts. In contrast, the psbA 5'-UTR enhanced translation of GUS to a much greater extent compared to the rbcL 5'-UTR. The psbA 5'-UTR also mediated light-induced activation of translation which was not observed with other constructs. Deletion mutagenesis of an unanalysed terminal sequence element of the psbA 5'-UTR resulted in a twofold drop in uidA-mRNA level and a fourfold decrease in translation efficiency. Exchange of 3'-UTRs results in up to fivefold changes of mRNA levels and does not significantly influence translation efficiency. The mechanical impacts of these results on plastid translation regulation are discussed.
Collapse
|
36
|
Bruick RK, Mayfield SP. Light-activated translation of chloroplast mRNAs. TRENDS IN PLANT SCIENCE 1999; 4:190-195. [PMID: 10322559 DOI: 10.1016/s1360-1385(99)01402-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The integrated regulation of mRNA stability, processing and translation facilitates the expression of several chloroplast genes, particularly in response to changes in illumination. Nuclear and chloroplast-encoded factors that mediate the expression of specific chloroplast messages have been characterized from green algae and plants. Recent studies suggest that the chloroplast might have recruited eukaryotic proteins, which are usually found in the cytoplasm or the endoplasmic reticulum, to couple the level of photosynthetic activity to gene expression via translational activation. Consequently, elements required for translational initiation of chloroplast messages differ from their prokaryotic ancestors. These results suggest that chloroplast translational regulation is a hybrid between prokaryotic and eukaryotic systems.
Collapse
Affiliation(s)
- RK Bruick
- Dept of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
37
|
Agrawal GK, Asayama M, Shirai M. Light-dependent and rhythmic psbA transcripts in homologous/heterologous cyanobacterial cells. Biochem Biophys Res Commun 1999; 255:47-53. [PMID: 10082653 DOI: 10.1006/bbrc.1998.9996] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The psbA2 gene exhibits light-dependent and rhythmic expression in a unicellular cyanobacterium, Microcystis aeruginosa (Synechocystis) K-81. To further understand the psbA2 expression, biological analyses were performed in homologous and heterologous cyanobacterial cells. The results of the experiments using the K-81 cells revealed that (i) the light-dependent expression appeared on transcriptional and/or post-transcriptional level(s) under light/dark cycles, (ii) circadian-rhythmic transcripts were also observed under the control of an endogenous clock. To assess whether light-dependent and rhythmic psbA2 expression occurs in heterologous cyanobacterium, Synechococcus sp. strain PCC 7942, the K-81 psbA2 5'-upstream region of which the promoter and its around sequences share with those of PCC 7942 psbAII, was fused to the bacterial lacZ reporter gene, introduced into the genome of PCC 7942 and the psbA2 transcripts were directly investigated by primer extension. The K-81 psbA2 specific transcripts were also light-dependent and rhythmic in PCC 7942, strongly demonstrating that a common regulatory mechanism exists per se for the psbA2 expression in both strains. Furthermore, psbA2 expression in the recombinant PCC 7942 strain, AG400 in which the region from -404 to +111 of psbA2 is fused to lacZ, exhibited clear rhythmicity, while very little or no rhythmicity was observed in AG429 (-38 to +14, the only promoter region), suggesting that the region(s) around the promoter was essentially required for clear rhythmic expression.
Collapse
Affiliation(s)
- G K Agrawal
- Laboratory of Molecular Microbiology, School of Agriculture, Ibaraki University, Ami-machi, Inashiki-gun, Ibaraki, 300-0332, Japan
| | | | | |
Collapse
|
38
|
Abstract
The entire sequence (120-190 kb) of chloroplast genomes has been determined from a dozen plant species. The genome contains from 87 to 183 known genes, of which half encode components involved in translation. These include a complete set of rRNAs and about 30 tRNAs, which are likely to be sufficient to support translation in chloroplasts. RNA editing (mostly C to U base changes) occurs in some chloroplast transcripts, creating start and stop codons and changing codons to retain conserved amino acids. Many components that constitute the chloroplast translational machinery are similar to those of Escherichia coli, whereas only one third of the chloroplast mRNAs contain Shine-Dalgarno-like sequences at the correct positions. Analyses conducted in vivo and in vitro have revealed the existence of multiple mechanisms for translational initiation in chloroplasts.
Collapse
Affiliation(s)
- M Sugiura
- Center for Gene Research, Nagoya University, Japan.
| | | | | |
Collapse
|
39
|
Bruick RK, Mayfield SP. Processing of the psbA 5' untranslated region in Chlamydomonas reinhardtii depends upon factors mediating ribosome association. J Cell Biol 1998; 143:1145-53. [PMID: 9832545 PMCID: PMC2133069 DOI: 10.1083/jcb.143.5.1145] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/1998] [Revised: 10/21/1998] [Indexed: 11/22/2022] Open
Abstract
The 5' untranslated region of the chloroplast psbA mRNA, encoding the D1 protein, is processed in Chlamydomonas reinhardtii. Processing occurs just upstream of a consensus Shine-Dalgarno sequence and results in the removal of 54 nucleotides from the 5' terminus, including a stem-loop element identified previously as an important structure for D1 expression. Examination of this processing event in C. reinhardtii strains containing mutations within the chloroplast or nuclear genomes that block psbA translation reveals a correlation between processing and ribosome association. Mutations within the 5' untranslated region of the psbA mRNA that disrupt the Shine-Dalgarno sequence, acting as a ribosome binding site, preclude translation and prevent mRNA processing. Similarly, nuclear mutations that specifically affect synthesis of the D1 protein specifically affect processing of the psbA mRNA. In vitro, loss of the stem-loop element does not prohibit the binding of a message-specific protein complex required for translational activation of psbA upon illumination. These results are consistent with a hierarchical maturation pathway for chloroplast messages, mediated by nuclear-encoded factors, that integrates mRNA processing, message stability, ribosome association, and translation.
Collapse
MESH Headings
- 5' Untranslated Regions/genetics
- 5' Untranslated Regions/metabolism
- Animals
- Base Sequence
- Binding Sites/genetics
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Chlamydomonas reinhardtii/genetics
- Chlamydomonas reinhardtii/metabolism
- Chlamydomonas reinhardtii/radiation effects
- Chloroplasts/genetics
- Chloroplasts/metabolism
- DNA Primers/genetics
- Light
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Photosynthetic Reaction Center Complex Proteins/genetics
- Photosynthetic Reaction Center Complex Proteins/metabolism
- Photosynthetic Reaction Center Complex Proteins/radiation effects
- Photosystem II Protein Complex
- RNA Processing, Post-Transcriptional
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
- R K Bruick
- Department of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|