1
|
Guo J, Chen S, Onishi Y, Shi Q, Song Y, Mei H, Chen L, Kool ET, Zhu RY. RNA Control via Redox-Responsive Acylation. Angew Chem Int Ed Engl 2024; 63:e202402178. [PMID: 38480851 DOI: 10.1002/anie.202402178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Indexed: 04/05/2024]
Abstract
Incorporating stimuli-responsive components into RNA constructs provides precise spatiotemporal control over RNA structures and functions. Despite considerable advancements, the utilization of redox-responsive stimuli for the activation of caged RNAs remains scarce. In this context, we present a novel strategy that leverages post-synthetic acylation coupled with redox-responsive chemistry to exert control over RNA. To achieve this, we design and synthesize a series of acylating reagents specifically tailored for introducing disulfide-containing acyl adducts into the 2'-OH groups of RNA ("cloaking"). Our data reveal that these acyl moieties can be readily appended, effectively blocking RNA catalytic activity and folding. We also demonstrate the traceless release and reactivation of caged RNAs ("uncloaking") through reducing stimuli. By employing this strategy, RNA exhibits rapid cellular uptake, effective distribution and activation in the cytosol without lysosomal entrapment. We anticipate that our methodology will be accessible to laboratories engaged in RNA biology and holds promise as a versatile platform for RNA-based applications.
Collapse
Affiliation(s)
- Junsong Guo
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Siqin Chen
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Yoshiyuki Onishi
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Qi Shi
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore, 117599, Singapore
| | - Hui Mei
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore, 117599, Singapore
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Ru-Yi Zhu
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| |
Collapse
|
2
|
Liu R, Yao J, Zhou S, Yang J, Zhang Y, Yang X, Li L, Zhang Y, Zhuang Y, Yang Y, Chen X. Spatiotemporal control of RNA metabolism and CRISPR-Cas functions using engineered photoswitchable RNA-binding proteins. Nat Protoc 2024; 19:374-405. [PMID: 38036926 DOI: 10.1038/s41596-023-00920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 09/19/2023] [Indexed: 12/02/2023]
Abstract
RNA molecules perform various crucial roles in diverse cellular processes, from translating genetic information to decoding the genome, regulating gene expression and catalyzing chemical reactions. RNA-binding proteins (RBPs) play an essential role in regulating the diverse behaviors and functions of RNA in live cells, but techniques for the spatiotemporal control of RBP activities and RNA functions are rarely reported yet highly desirable. We recently reported the development of LicV, a synthetic photoswitchable RBP that can bind to a specific RNA sequence in response to blue light irradiation. LicV has been used successfully for the optogenetic control of RNA localization, splicing, translation and stability, as well as for the photoswitchable regulation of transcription and genomic locus labeling. Compared to classical genetic or pharmacologic perturbations, LicV-based light-switchable effectors have the advantages of large dynamic range between dark and light conditions and submicron and millisecond spatiotemporal resolutions. In this protocol, we provide an easy, efficient and generalizable strategy for engineering photoswitchable RBPs for the spatiotemporal control of RNA metabolism. We also provide a detailed protocol for the conversion of a CRISPR-Cas system to optogenetic control. The protocols typically take 2-3 d, including transfection and results analysis. Most of this protocol is applicable to the development of novel LicV-based photoswitchable effectors for the optogenetic control of other RNA metabolisms and CRISPR-Cas functions.
Collapse
Affiliation(s)
- Renmei Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Jing Yao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Siyu Zhou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jing Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yaqiang Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaoyan Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Leshi Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yunbin Zhang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingping Zhuang
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
3
|
Xiao L, Fang L, Kool ET. 2'-OH as a universal handle for studying intracellular RNAs. Cell Chem Biol 2024; 31:110-124. [PMID: 37992716 PMCID: PMC10841764 DOI: 10.1016/j.chembiol.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/28/2023] [Accepted: 10/29/2023] [Indexed: 11/24/2023]
Abstract
RNA plays pivotal roles in most cellular processes, serving as both the traditional carrier of genetic information and as a key regulator of cellular functions. The advent of chemical technologies has contributed critically to the analysis of cellular RNA structures, functions, and interactions. Many of these methods and molecules involve the utilization of chemically reactive handles in RNAs, either introduced externally or inherent within the polymer itself. Among these handles, the 2'-hydroxyl (2'-OH) group has emerged as an exceptionally well-suited and general chemical moiety for the modification and profiling of RNAs in intracellular studies. In this review, we provide an overview of the recent advancements in intracellular applications of acylation at the 2'-OH group of RNA. We outline progress made in probing RNA structure and interactomes, controlling RNA function, RNA imaging, and analyzing RNA-small molecule interactions, all achieved in living cells through this simple chemical handle on the biopolymer.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Linglan Fang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Lorenz R. RNA Secondary Structure Thermodynamics. Methods Mol Biol 2024; 2726:45-83. [PMID: 38780727 DOI: 10.1007/978-1-0716-3519-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Several different ways to predict RNA secondary structures have been suggested in the literature. Statistical methods, such as those that utilize stochastic context-free grammars (SCFGs), or approaches based on machine learning aim to predict the best representative structure for the underlying ensemble of possible conformations. Their parameters have therefore been trained on larger subsets of well-curated, known secondary structures. Physics-based methods, on the other hand, usually refrain from using optimized parameters. They model secondary structures from loops as individual building blocks which have been assigned a physical property instead: the free energy of the respective loop. Such free energies are either derived from experiments or from mathematical modeling. This rigorous use of physical properties then allows for the application of statistical mechanics to describe the entire state space of RNA secondary structures in terms of equilibrium probabilities. On that basis, and by using efficient algorithms, many more descriptors of the conformational state space of RNA molecules can be derived to investigate and explain the many functions of RNA molecules. Moreover, compared to other methods, physics-based models allow for a much easier extension with other properties that can be measured experimentally. For instance, small molecules or proteins can bind to an RNA and their binding affinity can be assessed experimentally. Under certain conditions, existing RNA secondary structure prediction tools can be used to model this RNA-ligand binding and to eventually shed light on its impact on structure formation and function.
Collapse
Affiliation(s)
- Ronny Lorenz
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Liu Y, Shi Y, Yu L, Wu Z, Jiang JH. Reversible Acylation of RNA Enables Activatable Biosensing. Anal Chem 2023; 95:6490-6495. [PMID: 37053522 DOI: 10.1021/acs.analchem.3c00723] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
There is a high demand to develop chemical tools to control the property and function of RNA. Current methods mainly rely on ultraviolet light-based caging strategies, which may cause phototoxicity in live cell-based experiments. We herein report an endogenous stimulus-responsive RNA acylation approach by introducing boronate ester (BE) groups to 2'-hydroxyls through postsynthetic modification. Treatment with hydrogen peroxide (H2O2) yields a phenol derivative which undergoes a 1,6-eliminaton for the traceless release of 2'-hydroxyl. We demonstrated that the acylation of crRNA enabled conditional regulation of CRISPR/Cas13a activity for activatable detection of target RNA. We also showed that the highly specific acylation of the single RNA in 8-17 DNAzyme allowed reversible control of the catalytic activity of DNAzyme, which was further applied to the cell-selective imaging of metal ions in cancer cells. Thus, our strategy provides a simple, general, and cell-selective method to control RNA activity, affording great potential in the construction of activatable RNA sensors and pre-RNA medicines.
Collapse
Affiliation(s)
- Yining Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yang Shi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lanxing Yu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhenkun Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Li Y, Zhang Q, Lo KC, Yan Z, Phillips DL, Tang W, Du L. Time-Resolved Spectroscopic Study of a Photoinduced Intramolecular Chloride Exchange Reaction of 3',5'-Dimethoxybenzoin Chloride. J Phys Chem B 2023; 127:1645-1651. [PMID: 36780292 DOI: 10.1021/acs.jpcb.3c00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoremovable protecting groups are of great importance due to their remote control over the liberation of diverse reactive species temporally and spatially, including biologically active compounds and functional groups. Here, an in-depth investigation on the heterolysis-solvolysis reaction mechanisms of a photoremovable protecting group, 3',5'-dimethoxybenzoin (DMB) chloride, has been accomplished. With the aid of transient absorption and time-resolved resonance Raman spectroscopies, the features of the intermediates that emerged from the photolysis process were directly observed. Elaborate optical and theoretical studies on DMB chloride have suggested a long-lived α-keto cation intermediate (0.9 ms) exists as a key intermediate, unlike the radical intermediates that are typically generated in such photocyclization reactions. After undergoing nucleophilic addition and isomerization, the intermediate species eventually leads to the formation of the final product(s).
Collapse
Affiliation(s)
- Yuanchun Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China.,Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Qidi Zhang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Kin Cheung Lo
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Zhiping Yan
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics (KLOFE), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China.,Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Hong Kong 999077, P.R. China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China
| | - Lili Du
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China.,Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
| |
Collapse
|
7
|
Zhang Q, Liang Y, Xing H. Caging-Decaging Strategies to Realize Spatiotemporal Control of DNAzyme Activity for Biosensing and Bioimaging. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Liu R, Yang J, Yao J, Zhao Z, He W, Su N, Zhang Z, Zhang C, Zhang Z, Cai H, Zhu L, Zhao Y, Quan S, Chen X, Yang Y. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat Biotechnol 2022; 40:779-786. [PMID: 34980910 DOI: 10.1038/s41587-021-01112-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
RNA-binding proteins (RBPs) play an essential role in regulating the function of RNAs in a cellular context, but our ability to control RBP activity in time and space is limited. Here, we describe the engineering of LicV, a photoswitchable RBP that binds to a specific RNA sequence in response to blue light irradiation. When fused to various RNA effectors, LicV allows for optogenetic control of RNA localization, splicing, translation and stability in cell culture. Furthermore, LicV-assisted CRISPR-Cas systems allow for efficient and tunable photoswitchable regulation of transcription and genomic locus labeling. These data demonstrate that the photoswitchable RBP LicV can serve as a programmable scaffold for the spatiotemporal control of synthetic RNA effectors.
Collapse
Affiliation(s)
- Renmei Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jing Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jing Yao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhou Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wei He
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ni Su
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zeyi Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Chenxia Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haibo Cai
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Linyong Zhu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shu Quan
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
9
|
Tavakoli A, Min JH. Photochemical modifications for DNA/RNA oligonucleotides. RSC Adv 2022; 12:6484-6507. [PMID: 35424630 PMCID: PMC8982246 DOI: 10.1039/d1ra05951c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022] Open
Abstract
Light-triggered chemical reactions can provide excellent tools to investigate the fundamental mechanisms important in biology. Light is easily applicable and orthogonal to most cellular events, and its dose and locality can be controlled in tissues and cells. Light-induced conversion of photochemical groups installed on small molecules, proteins, and oligonucleotides can alter their functional states and thus the ensuing biological events. Recently, photochemical control of DNA/RNA structure and function has garnered attention thanks to the rapidly expanding photochemistry used in diverse biological applications. Photoconvertible groups can be incorporated in the backbone, ribose, and nucleobase of an oligonucleotide to undergo various irreversible and reversible light-induced reactions such as cleavage, crosslinking, isomerization, and intramolecular cyclization reactions. In this review, we gather a list of photoconvertible groups used in oligonucleotides and summarize their reaction characteristics, impacts on DNA/RNA thermal stability and structure, as well as their biological applications.
Collapse
Affiliation(s)
- Amirrasoul Tavakoli
- Department of Chemistry & Biochemistry, Baylor University Waco TX 76706 USA +1-254-710-2095
| | - Jung-Hyun Min
- Department of Chemistry & Biochemistry, Baylor University Waco TX 76706 USA +1-254-710-2095
| |
Collapse
|
10
|
Darrah KE, Deiters A. Translational control of gene function through optically regulated nucleic acids. Chem Soc Rev 2021; 50:13253-13267. [PMID: 34739027 DOI: 10.1039/d1cs00257k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Translation of mRNA into protein is one of the most fundamental processes within biological systems. Gene expression is tightly regulated both in space and time, often involving complex signaling or gene regulatory networks, as most prominently observed in embryo development. Thus, studies of gene function require tools with a matching level of external control. Light is an excellent conditional trigger as it is minimally invasive, can be easily tuned in wavelength and amplitude, and can be applied with excellent spatial and temporal resolution. To this end, modification of established oligonucleotide-based technologies with optical control elements, in the form of photocaging groups and photoswitches, has rendered these tools capable of navigating the dynamic regulatory pathways of mRNA translation in cellular and in vivo models. In this review, we discuss the different optochemical approaches used to generate photoresponsive nucleic acids that activate and deactivate gene expression and function at the translational level.
Collapse
Affiliation(s)
- Kristie E Darrah
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| |
Collapse
|
11
|
Moorthy R, Kennelly SA, Rodriguez DJ, Harki DA. An efficient synthesis of RNA containing GS-441524: the nucleoside precursor of remdesivir. RSC Adv 2021; 11:31373-31376. [PMID: 35496844 PMCID: PMC9041347 DOI: 10.1039/d1ra06589k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 01/18/2023] Open
Abstract
Remdesivir is an antiviral nucleoside phosphoramidate with activity against multiple viruses, including SARS-CoV-2. To enable studies of viral polymerases with RNA containing remdesivir, we report an efficient synthesis of a phosphoramidite of GS-441524, the nucleoside precursor of remdesivir, and its incorporation into RNA using automated solid-phase RNA synthesis.
Collapse
Affiliation(s)
- Ramkumar Moorthy
- Department of Medicinal Chemistry, University of Minnesota 2231 6th Street S.E. Minneapolis MN 55455 USA
| | - Samantha A Kennelly
- Department of Medicinal Chemistry, University of Minnesota 2231 6th Street S.E. Minneapolis MN 55455 USA
| | - Deborah J Rodriguez
- Department of Medicinal Chemistry, University of Minnesota 2231 6th Street S.E. Minneapolis MN 55455 USA
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota 2231 6th Street S.E. Minneapolis MN 55455 USA
| |
Collapse
|
12
|
Lu S, Shen J, Fan C, Li Q, Yang X. DNA Assembly-Based Stimuli-Responsive Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100328. [PMID: 34258165 PMCID: PMC8261508 DOI: 10.1002/advs.202100328] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/05/2021] [Indexed: 05/06/2023]
Abstract
Stimuli-responsive designs with exogenous stimuli enable remote and reversible control of DNA nanostructures, which break many limitations of static nanostructures and inspired development of dynamic DNA nanotechnology. Moreover, the introduction of various types of organic molecules, polymers, chemical bonds, and chemical reactions with stimuli-responsive properties development has greatly expand the application scope of dynamic DNA nanotechnology. Here, DNA assembly-based stimuli-responsive systems are reviewed, with the focus on response units and mechanisms that depend on different exogenous stimuli (DNA strand, pH, light, temperature, electricity, metal ions, etc.), and their applications in fields of nanofabrication (DNA architectures, hybrid architectures, nanomachines, and constitutional dynamic networks) and biomedical research (biosensing, bioimaging, therapeutics, and theranostics) are discussed. Finally, the opportunities and challenges for DNA assembly-based stimuli-responsive systems are overviewed and discussed.
Collapse
Affiliation(s)
- Shasha Lu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Jianlei Shen
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Chunhai Fan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineDepartment of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Qian Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Xiurong Yang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
13
|
The Issue of Tissue: Approaches and Challenges to the Light Control of Drug Activity. CHEMPHOTOCHEM 2021; 5:611-618. [DOI: 10.1002/cptc.202100001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Yang L, Dmochowski IJ. Conditionally Activated ("Caged") Oligonucleotides. Molecules 2021; 26:1481. [PMID: 33803234 PMCID: PMC7963183 DOI: 10.3390/molecules26051481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/09/2023] Open
Abstract
Conditionally activated ("caged") oligonucleotides provide useful spatiotemporal control for studying dynamic biological processes, e.g., regulating in vivo gene expression or probing specific oligonucleotide targets. This review summarizes recent advances in caging strategies, which involve different stimuli in the activation step. Oligo cyclization is a particularly attractive caging strategy, which simplifies the probe design and affords oligo stabilization. Our laboratory developed an efficient synthesis for circular caged oligos, and a circular caged antisense DNA oligo was successfully applied in gene regulation. A second technology is Transcriptome In Vivo Analysis (TIVA), where caged oligos enable mRNA isolation from single cells in living tissue. We highlight our development of TIVA probes with improved caging stability. Finally, we illustrate the first protease-activated oligo probe, which was designed for caspase-3. This expands the toolkit for investigating the transcriptome under a specific physiologic condition (e.g., apoptosis), particularly in specimens where light activation is impractical.
Collapse
Affiliation(s)
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA;
| |
Collapse
|
15
|
Xiao L, Habibian M, Kool ET. Site-Selective RNA Functionalization via DNA-Induced Structure. J Am Chem Soc 2020; 142:16357-16363. [PMID: 32865995 PMCID: PMC7962339 DOI: 10.1021/jacs.0c06824] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Methods for RNA functionalization at specific sites are in high demand but remain a challenge, particularly for RNAs produced by transcription rather than by total synthesis. Recent studies have described acylimidazole reagents that react in high yields at 2'-OH groups stochastically at nonbase-paired regions, covering much of the RNA in scattered acyl esters. Localized reactions, if possible, could prove useful in many applications, providing functional handles at specific sites and sequences of the biopolymer. Here, we describe a DNA-directed strategy for in vitro functionalization of RNA at site-localized 2'-OH groups. The method, RNA Acylation at Induced Loops (RAIL), utilizes complementary helper DNA oligonucleotides that expose gaps or loops at selected positions while protecting the remainder in DNA-RNA duplexes. Reaction with an acylimidazole reagent is then carried out, providing high yields of 2'-OH conjugation at predetermined sites. Experiments reveal optimal helper oligodeoxynucleotide designs and conditions for the reaction, and tests of the approach are carried out to control localized ribozyme activities and to label RNAs with dual-color fluorescent dyes. The RAIL approach offers a simple and novel strategy for site-selective labeling and control of RNAs, potentially of any length and origin.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Chemistry, ChEM-H Institute and Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Maryam Habibian
- Department of Chemistry, ChEM-H Institute and Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| | - Eric T. Kool
- Department of Chemistry, ChEM-H Institute and Stanford Cancer Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
16
|
Wu Y, Yang Z, Lu Y. Photocaged functional nucleic acids for spatiotemporal imaging in biology. Curr Opin Chem Biol 2020; 57:95-104. [PMID: 32652498 DOI: 10.1016/j.cbpa.2020.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/21/2020] [Accepted: 05/06/2020] [Indexed: 01/17/2023]
Abstract
Imaging of species in living organisms with high spatiotemporal resolution is essential for understanding biological processes. While functional nucleic acids (FNAs), such as catalytic nucleic acids and aptamers, have emerged as effective sensors for a wide range of molecules, photocaged control of these FNAs has played a key role in translating them into bioimaging agents with high spatiotemporal control. In this review, we summarize methods and results of photocaged FNAs based on photolabile modifications, photoisomerization, and photothermal activation. Future directions, including strategies to improve the performance of these photocaged FNAs, are also described.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Zhenglin Yang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States.
| |
Collapse
|
17
|
Rotstan KA, Abdelsayed MM, Passalacqua LFM, Chizzolini F, Sudarshan K, Chamberlin AR, Míšek J, Luptak A. Regulation of mRNA translation by a photoriboswitch. eLife 2020; 9:e51737. [PMID: 32053109 PMCID: PMC7051177 DOI: 10.7554/elife.51737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/12/2020] [Indexed: 12/15/2022] Open
Abstract
Optogenetic tools have revolutionized the study of receptor-mediated processes, but such tools are lacking for RNA-controlled systems. In particular, light-activated regulatory RNAs are needed for spatiotemporal control of gene expression. To fill this gap, we used in vitro selection to isolate a novel riboswitch that selectively binds the trans isoform of a stiff-stilbene (amino-tSS)-a rapidly and reversibly photoisomerizing small molecule. Structural probing revealed that the RNA binds amino-tSS about 100-times stronger than the cis photoisoform (amino-cSS). In vitro and in vivo functional analysis showed that the riboswitch, termed Werewolf-1 (Were-1), inhibits translation of a downstream open reading frame when bound to amino-tSS. Photoisomerization of the ligand with a sub-millisecond pulse of light induced the protein expression. In contrast, amino-cSS supported protein expression, which was inhibited upon photoisomerization to amino-tSS. Reversible photoregulation of gene expression using a genetically encoded RNA will likely facilitate high-resolution spatiotemporal analysis of complex RNA processes.
Collapse
Affiliation(s)
- Kelly A Rotstan
- Department of Pharmaceutical Sciences, University of CaliforniaIrvineUnited States
| | - Michael M Abdelsayed
- Department of Molecular Biology and Biochemistry, University of CaliforniaIrvineUnited States
| | - Luiz FM Passalacqua
- Department of Pharmaceutical Sciences, University of CaliforniaIrvineUnited States
| | - Fabio Chizzolini
- Department of Pharmaceutical Sciences, University of CaliforniaIrvineUnited States
| | | | - A Richard Chamberlin
- Department of Pharmaceutical Sciences, University of CaliforniaIrvineUnited States
- Department of Chemistry, University of CaliforniaIrvineUnited States
| | - Jiří Míšek
- Department of Pharmaceutical Sciences, University of CaliforniaIrvineUnited States
- Department of Organic Chemistry, Charles UniversityPragueCzech Republic
| | - Andrej Luptak
- Department of Pharmaceutical Sciences, University of CaliforniaIrvineUnited States
- Department of Molecular Biology and Biochemistry, University of CaliforniaIrvineUnited States
- Department of Chemistry, University of CaliforniaIrvineUnited States
| |
Collapse
|
18
|
Nedorezova DD, Fakhardo AF, Molden TA, Kolpashchikov DM. Deoxyribozyme‐Based DNA Machines for Cancer Therapy. Chembiochem 2019; 21:607-611. [DOI: 10.1002/cbic.201900525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Daria D. Nedorezova
- Laboratory of Solution Chemistry of Advanced Materials and TechnologiesITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| | - Anna F. Fakhardo
- Laboratory of Solution Chemistry of Advanced Materials and TechnologiesITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| | - Tatiana A. Molden
- Chemistry DepartmentUniversity of Central Florida Orlando FL 32816-2366 USA
| | - Dmitry M. Kolpashchikov
- Chemistry DepartmentUniversity of Central Florida Orlando FL 32816-2366 USA
- Burnett School of Biomedical SciencesUniversity of Central Florida Orlando FL 32816 USA
| |
Collapse
|
19
|
Belligund K, Mathew T, Hunt JR, Nirmalchandar A, Haiges R, Dawlaty J, Prakash GKS. Photochemistry of 2-Nitroarenes: 2-Nitrophenyl-α-trifluoromethyl Carbinols as Synthons for Fluoroorganics. J Am Chem Soc 2019; 141:15921-15931. [PMID: 31556624 DOI: 10.1021/jacs.9b07241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Facile synthesis of a new series of 2,2'-bis(trifluoroacetyl) azoxybenzene derivatives and trifluoromethylated benzo[c]isoxazoline systems, along with trifluoroacetyl nitrosobenzene derivatives was achieved by solvent controlled photolysis of appropriate 2-nitrobenzyl alcohols. Corresponding photoactive 2-nitrobenzyl chromophore plays a distinct role in this photosynthetic process, while, quite unprecedented, pertinent fluoromethyl substitution leads to high value fluoromethylated products, whose direct access is not feasible by common synthetic protocols. The significance of fluorine and fluoroalkyl substitution and its prominent biological effects makes this new photochemical approach an important discovery in synthetic methodology. Plausible mechanistic pathways involved in the formation of the products during steady-state photolysis are further established by picosecond laser flash photolysis experiments.
Collapse
Affiliation(s)
- Kavita Belligund
- Loker Hydrocarbon Research Institute and Department of Chemistry , University of Southern California , Los Angeles , California 90089-1661 , United States.,Department of Chemistry , University of Southern California , Los Angeles , California 90089-1661 , United States
| | - Thomas Mathew
- Loker Hydrocarbon Research Institute and Department of Chemistry , University of Southern California , Los Angeles , California 90089-1661 , United States.,Department of Chemistry , University of Southern California , Los Angeles , California 90089-1661 , United States
| | - Jonathan R Hunt
- Department of Chemistry , University of Southern California , Los Angeles , California 90089-1661 , United States
| | - Archith Nirmalchandar
- Loker Hydrocarbon Research Institute and Department of Chemistry , University of Southern California , Los Angeles , California 90089-1661 , United States.,Department of Chemistry , University of Southern California , Los Angeles , California 90089-1661 , United States
| | - Ralf Haiges
- Loker Hydrocarbon Research Institute and Department of Chemistry , University of Southern California , Los Angeles , California 90089-1661 , United States.,Department of Chemistry , University of Southern California , Los Angeles , California 90089-1661 , United States
| | - Jahan Dawlaty
- Department of Chemistry , University of Southern California , Los Angeles , California 90089-1661 , United States
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute and Department of Chemistry , University of Southern California , Los Angeles , California 90089-1661 , United States.,Department of Chemistry , University of Southern California , Los Angeles , California 90089-1661 , United States
| |
Collapse
|
20
|
Yang Z, Loh KY, Chu YT, Feng R, Satyavolu NSR, Xiong M, Nakamata Huynh SM, Hwang K, Li L, Xing H, Zhang X, Chemla YR, Gruebele M, Lu Y. Optical Control of Metal Ion Probes in Cells and Zebrafish Using Highly Selective DNAzymes Conjugated to Upconversion Nanoparticles. J Am Chem Soc 2018; 140:17656-17665. [PMID: 30427666 DOI: 10.1021/jacs.8b09867] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spatial and temporal distributions of metal ions in vitro and in vivo are crucial in our understanding of the roles of metal ions in biological systems, and yet there is a very limited number of methods to probe metal ions with high space and time resolution, especially in vivo. To overcome this limitation, we report a Zn2+-specific near-infrared (NIR) DNAzyme nanoprobe for real-time metal ion tracking with spatiotemporal control in early embryos and larvae of zebrafish. By conjugating photocaged DNAzymes onto lanthanide-doped upconversion nanoparticles (UCNPs), we have achieved upconversion of a deep tissue penetrating NIR 980 nm light into 365 nm emission. The UV photon then efficiently photodecages a substrate strand containing a nitrobenzyl group at the 2'-OH of adenosine ribonucleotide, allowing enzymatic cleavage by a complementary DNA strand containing a Zn2+-selective DNAzyme. The product containing a visible FAM fluorophore that is initially quenched by BHQ1 and Dabcyl quenchers is released after cleavage, resulting in higher fluorescent signals. The DNAzyme-UCNP probe enables Zn2+ sensing by exciting in the NIR biological imaging window in both living cells and zebrafish embryos and detecting in the visible region. In this study, we introduce a platform that can be used to understand the Zn2+ distribution with spatiotemporal control, thereby giving insights into the dynamical Zn2+ ion distribution in intracellular and in vivo models.
Collapse
Affiliation(s)
| | | | | | | | | | - Mengyi Xiong
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , China
| | | | | | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , China
| | - Xiaobing Zhang
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , China
| | | | | | | |
Collapse
|
21
|
Kamiya Y, Arimura Y, Ooi H, Kato K, Liang XG, Asanuma H. Development of Visible-Light-Responsive RNA Scissors Based on a 10-23 DNAzyme. Chembiochem 2018; 19:1305-1311. [PMID: 29682882 DOI: 10.1002/cbic.201800020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Indexed: 01/07/2023]
Abstract
The 10-23 DNAzyme is an artificially developed functional oligonucleotide that can cleave RNA in a sequence-specific manner. In this study, we designed a new photo-driven DNAzyme incorporating a photoresponsive DNA overhang complementary to the catalytic core region. The photoresponsive overhang region of the DNAzyme included either azobenzene components (Azos) or 2,6-dimethyl-4-(methylthio)azobenzene units (SDM-Azos) each attached to a d-threoninol linker. When the Azos or SDM-Azos were in the trans form, the photoresponsive DNA overhang hybridized with the DNAzyme, and the RNA cleavage activity was suppressed. cis Isomerization of Azos or SDM-Azos, induced by 365 or 400 nm light, respectively, destabilized the duplex between the photoresponsive overhang and the catalytic core, and the DNAzyme recovered RNA cleavage activity. Reversible photoswitching of the DNAzyme activity was achieved by use of specific light irradiation. Further, light-dependent photoswitching of protein expression in the presence of the DNAzyme was demonstrated. Thus, this photo-driven DNAzyme has potential for application as a photocontrolled gene silencing system and a photoactivatable gene expression system.
Collapse
Affiliation(s)
- Yukiko Kamiya
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yu Arimura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hideaki Ooi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Kenjiro Kato
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Xing-Guo Liang
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.,School of Food Science and Technology, Ocean University of China, Shinan-qu, Yushan Road No. 5, Qingdao, 266003, China
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
22
|
Abstract
External photocontrol over RNA function has emerged as a useful tool for studying nucleic acid biology. Most current methods rely on fully synthetic nucleic acids with photocaged nucleobases, limiting application to relatively short synthetic RNAs. Here we report a method to gain photocontrol over RNA by postsynthetic acylation of 2'-hydroxyls with photoprotecting groups. One-step introduction of these groups efficiently blocks hybridization, which is restored after light exposure. Polyacylation (termed cloaking) enables control over a hammerhead ribozyme, illustrating optical control of RNA catalytic function. Use of the new approach on a transcribed 237 nt RNA aptamer demonstrates the utility of this method to switch on RNA folding in a cellular context, and underlines the potential for application in biological studies.
Collapse
Affiliation(s)
- Willem A Velema
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anna M. Kietrys
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
23
|
Kadina A, Kietrys AM, Kool ET. RNA Cloaking by Reversible Acylation. Angew Chem Int Ed Engl 2018; 57:3059-3063. [PMID: 29370460 PMCID: PMC5842138 DOI: 10.1002/anie.201708696] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/18/2018] [Indexed: 11/08/2022]
Abstract
We describe a selective and mild chemical approach for controlling RNA hybridization, folding, and enzyme interactions. Reaction of RNAs in aqueous buffer with an azide-substituted acylating agent (100-200 mm) yields several 2'-OH acylations per RNA strand in as little as 10 min. This poly-acylated ("cloaked") RNA is strongly blocked from hybridization with complementary nucleic acids, from cleavage by RNA-processing enzymes, and from folding into active aptamer structures. Importantly, treatment with a water-soluble phosphine triggers a Staudinger reduction of the azide groups, resulting in spontaneous loss of acyl groups ("uncloaking"). This fully restores RNA folding and biochemical activity.
Collapse
Affiliation(s)
- Anastasia Kadina
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Anna M Kietrys
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
24
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemical Control of Biological Processes in Cells and Animals. Angew Chem Int Ed Engl 2018; 57:2768-2798. [PMID: 28521066 PMCID: PMC6026863 DOI: 10.1002/anie.201700171] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/06/2017] [Indexed: 12/13/2022]
Abstract
Biological processes are naturally regulated with high spatial and temporal control, as is perhaps most evident in metazoan embryogenesis. Chemical tools have been extensively utilized in cell and developmental biology to investigate cellular processes, and conditional control methods have expanded applications of these technologies toward resolving complex biological questions. Light represents an excellent external trigger since it can be controlled with very high spatial and temporal precision. To this end, several optically regulated tools have been developed and applied to living systems. In this review we discuss recent developments of optochemical tools, including small molecules, peptides, proteins, and nucleic acids that can be irreversibly or reversibly controlled through light irradiation, with a focus on applications in cells and animals.
Collapse
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Taylor Courtney
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Yuta Naro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
25
|
Affiliation(s)
- Anastasia Kadina
- Department of Chemistry; Stanford University; Stanford CA 94305 USA
| | - Anna M. Kietrys
- Department of Chemistry; Stanford University; Stanford CA 94305 USA
| | - Eric T. Kool
- Department of Chemistry; Stanford University; Stanford CA 94305 USA
| |
Collapse
|
26
|
Debart F, Dupouy C, Vasseur JJ. Stimuli-responsive oligonucleotides in prodrug-based approaches for gene silencing. Beilstein J Org Chem 2018; 14:436-469. [PMID: 29520308 PMCID: PMC5827813 DOI: 10.3762/bjoc.14.32] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/26/2018] [Indexed: 12/14/2022] Open
Abstract
Oligonucleotides (ONs) have been envisaged for therapeutic applications for more than thirty years. However, their broad use requires overcoming several hurdles such as instability in biological fluids, low cell penetration, limited tissue distribution, and off-target effects. With this aim, many chemical modifications have been introduced into ONs definitively as a means of modifying and better improving their properties as gene silencing agents and some of them have been successful. Moreover, in the search for an alternative way to make efficient ON-based drugs, the general concept of prodrugs was applied to the oligonucleotide field. A prodrug is defined as a compound that undergoes transformations in vivo to yield the parent active drug under different stimuli. The interest in stimuli-responsive ONs for gene silencing functions has been notable in recent years. The ON prodrug strategies usually help to overcome limitations of natural ONs due to their low metabolic stability and poor delivery. Nevertheless, compared to permanent ON modifications, transient modifications in prodrugs offer the opportunity to regulate ON activity as a function of stimuli acting as switches. Generally, the ON prodrug is not active until it is triggered to release an unmodified ON. However, as it will be described in some examples, the opposite effect can be sought. This review examines ON modifications in response to various stimuli. These stimuli may be internal or external to the cell, chemical (glutathione), biochemical (enzymes), or physical (heat, light). For each stimulus, the discussion has been separated into sections corresponding to the site of the modification in the nucleotide: the internucleosidic phosphate, the nucleobase, the sugar or the extremities of ONs. Moreover, the review provides a current and detailed account of stimuli-responsive ONs with the main goal of gene silencing. However, for some stimuli-responsive ONs reported in this review, no application for controlling gene expression has been shown, but a certain potential in this field could be demonstrated. Additionally, other applications in different domains have been mentioned to extend the interest in such molecules.
Collapse
Affiliation(s)
- Françoise Debart
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | |
Collapse
|
27
|
Ankenbruck N, Courtney T, Naro Y, Deiters A. Optochemische Steuerung biologischer Vorgänge in Zellen und Tieren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201700171] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nicholas Ankenbruck
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Taylor Courtney
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Yuta Naro
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Alexander Deiters
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
28
|
Ohno K, Sugiyama D, Takeshita L, Kanamori T, Masaki Y, Sekine M, Seio K. Synthesis of photocaged 6-O-(2-nitrobenzyl)guanosine and 4-O-(2-nitrobenzyl) uridine triphosphates for photocontrol of the RNA transcription reaction. Bioorg Med Chem 2017; 25:6007-6015. [PMID: 28986114 DOI: 10.1016/j.bmc.2017.09.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 11/27/2022]
Abstract
6-O-(2-Nitrobenzyl)guanosine and 4-O-(2-nitrobenzyl)uridine triphosphates (NBGTP, NBUTP) were synthesized, and their biochemical and photophysical properties were evaluated. We synthesized NBUTP using the canonical triphosphate synthesis method and NBGTP from 2',3'-O-TBDMS guanosine via a triphosphate synthesis method by utilizing mild acidic desilylation conditions. Deprotection of the nitrobenzyl group in NBGTP and NBUTP proceeded within 60s by UV irradiation at 365nm. Experiments using NBGTP or NBUTP in T7-RNA transcription reactions showed that NBGTP could be useful for the photocontrol of transcription by UV irradiation.
Collapse
Affiliation(s)
- Kentaro Ohno
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Daiki Sugiyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Leo Takeshita
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Takashi Kanamori
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Yoshiaki Masaki
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Mitsuo Sekine
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kohji Seio
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
29
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
30
|
McGhee CE, Loh KY, Lu Y. DNAzyme sensors for detection of metal ions in the environment and imaging them in living cells. Curr Opin Biotechnol 2017; 45:191-201. [PMID: 28458112 DOI: 10.1016/j.copbio.2017.03.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022]
Abstract
The on-site and real-time detection of metal ions is important for environmental monitoring and for understanding the impact of metal ions on human health. However, developing sensors selective for a wide range of metal ions that can work in the complex matrices of untreated samples and cells presents significant challenges. To meet these challenges, DNAzymes, an emerging class of metal ion-dependent enzymes selective for almost any metal ion, have been functionalized with fluorophores, nanoparticles and other imaging agents and incorporated into sensors for the detection of metal ions in environmental samples and for imaging metal ions in living cells. Herein, we highlight the recent developments of DNAzyme-based fluorescent, colorimetric, SERS, electrochemical and electrochemiluminscent sensors for metal ions for these applications.
Collapse
Affiliation(s)
- Claire E McGhee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Kang Yong Loh
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
31
|
Feng M, Ruan Z, Shang J, Xiao L, Tong A, Xiang Y. Photocaged G-Quadruplex DNAzyme and Aptamer by Post-Synthetic Modification on Phosphodiester Backbone. Bioconjug Chem 2016; 28:549-555. [PMID: 27931100 DOI: 10.1021/acs.bioconjchem.6b00646] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
G-quadruplex-containing DNAzymes and aptamers are widely applied in many research fields because of their high stability and prominent activities versus the protein counterparts. In this work, G-quadruplex DNAs were equipped with photolabile groups to construct photocaged DNAzymes and aptamers. We incorporated TEEP-OH (thioether-enol phosphate, phenol substituted) into phosphodiester backbone of G-quadruplex DNA by a facile post-synthetic method to achieve efficient photocaging of their activities. Upon light irradiation, the peroxidase-mimicking activity of the caged G-quadruplex DNAzyme was activated, through the transformation of TEEP-OH into a native DNA phosphodiester without any artificial scar. Similarly, the caged G-quadruplex thrombin-binding aptamer also showed light-induced activation of thrombin inhibition activity. This method could serve as a general strategy to prepare photocaged G-quadruplex DNA with other activities for noninvasive control of their functions.
Collapse
Affiliation(s)
- Mengli Feng
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University , Beijing 100084, China
| | - Zhiyuan Ruan
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University , Beijing 100084, China
| | - Jiachen Shang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University , Beijing 100084, China
| | - Lu Xiao
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University , Beijing 100084, China
| | - Aijun Tong
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University , Beijing 100084, China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University , Beijing 100084, China
| |
Collapse
|
32
|
Nguyen JC, Dzowo YK, Wolfbrandt C, Townsend J, Kukatin S, Wang H, Resendiz MJE. Synthesis, Thermal Stability, Biophysical Properties, and Molecular Modeling of Oligonucleotides of RNA Containing 2'-O-2-Thiophenylmethyl Groups. J Org Chem 2016; 81:8947-8958. [PMID: 27584708 DOI: 10.1021/acs.joc.6b01615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dodecamers of RNA [CUACGGAAUCAU] were functionalized with C2'-O-2-thiophenylmethyl groups to obtain oligonucleotides 10-14 and 17. The modified nucleotides were incorporated into RNA strands via solid-phase synthesis. The biophysical properties of these ONs were used to quantify the effects of this modification on RNA:RNA and RNA:DNA duplexes. A combination of UV-vis and circular dichroism were used to determine thermal stabilities of all strands, which hybridized into A-form geometries. Destabilization of the double stranded RNA was measured as a function of number of consecutive modifications, reflected in decreased thermal denaturation values (ΔTm, ca. 2.5-11.5 °C). Van't Hoff plots on a duplex containing one modification (10:15) displayed a ca. ΔΔG° of +4 kcal/mol with respect to its canonical analogue. Interestingly, hybridization of two modified strands (13:17, containing a total of eight modifications) resulted in increased stability and a distinct secondary structure, reflected in its CD spectrum. Molecular modeling based on DFT calculations shed light on the nature of this stability, with induced changes in the torsional angle δ (C5'-C4'-C3'-O3) and phosphate-phosphate distances that are in agreement with a compacted structure. The described synthetic methodology and structural information will be useful in the design of thermodynamically stable structures containing chemically reactive modifications.
Collapse
Affiliation(s)
- Joseph C Nguyen
- Department of Chemistry, University of Colorado Denver , Science Building 1151 Arapahoe Street, Denver, Colorado 80204, United States
| | - Yannick Kokouvi Dzowo
- Department of Chemistry, University of Colorado Denver , Science Building 1151 Arapahoe Street, Denver, Colorado 80204, United States
| | - Carly Wolfbrandt
- Department of Chemistry, University of Colorado Denver , Science Building 1151 Arapahoe Street, Denver, Colorado 80204, United States
| | - Justin Townsend
- Department of Chemistry, University of Colorado Denver , Science Building 1151 Arapahoe Street, Denver, Colorado 80204, United States
| | - Stanislav Kukatin
- Department of Chemistry, University of Colorado Denver , Science Building 1151 Arapahoe Street, Denver, Colorado 80204, United States
| | - Haobin Wang
- Department of Chemistry, University of Colorado Denver , Science Building 1151 Arapahoe Street, Denver, Colorado 80204, United States
| | - Marino J E Resendiz
- Department of Chemistry, University of Colorado Denver , Science Building 1151 Arapahoe Street, Denver, Colorado 80204, United States
| |
Collapse
|
33
|
Wang X, Feng M, Xiao L, Tong A, Xiang Y. Postsynthetic Modification of DNA Phosphodiester Backbone for Photocaged DNAzyme. ACS Chem Biol 2016; 11:444-51. [PMID: 26669486 DOI: 10.1021/acschembio.5b00867] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photocaged (photoactivatable) biomolecules are powerful tools for noninvasive control of biochemical activities by light irradiation. DNAzymes (deoxyribozymes) are single-stranded oligonucleotides with a broad range of enzymatic activities. In this work, to construct photocaged DNAzymes, we developed a facile and mild postsynthetic method to incorporate an interesting photolabile modification (thioether-enol phosphate, phenol substituted, TEEP-OH) into readily available phosphorothioate DNA. Upon light irradiation, TEEP-OH transformed into a native DNA phosphodiester, and accordingly the DNAzymes with RNA-cleaving activities were turned "on" from its inactive and caged form. Activation of the TEEP-OH-caged DNAzyme by light was also successful inside live cells.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Chemistry,
Beijing Key Laboratory for Microanalytical Methods and Instrumentation,
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Mengli Feng
- Department of Chemistry,
Beijing Key Laboratory for Microanalytical Methods and Instrumentation,
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Lu Xiao
- Department of Chemistry,
Beijing Key Laboratory for Microanalytical Methods and Instrumentation,
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Aijun Tong
- Department of Chemistry,
Beijing Key Laboratory for Microanalytical Methods and Instrumentation,
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yu Xiang
- Department of Chemistry,
Beijing Key Laboratory for Microanalytical Methods and Instrumentation,
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
34
|
Tadevosyan A, Villeneuve LR, Fournier A, Chatenet D, Nattel S, Allen BG. Caged ligands to study the role of intracellular GPCRs. Methods 2015. [PMID: 26196333 DOI: 10.1016/j.ymeth.2015.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In addition to cell surface membranes, numerous G protein-coupled receptors (GPCRs) are located on intracellular membranes including the nuclear envelope. Although the role of numerous GPCRs at the cell surface has been well characterized, the physiological function of these same receptors located on intracellular membranes remains to be determined. Here, we employ a novel caged Ang-II analog, cAng-II, to compare the effects of the activation of cell surface versus intracellular angiotensin receptors in intact cardiomyocytes. When added extracellularly to HEK 293 cells, Ang-II and photolysed cAng-II increased ERK1/2 phosphorylation (via AT1R) and cGMP production (AT2R). In contrast unphotolysed cAng-II did not. Cellular uptake of cAng-II was 6-fold greater than that of Ang-II and comparable to the HIV TAT(48-60) peptide. Intracellular photolysis of cAng-II induced an increase in nucleoplasmic Ca(2+) ([Ca(2+)]n) that was greater than that induced by extracellular application of Ang-II. We conclude that cell-permeable ligands that can access intracellular GPCRs may evoke responses distinct from those with access restricted to the same receptor located on the cell surface.
Collapse
Affiliation(s)
- Artavazd Tadevosyan
- Department of Medicine, Université de Montréal, Canada; Montreal Heart Institute, Canada
| | | | - Alain Fournier
- INRS-Institut Armand-Frappier, Université du Québec, Canada; Laboratoire International Associé Samuel de Champlain, Canada
| | - David Chatenet
- INRS-Institut Armand-Frappier, Université du Québec, Canada; Laboratoire International Associé Samuel de Champlain, Canada
| | - Stanley Nattel
- Department of Medicine, Université de Montréal, Canada; Montreal Heart Institute, Canada; Department of Pharmacology and Therapeutics, McGill University, Canada.
| | - Bruce G Allen
- Department of Medicine, Université de Montréal, Canada; Montreal Heart Institute, Canada; Department of Pharmacology and Therapeutics, McGill University, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Canada.
| |
Collapse
|
35
|
Wu L, He Y, Tang X. Photoregulating RNA digestion using azobenzene linked dumbbell antisense oligodeoxynucleotides. Bioconjug Chem 2015; 26:1070-9. [PMID: 25961679 DOI: 10.1021/acs.bioconjchem.5b00125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction of 4,4'-bis(hydroxymethyl)-azobenzene (azo) to dumbbell hairpin oligonucleotides at the loop position was able to reversibly control the stability of the whole hairpin structure via UV or visible light irradiation. Here, we designed and synthesized a series of azobenzene linked dumbbell antisense oligodeoxynucleotides (asODNs) containing two terminal hairpins that are composed of an asODN and a short inhibitory sense strand. Thermal melting studies of these azobenzene linked dumbbell asODNs indicated that efficient trans to cis photoisomerization of azobenzene moieties induced large difference in thermal stability (ΔTm = 12.1-21.3 °C). In addition, photomodulation of their RNA binding abilities and RNA digestion by RNase H was investigated. The trans-azobenzene linked asODNs with the optimized base pairs between asODN strands and inhibitory sense strands could only bind few percentage of the target RNA, while it was able to recover their binding to the target RNA and degrade it by RNase H after light irradiation. Upon optimization, it is promising to use these azobenzene linked asODNs for reversible spatial and temporal regulation of antisense activities based on both steric binding and RNA digestion by RNase H.
Collapse
Affiliation(s)
- Li Wu
- †School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,‡State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yujian He
- †School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,‡State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinjing Tang
- ‡State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
36
|
Saneyoshi H, Shimamura K, Sagawa N, Ando Y, Tomori T, Okamoto I, Ono A. Development of a photolabile protecting group for phosphodiesters in oligonucleotides. Bioorg Med Chem Lett 2015; 25:2129-32. [PMID: 25881825 DOI: 10.1016/j.bmcl.2015.03.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/20/2015] [Accepted: 03/25/2015] [Indexed: 11/17/2022]
Abstract
A photolabile protecting group, consisting of an o-nitrobenzyl group and a 3-(2'-hydroxy-3',6'-dimethylphenyl)-2,2-dimethylpropyl moiety, was developed for phosphodiesters in oligodeoxyribonucleotides. Deprotection was triggered by photoirradiation and subsequent spontaneous cyclization to release the naked oligonucleotide.
Collapse
Affiliation(s)
- Hisao Saneyoshi
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Kanami Shimamura
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Naoki Sagawa
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yuki Ando
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Takahito Tomori
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Itaru Okamoto
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Akira Ono
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| |
Collapse
|
37
|
Tadevosyan A, Létourneau M, Folch B, Doucet N, Villeneuve LR, Mamarbachi AM, Pétrin D, Hébert TE, Fournier A, Chatenet D, Allen BG, Nattel S. Photoreleasable ligands to study intracrine angiotensin II signalling. J Physiol 2015; 593:521-39. [PMID: 25433071 DOI: 10.1113/jphysiol.2014.279109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 11/20/2014] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS The renin-angiotensin system plays a key role in cardiovascular physiology and its overactivation has been implicated in the pathogenesis of several major cardiovascular diseases. There is growing evidence that angiotensin II (Ang-II) may function as an intracellular peptide to activate intracellular/nuclear receptors and their downstream signalling effectors independently of cell surface receptors. Current methods used to study intracrine Ang-II signalling are limited to indirect approaches because of a lack of selective intracellularly-acting probes. Here, we present novel photoreleasable Ang-II analogues used to probe intracellular actions with spatial and temporal precision. The photorelease of intracellular Ang-II causes nuclear and cytosolic calcium mobilization and initiates the de novo synthesis of RNA in cardiac cells, demonstrating the application of the method. ABSTRACT Several lines of evidence suggest that intracellular angiotensin II (Ang-II) contributes to the regulation of cardiac contractility, renal salt reabsorption, vascular tone and metabolism; however, work on intracrine Ang-II signalling has been limited to indirect approaches because of a lack of selective intracellularly-acting probes. Here, we aimed to synthesize and characterize cell-permeant Ang-II analogues that are inactive without uncaging, but release active Ang-II upon exposure to a flash of UV-light, and act as novel tools for use in the study of intracrine Ang-II physiology. We prepared three novel caged Ang-II analogues, [Tyr(DMNB)(4)]Ang-II, Ang-II-ODMNB and [Tyr(DMNB)(4)]Ang-II-ODMNB, based upon the incorporation of the photolabile moiety 4,5-dimethoxy-2-nitrobenzyl (DMNB). Compared to Ang-II, the caged Ang-II analogues showed 2-3 orders of magnitude reduced affinity toward both angiotensin type-1 (AT1R) and type-2 (AT2R) receptors in competition binding assays, and greatly-reduced potency in contraction assays of rat thoracic aorta. After receiving UV-irradiation, all three caged Ang-II analogues released Ang-II and potently induced the contraction of rat thoracic aorta. [Tyr(DMNB)(4)]Ang-II showed the most rapid photolysis upon UV-irradiation and was the focus of subsequent characterization. Whereas Ang-II and photolysed [Tyr(DMNB)(4)]Ang-II increased ERK1/2 phosphorylation (via AT1R) and cGMP production (AT2R), caged [Tyr(DMNB)(4)]Ang-II did not. Cellular uptake of [Tyr(DMNB)(4)]Ang-II was 4-fold greater than that of Ang-II and significantly greater than uptake driven by the positive-control HIV TAT(48-60) peptide. Intracellular photolysis of [Tyr(DMNB)(4)]Ang-II induced an increase in nucleoplasmic Ca(2+) ([Ca(2+)]n), and initiated 18S rRNA and nuclear factor kappa B mRNA synthesis in adult cardiac cells. We conclude that caged Ang-II analogues represent powerful new tools for use in the selective study of intracrine signalling via Ang-II.
Collapse
Affiliation(s)
- Artavazd Tadevosyan
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada; Montreal Heart Institute, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lu J, Koo SC, Li NS, Piccirilli JA. Synthesis of 2'-O-photocaged ribonucleoside phosphoramidites. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:114-29. [PMID: 25621705 PMCID: PMC6461471 DOI: 10.1080/15257770.2014.965256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The chemical synthesis and incorporation of the phosphoramidite derivatives of 2 '-O-photocaged ribonucleosides (A, C, G and U) with o-nitrobenzyl, α-methyl-o-nitrobenzyl or 4,5-dimethoxy-2-nitrobenzyl group into oligoribonucleotides are described. The efficiency of UV irradiated uncaging of these 2'-O-photocaged oligoribonucleotides was found in the order of α-methyl-o-nitrobenzyl < 4,5-dimethoxy-2-nitrobenzyl < 2'-O-o-nitrobenzyl.
Collapse
Affiliation(s)
- Jun Lu
- a Department of Biochemistry & Molecular Biology and Department of Chemistry , University of Chicago , Chicago , Illinois , United States
| | | | | | | |
Collapse
|
39
|
Hwang K, Wu P, Kim T, Lei L, Tian S, Wang Y, Lu Y. Photocaged DNAzymes as a general method for sensing metal ions in living cells. Angew Chem Int Ed Engl 2014; 53:13798-802. [PMID: 25314680 PMCID: PMC4297208 DOI: 10.1002/anie.201408333] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Indexed: 12/29/2022]
Abstract
DNAzymes, which are sequences of DNA with catalytic activity, have been demonstrated as a potential platform for sensing a wide range of metal ions. Despite their significant promise, cellular sensing using DNAzymes has however been difficult, mainly because of the "always-on" mode of first-generation DNAzyme sensors. To overcome this limitation, a photoactivatable (or photocaged) DNAzyme was designed and synthesized, and its application in sensing Zn(II) in living cells was demonstrated. In this design, the adenosine ribonucleotide at the scissile position of the 8-17 DNAzyme was replaced by 2'-O-nitrobenzyl adenosine, rendering the DNAzyme inactive and thus allowing its delivery into cells intact, protected from nonspecific degradation within cells. Irradiation at 365 nm restored DNAzyme activity, thus allowing the temporal control over the sensing activity of the DNAzyme for metal ions. The same strategy was also applied to the GR-5 DNAzyme for the detection of Pb(II), thus demonstrating the possible scope of the method.
Collapse
Affiliation(s)
- Kevin Hwang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Peiwen Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Taejin Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lei Lei
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, 92093, USA
| | - Shiliang Tian
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yingxiao Wang
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, 92093, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
40
|
Amatrudo JM, Olson JP, Agarwal HK, Ellis-Davies GCR. Caged compounds for multichromic optical interrogation of neural systems. Eur J Neurosci 2014; 41:5-16. [PMID: 25471355 DOI: 10.1111/ejn.12785] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/06/2014] [Accepted: 10/13/2014] [Indexed: 01/16/2023]
Abstract
Caged compounds are widely used by neurophysiologists to study many aspects of cellular signaling in glia and neurons. Biologically inert before irradiation, they can be loaded into cells via patch pipette or topically applied in situ to a defined concentration; photolysis releases the caged compound in a very rapid and spatially defined way. As caged compounds are exogenous optical probes, they include not only natural products such neurotransmitters, calcium and IP3 but non-natural products such as fluorophores, drugs and antibodies. In this Technical Spotlight we provide a short introduction to the uncaging technique by discussing the nitroaromatic caging chromophores most widely used in such experiments [e.g. α-carboxy-ortho-nitrobenyl (CNB), dimethoxynitrobenzyl (DMNB), 4-methoxy-7-nitroindolinyl (MNI) and 4-carboxymethoxy-7-nitroindolinyl (CDNI)]. We show that recently developed caging chromophores [rutheniumbipyridial (RuBi) and 7-diethylaminocoumarin (DEAC)450] that are photolyzed with blue light (~ 430-480 nm range) can be combined with traditional nitroaromatic caged compounds to enable two-color optical probing of neuronal function. For example, one-photon uncaging of either RuBi-GABA or DEAC450-GABA with a 473-nm laser is facile, and can block nonlinear currents (dendritic spikes or action potentials) evoked by two-photon uncaging of CDNI-Glu at 720 nm. We also show that two-photon uncaging of DEAC450-Glu and CDNI-GABA at 900 and 720 nm, respectively, can be used to fire and block action potentials. Our experiments illustrate that recently developed chromophores have taken uncaging out of the 'monochrome era', in which it has existed since 1978, so as to enable multichromic interrogation of neuronal function with single-synapse precision.
Collapse
Affiliation(s)
- Joseph M Amatrudo
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | | | | | | |
Collapse
|
41
|
Hwang K, Wu P, Kim T, Lei L, Tian S, Wang Y, Lu Y. Photocaged DNAzymes as a General Method for Sensing Metal Ions in Living Cells. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408333] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Kevin Hwang
- Department of Chemistry, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
| | - Peiwen Wu
- Department of Biochemistry, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
| | - Taejin Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
| | - Lei Lei
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093 (USA)
| | - Shiliang Tian
- Department of Chemistry, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
| | - Yingxiao Wang
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093 (USA)
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
- Department of Biochemistry, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
| |
Collapse
|
42
|
Li NS, Tuttle N, Staley J, Piccirilli JA. Synthesis and incorporation of the phosphoramidite derivative of 2'-O-photocaged 3'-s-thioguanosine into oligoribonucleotides: substrate for probing the mechanism of RNA catalysis. J Org Chem 2014; 79:3647-52. [PMID: 24635216 PMCID: PMC4203407 DOI: 10.1021/jo4028374] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 11/30/2022]
Abstract
Oligoribonucleotides containing 3'-S-phosphorothiolate linkages possess properties that can reveal deep mechanistic insights into ribozyme-catalyzed reactions. "Photocaged" 3'-S- RNAs could provide a strategy to stall reactions at the chemical stage and release them after assembly steps have occurred. Toward this end, we describe here an approach for the synthesis of 2'-O-(o-nitrobenzyl)-3'-thioguanosine phosphoramidite starting from N(2)-isobutyrylguanosine in nine steps with 10.2% overall yield. Oligonucleotides containing the 2'-O-(o-nitrobenzyl)-3'-S-guanosine nucleotide were then constructed, characterized, and used in a nuclear pre-mRNA splicing reaction.
Collapse
Affiliation(s)
- Nan-Sheng Li
- Department of Biochemistry &
Molecular Biology, Department of Chemistry, and Department of
Molecular Genetics & Cell Biology, University
of Chicago, Chicago, Illinois 60637, United
States
| | - Nicole Tuttle
- Department of Biochemistry &
Molecular Biology, Department of Chemistry, and Department of
Molecular Genetics & Cell Biology, University
of Chicago, Chicago, Illinois 60637, United
States
| | - Jonathan
P. Staley
- Department of Biochemistry &
Molecular Biology, Department of Chemistry, and Department of
Molecular Genetics & Cell Biology, University
of Chicago, Chicago, Illinois 60637, United
States
| | - Joseph A. Piccirilli
- Department of Biochemistry &
Molecular Biology, Department of Chemistry, and Department of
Molecular Genetics & Cell Biology, University
of Chicago, Chicago, Illinois 60637, United
States
| |
Collapse
|
43
|
Liu Q, Deiters A. Optochemical control of deoxyoligonucleotide function via a nucleobase-caging approach. Acc Chem Res 2014; 47:45-55. [PMID: 23981235 PMCID: PMC3946944 DOI: 10.1021/ar400036a] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic oligonucleotides have been extensively applied tocontrol a wide range of biological processes such as gene expression, gene repair, DNA replication, and protein activity. Based on well-established sequence design rules that typically rely on Watson-Crick base pairing interactions researchers can readily program the function of these oligonucleotides. Therefore oligonucleotides provide a flexible platform for targeting a wide range of biological molecules, including DNA, RNA, and proteins. In addition, oligonucleotides are commonly used research tools in cell biology and developmental biology. However, a lack of conditional control methods has hampered the precise spatial and temporal regulation of oligonucleotide activity, which limits the application of these reagents to investigate complex biological questions. Nature controls biological function with a high level of spatial and temporal resolution and in order to elucidate the molecular mechanisms of biological processes, researchers need tools that allow for the perturbation of these processes with Nature's precision. Light represents an excellent external regulatory element since irradiation can be easily controlled spatially and temporally. Thus, researchers have developed several different methods to conditionally control oligonucleotide activity with light. One of the most versatile strategies is optochemical regulation through the installation and removal of photolabile caging groups on oligonucleotides. To produce switches that can control nucleic acid function with light, chemists introduce caging groups into the oligomer backbone or on specific nucleobases to block oligonucleotide function until the caging groups are removed by light exposure. In this Account, we focus on the application of caged nucleobases to the photoregulation of DNA function. Using this approach, we have both activated and deactivated gene expression optochemically at the transcriptional and translational level with spatial and temporal control. Specifically, we have used caged triplex-forming oligomers and DNA decoys to regulate transcription, and we have regulated translation with light-activated antisense agents. Moreover, we also discuss strategies that can trigger DNA enzymatic activity, DNA amplification, and DNA mutagenesis by light illumination. More recently, we have developed light-activated DNA logic operations, an advance that may lay the foundation for the optochemical control of complex DNA calculations.
Collapse
Affiliation(s)
- Qingyang Liu
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | |
Collapse
|
44
|
Tang X, Zhang J, Sun J, Wang Y, Wu J, Zhang L. Caged nucleotides/nucleosides and their photochemical biology. Org Biomol Chem 2013; 11:7814-24. [PMID: 24132515 DOI: 10.1039/c3ob41735b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleotides and nucleosides are not only key units of DNA/RNA that store genetic information, but are also the regulators of many biological events of our lives. By caging the key functional groups or key residues of nucleotides with photosensitive moieties, it will be possible to trigger biological events of target nucleotides with spatiotemporal resolution and amplitude upon light activation or photomodulate polymerase reactions with the caged nucleotide analogues for next-generation sequencing (NGS) and bioorthogonal labeling. This review highlights three different caging strategies for nucleotides and demonstrates the photochemical biology of these caged nucleotides.
Collapse
Affiliation(s)
- Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Rd., Beijing 100191, China.
| | | | | | | | | | | |
Collapse
|
45
|
Kobitski AY, Schäfer S, Nierth A, Singer M, Jäschke A, Nienhaus GU. Single-molecule FRET studies of RNA folding: a Diels-Alderase ribozyme with photolabile nucleotide modifications. J Phys Chem B 2013; 117:12800-6. [PMID: 23621553 DOI: 10.1021/jp402005m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Enzymology at the single-molecule level by using fluorescence resonance energy transfer (smFRET) offers unprecedented insight into mechanistic aspects of catalytic reactions. Implementing spatiotemporal control of the reaction by using an external trigger is highly valuable in these challenging experiments. Here, we have incorporated a light-cleavable caging moiety into specific nucleotides of the Diels-Alderase (DAse) ribozyme. In this way, the folding energy landscape was significantly perturbed, and the catalytic activity was essentially suppressed. A careful smFRET efficiency histogram analysis at various Mg(2+) ion concentrations revealed an additional intermediate state that is not observed for the unmodified DAse ribozyme. We also observed that only a fraction of DAse molecules returns to the native state upon cleavage of the caged group by UV light. These constructs are attractive model RNA systems for further real-time single-molecule observation of the coupling between conformational changes and catalytic activity.
Collapse
Affiliation(s)
- Andrei Yu Kobitski
- Institute of Applied Physics, Institute of Toxicology and Genetics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Cheng N, Cao X. Neuron-like PC12 cell patterning on a photoactive self-assembled monolayer. J Biomed Mater Res A 2013; 101:3066-75. [DOI: 10.1002/jbm.a.34615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 12/19/2022]
|
47
|
Furuta T, Manabe K, Teraoka A, Murakoshi K, Ohtsubo A, Suzuki A. Design, synthesis, and photochemistry of modular caging groups for photoreleasable nucleotides. Org Lett 2012. [PMID: 23205776 DOI: 10.1021/ol3029093] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A modular approach to preparing caged nucleotides having additional properties has been achieved. The modular caging agent includes three components: an amine reactive NHS ester moiety, a photoactive Bhc group, and tosylhydrazone as a precursor of the diazomethyl group. Various amines including biotin and an Arg-Gly-Asp (RGD) peptide were introduced into the key intermediate via amide linkage. The Bio-Bhc-diazo thus synthesized enables the preparation of a photoreleasable siRNA with additional properties.
Collapse
Affiliation(s)
- Toshiaki Furuta
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Wu L, Wang Y, Wu J, Lv C, Wang J, Tang X. Caged circular antisense oligonucleotides for photomodulation of RNA digestion and gene expression in cells. Nucleic Acids Res 2012; 41:677-86. [PMID: 23104375 PMCID: PMC3592401 DOI: 10.1093/nar/gks996] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We synthesized three 20mer caged circular antisense oligodeoxynucleotides (R20, R20B2 and R20B4) with a photocleavable linker and an amide bond linker between two 10mer oligodeoxynucleotides. With these caged circular antisense oligodeoxynucleotides, RNA-binding affinity and its digestion by ribonuclease H were readily photomodulated. RNA cleavage rates were upregulated ∼43-, 25- and 15-fold for R20, R20B2 and R20B4, respectively, upon light activation in vitro. R20B2 and R20B4 with 2- or 4-nt gaps in the target RNA lost their ability to bind the target RNA even though a small amount of RNA digestion was still observed. The loss of binding ability indicated promising gene photoregulation through a non-enzymatic strategy. To test this strategy, three caged circular antisense oligonucleotides (PS1, PS2 and PS3) with 2′-OMe RNA and phosphorothioate modifications were synthesized to target GFP expression. Upon light activation, photomodulation of target hybridization and GFP expression in cells was successfully achieved with PS1, PS2 and PS3. These caged circular antisense oligonucleotides show promising applications of photomodulating gene expression through both ribonuclease H and non-enzyme involved antisense strategies.
Collapse
Affiliation(s)
- Li Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | | | | | | | | | | |
Collapse
|
49
|
Genetically encoded RNA photoswitches as tools for the control of gene expression. FEBS Lett 2012; 586:2106-11. [PMID: 22659185 DOI: 10.1016/j.febslet.2012.05.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 05/22/2012] [Accepted: 05/22/2012] [Indexed: 11/22/2022]
Abstract
An important goal in chemical and synthetic biology is controlling the expression of defined sets of genes by external stimuli, and one of the most attractive stimuli is light. Current approaches to the photocontrol of biological processes utilize photoresponsive proteins. In this article, I will illustrate the prospects of synthetic systems in which the receptor is a photoresponsive nucleic acid, and will review the different tools already in place to develop photoresponsive systems based on RNA. A particular focus is on genetically encoded photoswitches that can be expressed in prokaryotic or eukaryotic cells, and respond to photoisomerizable, cell-permeable small molecules.
Collapse
|
50
|
Ceo LM, Koh JT. Photocaged DNA provides new levels of transcription control. Chembiochem 2012; 13:511-3. [PMID: 22271631 DOI: 10.1002/cbic.201100683] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Indexed: 12/24/2022]
Abstract
Spot lit: photocaged nucleic acids have been used to regulate gene expression through the action of light. Whereas most methods target mRNAs, DNA decoys have recently been used to target DNA transcription by targeting specific DNA-transcription-factor interactions. This has allowed researchers to "turn-off" transcription through the action of light on caged nucleic acids for the first time.
Collapse
Affiliation(s)
- Luke M Ceo
- Department of Chemistry and Biochemistry, University of Delaware, Brown Laboratories, USA
| | | |
Collapse
|