1
|
Wu M, Liu Y, Zhu X, Zhang X, Kong Q, Lu W, Yuan X, Liu Y, Liu Y, Lu K, Dai Y, Zhang B. Advances in i-motif structures: Stability, gene expression, and therapeutic applications. Int J Biol Macromol 2025; 311:143555. [PMID: 40294675 DOI: 10.1016/j.ijbiomac.2025.143555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/12/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
The i-motif, a cytosine-rich DNA structure formed under acidic conditions, plays a pivotal role in regulating gene expression and holds significant therapeutic potential across various diseases. Found in the promoter regions of oncogenes such as Bcl-2, C-MYC, and KRAS, i-motifs dynamically interact with transcription factors and ligands to modulate oncogene activity. Their pH-sensitive nature enables innovative applications, including cellular pH sensors like the "i-switch" and drug delivery platforms such as DNA hydrogels that release therapeutics in acidic tumor microenvironments. However, challenges remain in developing specific ligands and detection methods. Advances in nanotechnology and multi-target therapies highlight the transformative potential of i-motifs in precision medicine. This review underscores the importance of i-motifs as therapeutic targets and tools, bridging fundamental research with clinical applications in oncology, metabolic disorders, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Mengqing Wu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yang Liu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xiao Zhu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xiaoke Zhang
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Qinghong Kong
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Wei Lu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xiao Yuan
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yunlai Liu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yang Liu
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Keyu Lu
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China.
| | - Yangxue Dai
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China.
| | - Bo Zhang
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, Guizhou Province, China.
| |
Collapse
|
2
|
Obara P, Wolski P, Pańczyk T. Insights into the Molecular Structure, Stability, and Biological Significance of Non-Canonical DNA Forms, with a Focus on G-Quadruplexes and i-Motifs. Molecules 2024; 29:4683. [PMID: 39407611 PMCID: PMC11477922 DOI: 10.3390/molecules29194683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
This article provides a comprehensive examination of non-canonical DNA structures, particularly focusing on G-quadruplexes (G4s) and i-motifs. G-quadruplexes, four-stranded structures formed by guanine-rich sequences, are stabilized by Hoogsteen hydrogen bonds and monovalent cations like potassium. These structures exhibit diverse topologies and are implicated in critical genomic regions such as telomeres and promoter regions of oncogenes, playing significant roles in gene expression regulation, genome stability, and cellular aging. I-motifs, formed by cytosine-rich sequences under acidic conditions and stabilized by hemiprotonated cytosine-cytosine (C:C+) base pairs, also contribute to gene regulation despite being less prevalent than G4s. This review highlights the factors influencing the stability and dynamics of these structures, including sequence composition, ionic conditions, and environmental pH. Molecular dynamics simulations and high-resolution structural techniques have been pivotal in advancing our understanding of their folding and unfolding mechanisms. Additionally, the article discusses the therapeutic potential of small molecules designed to selectively bind and stabilize G4s and i-motifs, with promising implications for cancer treatment. Furthermore, the structural properties of these DNA forms are explored for applications in nanotechnology and molecular devices. Despite significant progress, challenges remain in observing these structures in vivo and fully elucidating their biological functions. The review underscores the importance of continued research to uncover new insights into the genomic roles of G4s and i-motifs and their potential applications in medicine and technology. This ongoing research promises exciting developments in both basic science and applied fields, emphasizing the relevance and future prospects of these intriguing DNA structures.
Collapse
Affiliation(s)
| | | | - Tomasz Pańczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30239 Cracow, Poland; (P.O.); (P.W.)
| |
Collapse
|
3
|
Tao S, Run Y, Monchaud D, Zhang W. i-Motif DNA: identification, formation, and cellular functions. Trends Genet 2024; 40:853-867. [PMID: 38902139 DOI: 10.1016/j.tig.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024]
Abstract
An i-motif (iM) is a four-stranded (quadruplex) DNA structure that folds from cytosine (C)-rich sequences. iMs can fold under many different conditions in vitro, which paves the way for their formation in living cells. iMs are thought to play key roles in various DNA transactions, notably in the regulation of genome stability, gene transcription, mRNA translation, DNA replication, telomere and centromere functions, and human diseases. We summarize the different techniques used to assess the folding of iMs in vitro and provide an overview of the internal and external factors that affect their formation and stability in vivo. We describe the possible biological relevance of iMs and propose directions towards their use as target in biology.
Collapse
Affiliation(s)
- Shentong Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Yonghang Run
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China
| | - David Monchaud
- Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6302, Université Bourgogne Franche Comté (UBFC), Dijon, France
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
4
|
Narum S, Deal B, Ogasawara H, Mancuso JN, Zhang J, Salaita K. An Endosomal Escape Trojan Horse Platform to Improve Cytosolic Delivery of Nucleic Acids. ACS NANO 2024; 18:6186-6201. [PMID: 38346399 PMCID: PMC10906071 DOI: 10.1021/acsnano.3c09027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 02/17/2024]
Abstract
Endocytosis is a major bottleneck toward cytosolic delivery of nucleic acids, as the vast majority of nucleic acid drugs remain trapped within endosomes. Current trends to overcome endosomal entrapment and subsequent degradation provide varied success; however, active delivery agents such as cell-penetrating peptides have emerged as a prominent strategy to improve cytosolic delivery. Yet, these membrane-active agents have poor selectivity for endosomal membranes, leading to toxicity. A hallmark of endosomes is their acidic environment, which aids in degradation of foreign materials. Here, we develop a pH-triggered spherical nucleic acid that provides smart antisense oligonucleotide (ASO) release upon endosomal acidification and selective membrane disruption, termed DNA EndosomaL Escape Vehicle Response (DELVR). We anchor i-Motif DNA to a nanoparticle (AuNP), where the complement strand contains both an ASO sequence and a functionalized endosomal escape peptide (EEP). By orienting the EEP toward the AuNP core, the EEP is inactive until it is released through acidification-induced i-Motif folding. In this study, we characterize a small library of i-Motif duplexes to develop a structure-switching nucleic acid sequence triggered by endosomal acidification. We evaluate antisense efficacy using HIF1a, a hypoxic indicator upregulated in many cancers, and demonstrate dose-dependent activity through RT-qPCR. We show that DELVR significantly improves ASO efficacy in vitro. Finally, we use fluorescence lifetime imaging and activity measurement to show that DELVR benefits synergistically from nuclease- and pH-driven release strategies with increased ASO endosomal escape efficiency. Overall, this study develops a modular platform that improves the cytosolic delivery of nucleic acid therapeutics and offers key insights for overcoming intracellular barriers.
Collapse
Affiliation(s)
- Steven Narum
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Brendan Deal
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Hiroaki Ogasawara
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | | - Jiahui Zhang
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
5
|
Guneri D, Waller ZAE. Utility of intercalator displacement assays for screening of ligands for i-motif DNA structures. Methods Enzymol 2024; 695:221-232. [PMID: 38521586 DOI: 10.1016/bs.mie.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Cytosine rich sequences can form intercalated, i-motif DNA structures stabilized by hemi-protonated cytosine:cytosine base pairing. These sequences are often located in regulatory regions of genes such as promoters. Ligands targeting i-motif structures may provide potential leads for treatments for genetic disease. The focus on ligands interacting with i-motif DNA has been increasing in recent years. Here, we describe the fluorescent intercalator displacement (FID) assay using thiazole orange binding i-motif DNA and assess the binding affinity of a ligand to the i-motif DNA by displacing thiazole orange. This provides a time and cost-effective high throughput screening of ligands against secondary DNA structures for hit identification.
Collapse
Affiliation(s)
- Dilek Guneri
- School of Pharmacy, University College London, London, United Kingdom.
| | - Zoë A E Waller
- School of Pharmacy, University College London, London, United Kingdom.
| |
Collapse
|
6
|
Ghezzo M, Grigoletto L, Rigo R, Herdewijn P, Groaz E, Sissi C. Modulation of the tetrameric I-motif folding of C-rich Tetrahymena telomeric sequences by hexitol nucleic acid (HNA) modifications. Biochimie 2023; 214:112-122. [PMID: 37558081 DOI: 10.1016/j.biochi.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
I-motifs are non-canonical DNA structures consisting of two parallel strands held together by hemiprotonated cytosine-cytosine+ base pairs, which intercalate to form a ordered column of stacked base pairs. This unique structure covers potential relevance in various fields, including gene regulation and biotechnological applications. A unique structural feature of I-motifs (iM), is the presence of sugar-sugar interactions through their extremely narrow minor grooves. Consistently, oligonucleotides containing pentose derivatives such as ribose, 2'-deoxyribose, arabinose, and 2'-deoxy-2'-fluoroarabinose highlighted a very different attitude to fold into iM. On the other hand, there is significant attention focused on exploring sugar-modifications that can increase nucleic acids resistance to nuclease degradation, a crucial requirement for therapeutic applications. An interesting example, not addressed in the iM field yet, is represented by hexitol nucleic acid (HNA), a metabolically stable six-membered ring analogue compatible with A-like double helix formation. Herein, we selected two DNA C-rich Tetrahymena telomeric sequences whose tetrameric iMs were already resolved by NMR and we investigated the iM folding of related HNA and RNA oligonucleotides by circular dichroism, differential scanning calorimetry and NMR. The comparison of their behaviours vs the DNA counterparts provided interesting insights into the influence of the sugar on iM folding. In particular, ribose and hexitol prevented iM formation. However, by clustering the hexitol-containing residues at the 3'-end, it was possible to modulate the distribution of the different topological species described for the DNA iMs. These data open new avenues for the exploitation of sugar modifications for I-motif characterization and applications.
Collapse
Affiliation(s)
- Michele Ghezzo
- Dept. of Pharmaceutical and Pharmacological Sciences, University of Padova, v. Marzolo 5 35131, Padova, Italy
| | - Luca Grigoletto
- Dept. of Pharmaceutical and Pharmacological Sciences, University of Padova, v. Marzolo 5 35131, Padova, Italy; KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49-Box 1041, 3000, Leuven, Belgium
| | - Riccardo Rigo
- Dept. of Pharmaceutical and Pharmacological Sciences, University of Padova, v. Marzolo 5 35131, Padova, Italy
| | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49-Box 1041, 3000, Leuven, Belgium
| | - Elisabetta Groaz
- Dept. of Pharmaceutical and Pharmacological Sciences, University of Padova, v. Marzolo 5 35131, Padova, Italy; KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| | - Claudia Sissi
- Dept. of Pharmaceutical and Pharmacological Sciences, University of Padova, v. Marzolo 5 35131, Padova, Italy.
| |
Collapse
|
7
|
Stability and context of intercalated motifs (i-motifs) for biological applications. Biochimie 2022; 198:33-47. [PMID: 35259471 DOI: 10.1016/j.biochi.2022.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 11/24/2022]
Abstract
DNA is naturally dynamic and can self-assemble into alternative secondary structures including the intercalated motif (i-motif), a four-stranded structure formed in cytosine-rich DNA sequences. Until recently, i-motifs were thought to be unstable in physiological cellular environments. Studies demonstrating their existence in the human genome and role in gene regulation are now shining light on their biological relevance. Herein, we review the effects of epigenetic modifications on i-motif structure and stability, and biological factors that affect i-motif formation within cells. Furthermore, we highlight recent progress in targeting i-motifs with structure-specific ligands for biotechnology and therapeutic purposes.
Collapse
|
8
|
Minasyan AS, Chakravarthy S, Vardelly S, Joseph M, Nesterov EE, Nesterova IV. Rational design of guiding elements to control folding topology in i-motifs with multiple quadruplexes. NANOSCALE 2021; 13:8875-8883. [PMID: 33949568 PMCID: PMC8210535 DOI: 10.1039/d1nr00611h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nucleic acids are versatile scaffolds that accommodate a wide range of precisely defined operational characteristics. Rational design of sensing, molecular computing, nanotechnology, and other nucleic acid devices requires precise control over folding conformations in these macromolecules. Here, we report a new approach that empowers well-defined conformational transitions in DNA molecular devices. Specifically, we develop tools for precise folding of multiple DNA quadruplexes (i-motifs) within the same oligonucleotide strand. To accomplish this task, we modify a DNA strand with kinetic control elements (hairpins and double stranded stems) that fold on a much faster timescale and consequently guide quadruplexes toward the targeted folding topology. To demonstrate that such guiding elements indeed facilitate formation of the targeted folding topology, we thoroughly characterize the folding/unfolding transitions through a combination of thermodynamic techniques, size exclusion chromatography (SEC) and small-angle X-ray scattering (SAXS). Furthermore, we extend SAXS capabilities to produce a direct insight on the shape and dimensions of the folded quadruplexes by computing their electron density maps from solution scattering data.
Collapse
Affiliation(s)
- Alexander S Minasyan
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| | | | - Suchitra Vardelly
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| | - Mark Joseph
- Department of Natural Science, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Evgueni E Nesterov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| | - Irina V Nesterova
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
9
|
Cheng M, Chen J, Ju H, Zhou J, Mergny JL. Drivers of i-DNA Formation in a Variety of Environments Revealed by Four-Dimensional UV Melting and Annealing. J Am Chem Soc 2021; 143:7792-7807. [PMID: 33988990 DOI: 10.1021/jacs.1c02209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
i-DNA is a four-stranded, pH-sensitive structure formed by cytosine-rich DNA sequences. Previous reports have addressed the conditions for formation of this motif in DNA in vitro and validated its existence in human cells. Unfortunately, these in vitro studies have often been performed under different experimental conditions, making comparisons difficult. To overcome this, we developed a four-dimensional UV melting and annealing (4DUVMA) approach to analyze i-DNA formation under a variety of conditions (e.g., pH, temperature, salt, crowding). Analysis of 25 sequences provided a global understanding of i-DNA formation under disparate conditions, which should ultimately allow the design of accurate prediction tools. For example, we found reliable linear correlations between the midpoint of pH transition and temperature (-0.04 ± 0.003 pH unit per 1.0 °C temperature increment) and between the melting temperature and pH (-23.8 ± 1.1 °C per pH unit increment). In addition, by analyzing the hysteresis between denaturing and renaturing profiles in both pH and thermal transitions, we found that loop length, nature of the C-tracts, pH, temperature, and crowding agents all play roles in i-DNA folding kinetics. Interestingly, our data indicate which conformer is more favorable for the sequences with an odd number of cytosine base pairs. Then the thermal and pH stabilities of "native" i-DNAs from human promoter genes were measured under near physiological conditions (pH 7.0, 37 °C). The 4DUVMA method can become a universal resource to analyze the properties of any i-DNA-prone sequence.
Collapse
Affiliation(s)
- Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR5320, IECB, Pessac 33607, France
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR5320, IECB, Pessac 33607, France.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau Cedex 91128, France
| |
Collapse
|
10
|
Cheng M, Qiu D, Tamon L, Ištvánková E, Víšková P, Amrane S, Guédin A, Chen J, Lacroix L, Ju H, Trantírek L, Sahakyan AB, Zhou J, Mergny J. Thermal and pH Stabilities of i‐DNA: Confronting in vitro Experiments with Models and In‐Cell NMR Data. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Liezel Tamon
- MRC WIMM Centre for Computational Biology MRC Weatherall Institute of Molecular Medicine Radcliffe Department of Medicine University of Oxford Oxford OX3 9DS UK
| | - Eva Ištvánková
- Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
| | - Pavlína Víšková
- Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
| | - Samir Amrane
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
| | - Aurore Guédin
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Laurent Lacroix
- IBENS Ecole Normale Supérieure CNRS INSERM PSL Research University 75005 Paris France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Lukáš Trantírek
- Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
| | - Aleksandr B. Sahakyan
- MRC WIMM Centre for Computational Biology MRC Weatherall Institute of Molecular Medicine Radcliffe Department of Medicine University of Oxford Oxford OX3 9DS UK
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jean‐Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
- Laboratoire d'Optique et Biosciences Ecole Polytechnique CNRS INSERM Institut Polytechnique de Paris 91128 Palaiseau France
| |
Collapse
|
11
|
Cheng M, Qiu D, Tamon L, Ištvánková E, Víšková P, Amrane S, Guédin A, Chen J, Lacroix L, Ju H, Trantírek L, Sahakyan AB, Zhou J, Mergny JL. Thermal and pH Stabilities of i-DNA: Confronting in vitro Experiments with Models and In-Cell NMR Data. Angew Chem Int Ed Engl 2021; 60:10286-10294. [PMID: 33605024 DOI: 10.1002/anie.202016801] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/22/2022]
Abstract
Recent studies indicate that i-DNA, a four-stranded cytosine-rich DNA also known as the i-motif, is actually formed in vivo; however, a systematic study on sequence effects on stability has been missing. Herein, an unprecedented number of different sequences (271) bearing four runs of 3-6 cytosines with different spacer lengths has been tested. While i-DNA stability is nearly independent on total spacer length, the central spacer plays a special role on stability. Stability also depends on the length of the C-tracts at both acidic and neutral pHs. This study provides a global picture on i-DNA stability thanks to the large size of the introduced data set; it reveals unexpected features and allows to conclude that determinants of i-DNA stability do not mirror those of G-quadruplexes. Our results illustrate the structural roles of loops and C-tracts on i-DNA stability, confirm its formation in cells, and allow establishing rules to predict its stability.
Collapse
Affiliation(s)
- Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Liezel Tamon
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Eva Ištvánková
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Pavlína Víšková
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Samir Amrane
- ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France
| | - Aurore Guédin
- ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Laurent Lacroix
- IBENS, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Aleksandr B Sahakyan
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
| |
Collapse
|
12
|
Nwokolo OA, Kidd B, Allen T, Minasyan AS, Vardelly S, Johnson KD, Nesterova IV. Rational Design of Memory‐Based Sensors: the Case of Molecular Calorimeters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Obianuju A. Nwokolo
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Brant Kidd
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Te'Kara Allen
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Alexander S. Minasyan
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Suchitra Vardelly
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Kristopher D. Johnson
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Irina V. Nesterova
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| |
Collapse
|
13
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
14
|
Turaev AV, Isaakova EA, Severov VV, Bogomazova AN, Zatsepin TS, Sardushkin MV, Aralov AV, Lagarkova MA, Pozmogova GE, Varizhuk AM. Genomic DNA i-motifs as fast sensors responsive to near-physiological pH microchanges. Biosens Bioelectron 2020; 175:112864. [PMID: 33309217 DOI: 10.1016/j.bios.2020.112864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
We report the design of robust sensors for measuring intracellular pH, based on the native DNA i-motifs (iMs) found in neurodegeneration- or carcinogenesis-related genes. Those iMs appear to be genomic regulatory elements and might modulate transcription in response to pH stimuli. Given their intrinsic sensitivity to minor pH changes within the physiological range, such noncanonical DNA structures can be used as sensor core elements without additional modules other than fluorescent labels or quenchers. We focused on several iMs that exhibited fast folding/unfolding kinetics. Using stopped-flow techniques and FRET-melting/annealing assays, we confirmed that the rates of temperature-driven iM-ssDNA transitions correlate with the rates of the pH-driven transitions. Thus, we propose FRET-based hysteresis analysis as an express method for selecting sensors with desired kinetic characteristics. For the leading fast-response sensor, we optimized the labelling scheme and performed intracellular calibration. Unlike the commonly used small-molecule pH indicators, that sensor was transferred efficiently to cell nuclei. Considering its favourable kinetic characteristics, the sensor can be used for monitoring proton dynamics in the nucleus. These results argue that the 'genome-inspired' design is a productive approach to the development of biocompatible molecular tools.
Collapse
Affiliation(s)
- Anton V Turaev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Ekaterina A Isaakova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Vjacheslav V Severov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Alexandra N Bogomazova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, Moscow Oblast, 143026, Russia
| | - Makar V Sardushkin
- Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Maria A Lagarkova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Galina E Pozmogova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Anna M Varizhuk
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia; Engelhardt Institute of Molecular Biology, Moscow, 119991, Russia.
| |
Collapse
|
15
|
Nwokolo OA, Kidd B, Allen T, Minasyan AS, Vardelly S, Johnson KD, Nesterova IV. Rational Design of Memory-Based Sensors: the Case of Molecular Calorimeters. Angew Chem Int Ed Engl 2020; 60:1610-1614. [PMID: 32996657 DOI: 10.1002/anie.202011422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Indexed: 12/11/2022]
Abstract
Thermodynamic characterization is crucial for understanding molecular interactions. However, methodologies for measuring heat changes in small open systems are extremely limited. We document a new approach for designing molecular sensors, that function as calorimeters: sensors based on memory. To design a memory-based sensor, we take advantage of the unique kinetic properties of nucleic acid scaffolds. Particularly, we elaborate on the differences in folding and unfolding rates in nucleic acid quadruplexes. DNA-based i-motifs unfold fast in response to small heats but do not fold back when the system is equilibrated with surroundings. We translated this behavior into a molecular memory function that enables the measurement of heat changes in open environments. The new sensors are biocompatible, operate homogeneously, and measure small heats released over long time periods. As a proof-of-concept, we demonstrate how the molecular calorimeters report heat changes generated in water/propanol mixing and in ligand/protein binding.
Collapse
Affiliation(s)
- Obianuju A Nwokolo
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Brant Kidd
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Te'Kara Allen
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Alexander S Minasyan
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Suchitra Vardelly
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Kristopher D Johnson
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Irina V Nesterova
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| |
Collapse
|
16
|
Rogers RA, Meyer MR, Stewart KM, Eyring GM, Fleming AM, Burrows CJ. Hysteresis in poly-2'-deoxycytidine i-motif folding is impacted by the method of analysis as well as loop and stem lengths. Biopolymers 2020; 112:e23389. [PMID: 33098582 DOI: 10.1002/bip.23389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
Abstract
In DNA, i-motif (iM) folds occur under slightly acidic conditions when sequences rich in 2'-deoxycytidine (dC) nucleotides adopt consecutive dC self base pairs. The pH stability of an iM is defined by the midpoint in the pH transition (pHT ) between the folded and unfolded states. Two different experiments to determine pHT values via circular dichroism (CD) spectroscopy were performed on poly-dC iMs of length 15, 19, or 23 nucleotides. These experiments demonstrate two points: (1) pHT values were dependent on the titration experiment performed, and (2) pH-induced denaturing or annealing processes produced isothermal hysteresis in the pHT values. These results in tandem with model iMs with judicious mutations of dC to thymidine to favor particular folds found the hysteresis was maximal for the shorter poly-dC iMs and those with an even number of base pairs, while the hysteresis was minimal for longer poly-dC iMs and those with an odd number of base pairs. Experiments to follow the iM folding via thermal changes identified thermal hysteresis between the denaturing and annealing cycles. Similar trends were found to those observed in the CD experiments. The results demonstrate that the method of iM analysis can impact the pHT parameter measured, and hysteresis was observed in the pHT and Tm values.
Collapse
Affiliation(s)
- R Aaron Rogers
- Department of Chemistry, University of Utah, Salt Lake City, Utah, U.S.A
| | - Madeline R Meyer
- Department of Chemistry, University of Utah, Salt Lake City, Utah, U.S.A
| | - Kayla M Stewart
- Department of Chemistry, University of Utah, Salt Lake City, Utah, U.S.A
| | - Gabriela M Eyring
- Department of Chemistry, University of Utah, Salt Lake City, Utah, U.S.A
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, Salt Lake City, Utah, U.S.A
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, Salt Lake City, Utah, U.S.A
| |
Collapse
|
17
|
Devaux A, Bonnat L, Lavergne T, Defrancq E. Access to a stabilized i-motif DNA structure through four successive ligation reactions on a cyclopeptide scaffold. Org Biomol Chem 2020; 18:6394-6406. [DOI: 10.1039/d0ob01311k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Four successive chemical ligations were used for the assembly of a sophisticated biomolecular system allowing the formation of a stabilized i-motif DNA at pH 7.
Collapse
Affiliation(s)
- Alexandre Devaux
- Univ. Grenoble Alpes
- Département de Chimie Moléculaire
- CNRS
- Grenoble 38000
- France
| | - Laureen Bonnat
- Univ. Grenoble Alpes
- Département de Chimie Moléculaire
- CNRS
- Grenoble 38000
- France
| | - Thomas Lavergne
- Univ. Grenoble Alpes
- Département de Chimie Moléculaire
- CNRS
- Grenoble 38000
- France
| | - Eric Defrancq
- Univ. Grenoble Alpes
- Département de Chimie Moléculaire
- CNRS
- Grenoble 38000
- France
| |
Collapse
|
18
|
Abou Assi H, Garavís M, González C, Damha MJ. i-Motif DNA: structural features and significance to cell biology. Nucleic Acids Res 2019; 46:8038-8056. [PMID: 30124962 PMCID: PMC6144788 DOI: 10.1093/nar/gky735] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022] Open
Abstract
The i-motif represents a paradigmatic example of the wide structural versatility of nucleic acids. In remarkable contrast to duplex DNA, i-motifs are four-stranded DNA structures held together by hemi- protonated and intercalated cytosine base pairs (C:C+). First observed 25 years ago, and considered by many as a mere structural oddity, interest in and discussion on the biological role of i-motifs have grown dramatically in recent years. In this review we focus on structural aspects of i-motif formation, the factors leading to its stabilization and recent studies describing the possible role of i-motifs in fundamental biological processes.
Collapse
Affiliation(s)
- Hala Abou Assi
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Miguel Garavís
- Instituto de Química Física 'Rocasolano', CSIC, C/Serrano 119, 28006 Madrid, Spain
| | - Carlos González
- Instituto de Química Física 'Rocasolano', CSIC, C/Serrano 119, 28006 Madrid, Spain
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
19
|
Sun Y, Ji Y, Wang D, Wang J, Liu D. Stabilization of an intermolecular i-motif by lipid modification of cytosine-oligodeoxynucleotides. Org Biomol Chem 2019; 16:4857-4863. [PMID: 29926887 DOI: 10.1039/c8ob00920a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This paper describes the stabilization of an intermolecular i-motif by lipophilic modification on the 3'-terminus of oligonucleotides. The hydrophobic aliphatic chain connected at the 3'-terminus of a trinucleotide (dC)3 promoted the formation of an i-motif and significantly enhanced the quadruplex's stability. The impact of lipophilic modification on i-motif's thermal stability was studied by UV-thermal denaturation melting experiments and isothermal titration calorimetry. We found that alkyl chains containing more than 14 carbon atoms could elevate the i-motif structure's stability in a wide range of pH and concentrations.
Collapse
Affiliation(s)
- Yawei Sun
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (Huadong), Qingdao, 258000, China.
| | | | | | | | | |
Collapse
|
20
|
Abstract
DNA has played an early and powerful role in the development of bottom-up nanotechnologies, not least because of DNA's precise, predictable, and controllable properties of assembly on the nanometer scale. Watson-Crick complementarity has been used to build complex 2D and 3D architectures and design a number of nanometer-scale systems for molecular computing, transport, motors, and biosensing applications. Most of such devices are built with classical B-DNA helices and involve classical A-T/U and G-C base pairs. However, in addition to the above components underlying the iconic double helix, a number of alternative pairing schemes of nucleobases are known. This review focuses on two of these noncanonical classes of DNA helices: G-quadruplexes and the i-motif. The unique properties of these two classes of DNA helix have been utilized toward some remarkable constructions and applications: G-wires; nanostructures such as DNA origami; reconfigurable structures and nanodevices; the formation and utilization of hemin-utilizing DNAzymes, capable of generating varied outputs from biosensing nanostructures; composite nanostructures made up of DNA as well as inorganic materials; and the construction of nanocarriers that show promise for the therapeutics of diseases.
Collapse
Affiliation(s)
- Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China.,ARNA Laboratory , Université de Bordeaux, Inserm U 1212, CNRS UMR5320, IECB , Pessac 33600 , France.,Institute of Biophysics of the CAS , v.v.i., Královopolská 135 , 612 65 Brno , Czech Republic
| | - Dipankar Sen
- Department of Molecular Biology & Biochemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada.,Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
21
|
Harkness V RW, Avakyan N, Sleiman HF, Mittermaier AK. Mapping the energy landscapes of supramolecular assembly by thermal hysteresis. Nat Commun 2018; 9:3152. [PMID: 30089867 PMCID: PMC6082911 DOI: 10.1038/s41467-018-05502-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/02/2018] [Indexed: 01/28/2023] Open
Abstract
Understanding how biological macromolecules assemble into higher-order structures is critical to explaining their function in living organisms and engineered biomaterials. Transient, partly-structured intermediates are essential in many assembly processes and pathway selection, but are challenging to characterize. Here we present a simple thermal hysteresis method based on rapid, non-equilibrium melting and annealing measurements that maps the rate of supramolecular assembly as a function of temperature and concentration. A straightforward analysis of these surfaces provides detailed information on the natures of assembly pathways, offering temperature resolution beyond that accessible with conventional techniques. Validating the approach using a tetrameric guanine quadruplex, we obtain strikingly good agreement with previous kinetics measurements and reveal temperature-dependent changes to the assembly pathway. In an application to the recently discovered co-assembly of polydeoxyadenosine (poly(A)) and cyanuric acid, we show that fiber elongation is initiated when an unstable complex containing three poly(A) monomers acquires a fourth strand. Complex assembly pathways often involve transient, partly-formed intermediates that are challenging to characterize. Here, the authors present a simple and rapid spectroscopic thermal hysteresis method for mapping the energy landscapes of supramolecular assembly.
Collapse
Affiliation(s)
- Robert W Harkness V
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal Quebec, H3A 0B8, Canada
| | - Nicole Avakyan
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal Quebec, H3A 0B8, Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal Quebec, H3A 0B8, Canada
| | - Anthony K Mittermaier
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal Quebec, H3A 0B8, Canada.
| |
Collapse
|
22
|
Giassa IC, Rynes J, Fessl T, Foldynova-Trantirkova S, Trantirek L. Advances in the cellular structural biology of nucleic acids. FEBS Lett 2018; 592:1997-2011. [PMID: 29679394 DOI: 10.1002/1873-3468.13054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/31/2018] [Accepted: 04/09/2018] [Indexed: 01/01/2023]
Abstract
Conventional biophysical and chemical biology approaches for delineating relationships between the structure and biological function of nucleic acids (NAs) abstract NAs from their native biological context. However, cumulative experimental observations have revealed that the structure, dynamics and interactions of NAs might be strongly influenced by a broad spectrum of specific and nonspecific physical-chemical environmental factors. This consideration has recently sparked interest in the development of novel tools for structural characterization of NAs in the native cellular context. Here, we review the individual methods currently being employed for structural characterization of NA structure in a native cellular environment with a focus on recent advances and developments in the emerging fields of in-cell NMR and electron paramagnetic resonance spectroscopy and in-cell single-molecule FRET of NAs.
Collapse
Affiliation(s)
- Ilektra-Chara Giassa
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Rynes
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tomas Fessl
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Silvie Foldynova-Trantirkova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Institute of Biophysics, Academy of Science of the Czech Republic, Brno, Czech Republic
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
23
|
Structural polymorphism of a cytosine-rich DNA sequence forming i-motif structure: Exploring pH based biosensors. Int J Biol Macromol 2018; 111:455-461. [DOI: 10.1016/j.ijbiomac.2018.01.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 11/15/2022]
|
24
|
Tsvetkov VB, Zatsepin TS, Belyaev ES, Kostyukevich YI, Shpakovski GV, Podgorsky VV, Pozmogova GE, Varizhuk AM, Aralov AV. i-Clamp phenoxazine for the fine tuning of DNA i-motif stability. Nucleic Acids Res 2018; 46:2751-2764. [PMID: 29474573 PMCID: PMC5888743 DOI: 10.1093/nar/gky121] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Non-canonical DNA structures are widely used for regulation of gene expression, in DNA nanotechnology and for the development of new DNA-based sensors. I-motifs (iMs) are two intercalated parallel duplexes that are held together by hemiprotonated C-C base pairs. Previously, iMs were used as an accurate sensor for intracellular pH measurements. However, iM stability is moderate, which in turn limits its in vivo applications. Here, we report the rational design of a new substituted phenoxazine 2'-deoxynucleotide (i-clamp) for iM stabilization. This residue contains a C8-aminopropyl tether that interacts with the phosphate group within the neighboring chain without compromising base pairing. We studied the influence of i-clamp on pH-dependent stability for intra- and intermolecular iM structures and found the optimal positions for modification. Two i-clamps on opposite strands provide thermal stabilization up to 10-11°C at a pH of 5.8. Thus, we developed a new modification that shows significant iM-stabilizing effect both at strongly and mildly acidic pH and increases iM transition pH values. i-Clamp can be used for tuning iM-based pH probes or assembling extra stable iM structures for various applications.
Collapse
Affiliation(s)
- Vladimir B Tsvetkov
- Biophysics Department, Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia
- Department of Molecular Virology, FSBI Research Institute of Influenza, Ministry of Health of Russian Federation, prof. Popov str. 15/17, Saint-Petersburg, 197376, Russia
- Polyelectrolytes and Biomedical Polymers Laboratory, A.V. Topchiev Institute of Petrochemical Synthesis, RAS, Leninsky prospect str. 29, Moscow 119991, Russia
| | - Timofei S Zatsepin
- Center for Translational Biomedicine, Skolkovo Institute of Science and Technology, 3 Nobel street, Skolkovo, Moscow 143026, Russia
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory str. 1–3, Moscow 119992, Russia
| | - Evgeny S Belyaev
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Science, Leninsky prospect str. 31, Moscow 119071 Russia
| | - Yury I Kostyukevich
- Center for Translational Biomedicine, Skolkovo Institute of Science and Technology, 3 Nobel street, Skolkovo, Moscow 143026, Russia
| | - George V Shpakovski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, Moscow 117997, Russia
| | - Victor V Podgorsky
- Biophysics Department, Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia
| | - Galina E Pozmogova
- Biophysics Department, Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia
| | - Anna M Varizhuk
- Biophysics Department, Research and Clinical Center for Physical Chemical Medicine, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia
| | - Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, Moscow 117997, Russia
| |
Collapse
|
25
|
Dzatko S, Krafcikova M, Hänsel‐Hertsch R, Fessl T, Fiala R, Loja T, Krafcik D, Mergny J, Foldynova‐Trantirkova S, Trantirek L. Evaluation of the Stability of DNA i-Motifs in the Nuclei of Living Mammalian Cells. Angew Chem Int Ed Engl 2018; 57:2165-2169. [PMID: 29266664 PMCID: PMC5820743 DOI: 10.1002/anie.201712284] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 11/21/2022]
Abstract
C-rich DNA has the capacity to form a tetra-stranded structure known as an i-motif. The i-motifs within genomic DNA have been proposed to contribute to the regulation of DNA transcription. However, direct experimental evidence for the existence of these structures in vivo has been missing. Whether i-motif structures form in complex environment of living cells is not currently known. Herein, using state-of-the-art in-cell NMR spectroscopy, we evaluate the stabilities of i-motif structures in the complex cellular environment. We show that i-motifs formed from naturally occurring C-rich sequences in the human genome are stable and persist in the nuclei of living human cells. Our data show that i-motif stabilities in vivo are generally distinct from those in vitro. Our results are the first to interlink the stability of DNA i-motifs in vitro with their stability in vivo and provide essential information for the design and development of i-motif-based DNA biosensors for intracellular applications.
Collapse
Affiliation(s)
- Simon Dzatko
- CEITEC-Central European Institute of TechnologyMasaryk UniversityBrno625 00Czech Republic
| | - Michaela Krafcikova
- CEITEC-Central European Institute of TechnologyMasaryk UniversityBrno625 00Czech Republic
| | - Robert Hänsel‐Hertsch
- Cancer Research (UK) Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeCB2 0REUK
| | - Tomas Fessl
- Faculty of ScienceUniversity of South Bohemia370 05Ceske BudejoviceCzech Republic
| | - Radovan Fiala
- CEITEC-Central European Institute of TechnologyMasaryk UniversityBrno625 00Czech Republic
| | - Tomas Loja
- CEITEC-Central European Institute of TechnologyMasaryk UniversityBrno625 00Czech Republic
| | - Daniel Krafcik
- CEITEC-Central European Institute of TechnologyMasaryk UniversityBrno625 00Czech Republic
| | - Jean‐Louis Mergny
- Université de Bordeaux, INSERM U1212, CNRS UMR 5320ARNA LaboratoryIECBPessacFrance
- Institute of BiophysicsAcademy of Sciences of the Czech Republic612 65BrnoCzech Republic
| | - Silvie Foldynova‐Trantirkova
- CEITEC-Central European Institute of TechnologyMasaryk UniversityBrno625 00Czech Republic
- Institute of BiophysicsAcademy of Sciences of the Czech Republic612 65BrnoCzech Republic
| | - Lukas Trantirek
- CEITEC-Central European Institute of TechnologyMasaryk UniversityBrno625 00Czech Republic
| |
Collapse
|
26
|
Dzatko S, Krafcikova M, Hänsel-Hertsch R, Fessl T, Fiala R, Loja T, Krafcik D, Mergny JL, Foldynova-Trantirkova S, Trantirek L. Evaluation of the Stability of DNA i-Motifs in the Nuclei of Living Mammalian Cells. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712284] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Simon Dzatko
- CEITEC-Central European Institute of Technology; Masaryk University; Brno 625 00 Czech Republic
| | - Michaela Krafcikova
- CEITEC-Central European Institute of Technology; Masaryk University; Brno 625 00 Czech Republic
| | - Robert Hänsel-Hertsch
- Cancer Research (UK) Cambridge Institute; University of Cambridge; Li Ka Shing Centre Cambridge CB2 0RE UK
| | - Tomas Fessl
- Faculty of Science; University of South Bohemia; 370 05 Ceske Budejovice Czech Republic
| | - Radovan Fiala
- CEITEC-Central European Institute of Technology; Masaryk University; Brno 625 00 Czech Republic
| | - Tomas Loja
- CEITEC-Central European Institute of Technology; Masaryk University; Brno 625 00 Czech Republic
| | - Daniel Krafcik
- CEITEC-Central European Institute of Technology; Masaryk University; Brno 625 00 Czech Republic
| | - Jean-Louis Mergny
- Université de Bordeaux, INSERM U1212, CNRS UMR 5320; ARNA Laboratory; IECB; Pessac France
- Institute of Biophysics; Academy of Sciences of the Czech Republic; 612 65 Brno Czech Republic
| | - Silvie Foldynova-Trantirkova
- CEITEC-Central European Institute of Technology; Masaryk University; Brno 625 00 Czech Republic
- Institute of Biophysics; Academy of Sciences of the Czech Republic; 612 65 Brno Czech Republic
| | - Lukas Trantirek
- CEITEC-Central European Institute of Technology; Masaryk University; Brno 625 00 Czech Republic
| |
Collapse
|
27
|
Hybrid DNA i-motif: Aminoethylprolyl-PNA (pC 5) enhance the stability of DNA (dC 5) i-motif structure. Bioorg Med Chem Lett 2017; 27:5424-5428. [PMID: 29138026 DOI: 10.1016/j.bmcl.2017.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 11/23/2022]
Abstract
This report describes the synthesis of C-rich sequence, cytosine pentamer, of aep-PNA and its biophysical studies for the formation of hybrid DNA:aep-PNAi-motif structure with DNA cytosine pentamer (dC5) under acidic pH conditions. Herein, the CD/UV/NMR/ESI-Mass studies strongly support the formation of stable hybrid DNA i-motif structure with aep-PNA even near acidic conditions. Hence aep-PNA C-rich sequence cytosine could be considered as potential DNA i-motif stabilizing agents in vivo conditions.
Collapse
|
28
|
Dembska A, Kierzek E, Juskowiak B. Studying the influence of stem composition in pH-sensitive molecular beacons onto their sensing properties. Anal Chim Acta 2017; 990:157-167. [PMID: 29029739 DOI: 10.1016/j.aca.2017.07.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/21/2017] [Accepted: 07/17/2017] [Indexed: 01/04/2023]
Abstract
Intracellular sensing using fluorescent molecular beacons is a potentially useful strategy for real-time, in vivo monitoring of important cellular events. This work is focused on evaluation of pyrene excimer signaling molecular beacons (MBs) for the monitoring of pH changes in vitro as well as inside living cells. The recognition element in our MB called pHSO (pH-sensitive oligonucleotide) is the loop enclosing cytosine-rich fragment that is able to form i-motif structure in a specific pH range. However, alteration of a sequence of the 6 base pairs containing stem of MB allowed the design of pHSO probes that exhibited different dynamic pH range and possessed slightly different transition midpoint between i-motif and open loop configuration. Moreover, this conformational transition was accompanied by spectral changes showing developed probes different pyrene excimer-monomer emission ratio triggered by pH changes. The potential of these MBs for intracellular pH sensing is demonstrated on the example of HeLa cells line.
Collapse
Affiliation(s)
- Anna Dembska
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland.
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Science, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Bernard Juskowiak
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland
| |
Collapse
|
29
|
Kankia B, Gvarjaladze D, Rabe A, Lomidze L, Metreveli N, Musier-Forsyth K. Stable Domain Assembly of a Monomolecular DNA Quadruplex: Implications for DNA-Based Nanoswitches. Biophys J 2017; 110:2169-75. [PMID: 27224482 PMCID: PMC4880955 DOI: 10.1016/j.bpj.2016.04.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/16/2016] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
In the presence of K+ ions, the 5′-GGGTGGGTGGGTGGG-3′ (G3T) sequence folds into a monomolecular quadruplex with unusually high thermal stability and unique optical properties. In this study we report that although single G3T molecules unfold and fold rapidly with overlapping melting and refolding curves, G3T multimers (G3T units covalently attached to each other) demonstrate highly reproducible hysteretic behavior. We demonstrate that this behavior necessitates full-length tandem G3T monomers directly conjugated to each other. Any modification of the tandem sequences eliminates the hysteresis. The experimentally measured kinetic parameters and equilibrium transition profiles suggest a highly specific two-state transition in which the folding and unfolding of the first G3T monomer is rate-limiting for both annealing and melting processes. The highly reproducible hysteretic behavior of G3T multimers has the potential to be used in the design of heat-stimulated DNA switches or transistors.
Collapse
Affiliation(s)
- Besik Kankia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Institute of Biophysics, Ilia State University, Tbilisi, Republic of Georgia.
| | - David Gvarjaladze
- Institute of Biophysics, Ilia State University, Tbilisi, Republic of Georgia
| | - Adam Rabe
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Levan Lomidze
- Institute of Biophysics, Ilia State University, Tbilisi, Republic of Georgia
| | - Nunu Metreveli
- Institute of Biophysics, Ilia State University, Tbilisi, Republic of Georgia
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
30
|
Hartono Y, Pabon-Martinez YV, Uyar A, Wengel J, Lundin KE, Zain R, Smith CIE, Nilsson L, Villa A. Role of Pseudoisocytidine Tautomerization in Triplex-Forming Oligonucleotides: In Silico and in Vitro Studies. ACS OMEGA 2017; 2:2165-2177. [PMID: 30023656 PMCID: PMC6044803 DOI: 10.1021/acsomega.7b00347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/02/2017] [Indexed: 06/08/2023]
Abstract
Pseudoisocytidine (ΨC) is a synthetic cytidine analogue that can target DNA duplex to form parallel triplex at neutral pH. Pseudoisocytidine has mainly two tautomers, of which only one is favorable for triplex formation. In this study, we investigated the effect of sequence on ΨC tautomerization using λ-dynamics simulation, which takes into account transitions between states. We also performed in vitro binding experiments with sequences containing ΨC and furthermore characterized the structure of the formed triplex using molecular dynamics simulation. We found that the neighboring methylated or protonated cytidine promotes the formation of the favorable tautomer, whereas the neighboring thymine or locked nucleic acid has a poor effect, and consecutive ΨC has a negative influence. The deleterious effect of consecutive ΨC in a triplex formation was confirmed using in vitro binding experiments. Our findings contribute to improving the design of ΨC-containing triplex-forming oligonucleotides directed to target G-rich DNA sequences.
Collapse
Affiliation(s)
- Yossa
Dwi Hartono
- Department
of Biosciences and Nutrition, Karolinska
Institutet, SE-141 83 Huddinge, Sweden
- Division
of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Y. Vladimir Pabon-Martinez
- Department
of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Sweden
| | - Arzu Uyar
- Department
of Biosciences and Nutrition, Karolinska
Institutet, SE-141 83 Huddinge, Sweden
| | - Jesper Wengel
- Department
of Physics, Chemistry and Pharmacy, Nucleic Acid Center, University of Southern Denmark, 5230 Odense M, Denmark
| | - Karin E. Lundin
- Department
of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Sweden
| | - Rula Zain
- Department
of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Sweden
- Department
of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - C. I. Edvard Smith
- Department
of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, SE-141 86 Huddinge, Sweden
| | - Lennart Nilsson
- Department
of Biosciences and Nutrition, Karolinska
Institutet, SE-141 83 Huddinge, Sweden
| | - Alessandra Villa
- Department
of Biosciences and Nutrition, Karolinska
Institutet, SE-141 83 Huddinge, Sweden
| |
Collapse
|
31
|
Shimoyama A, Fujisaka A, Obika S. Evaluation of size-exclusion chromatography for the analysis of phosphorothioate oligonucleotides. J Pharm Biomed Anal 2016; 136:55-65. [PMID: 28063336 DOI: 10.1016/j.jpba.2016.12.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/24/2016] [Accepted: 12/24/2016] [Indexed: 11/17/2022]
Abstract
We evaluated size exclusion chromatography (SEC) for the detection of high-order structure of phosphorothioate oligonucleotides (PS-oligo). Because of strong interaction between PS-oligo and column packing material, peaks were broader and elution time was longer than those of the corresponding natural DNA oligonucleotides. However, single- and double-stranded structures of PS-oligo were clearly separated and discriminated, while single-stranded with high-order structures such as G-quadruplex and hairpin structure were not distinguished from each other.
Collapse
Affiliation(s)
- Atsuko Shimoyama
- Analytical Research Laboratories, Technology, Astellas Pharma Inc., 5-2-3 Tokodai, Tsukuba-Shi, Ibaraki 300-2698, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Aki Fujisaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka 584-8540, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
32
|
Cao Y, Gao S, Li C, Yan Y, Wang B, Guo X. Structural varieties of selectively mixed G- and C-rich short DNA sequences studied with electrospray ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:931-937. [PMID: 27378414 DOI: 10.1002/jms.3804] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 05/09/2023]
Abstract
Short guanine(G)-repeat and cytosine(C)-repeat DNA strands can self-assemble to form four-stranded G-quadruplexes and i-motifs, respectively. Herein, G-rich and C-rich strands with non-G or non-C terminal bases and different lengths of G- or C-repeats are mixed selectively in pH 4.5 and 6.7 ammonium acetate buffer solutions and studied by electrospray ionization mass spectrometry (ESI-MS). Various strand associations corresponding to bi-, tri- and tetramolecular ions are observed in mass spectra, indicating that the formation of quadruplex structures is a random strand by strand association process. However, with increasing incubation time for the mixtures, initially associated hybrid tetramers will transform into self-assembled conformations, which is mainly driven by the structural stability. The melting temperature values of self-assembled quadruplexes suggest that the length of G-repeats or C-repeats shows more significant effect on the stability of quadruplex structures than that of terminal residues. Accordingly, we can obtain the self-associated tetrameric species generated from the mixtures of various homologous G- or C-strands efficiently by altering the length of G- or C-repeats. Our studies demonstrate that ESI-MS is a very direct, fast and sensitive tool to provide significant information on DNA strand associations and stoichiometric transitions, particularly for complex mixtures. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yanwei Cao
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Shang Gao
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Caijin Li
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yuting Yan
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Bing Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Xinhua Guo
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| |
Collapse
|
33
|
Day HA, Wright EP, MacDonald CJ, Gates AJ, Waller ZAE. Reversible DNA i-motif to hairpin switching induced by copper(II) cations. Chem Commun (Camb) 2016; 51:14099-102. [PMID: 26252811 PMCID: PMC4563791 DOI: 10.1039/c5cc05111h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
i-Motif DNA structures have previously been utilised for many different nanotechnological applications, but all have used changes in pH to fold the DNA. Herein we describe how copper(II) cations can alter the conformation of i-motif DNA into an alternative hairpin structure which is reversible by chelation with EDTA.
Collapse
Affiliation(s)
- Henry Albert Day
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | | | | | | | | |
Collapse
|
34
|
Charnavets T, Nunvar J, Nečasová I, Völker J, Breslauer KJ, Schneider B. Conformational diversity of single-stranded DNA from bacterial repetitive extragenic palindromes: Implications for the DNA recognition elements of transposases. Biopolymers 2016; 103:585-96. [PMID: 25951997 PMCID: PMC4690160 DOI: 10.1002/bip.22666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/05/2015] [Indexed: 01/19/2023]
Abstract
Repetitive extragenic palindrome (REP)—associated tyrosine transposase enzymes (RAYTs) bind REP DNA domains and catalyze their cleavage. Genomic sequence analyses identify potential noncoding REP sequences associated with RAYT-encoding genes. To probe the conformational space of potential RAYT DNA binding domains, we report here spectroscopic and calorimetric measurements that detect and partially characterize the solution conformational heterogeneity of REP oligonucleotides from six bacterial species. Our data reveal most of these REP oligonucleotides adopt multiple conformations, suggesting that RAYTs confront a landscape of potential DNA substrates in dynamic equilibrium that could be selected, enriched, and/or induced via differential binding. Thus, the transposase-bound DNA motif may not be the predominant conformation of the isolated REP domain. Intriguingly, for several REPs, the circular dichroism spectra suggest guanine tetraplexes as potential alternative or additional RAYT recognition elements, an observation consistent with these REP domains being highly nonrandom, with tetraplex-favoring 5′-G and 3′-C-rich segments. In fact, the conformational heterogeneity of REP domains detected and reported here, including the formation of noncanonical DNA secondary structures, may reflect a general feature required for recognition by RAYT transposases. Based on our biophysical data, we propose guanine tetraplexes as an additional DNA recognition element for binding by RAYT transposase enzymes. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 585–596, 2015.
Collapse
Affiliation(s)
- Tatsiana Charnavets
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic
| | - Jaroslav Nunvar
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic
| | - Iva Nečasová
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic
| | - Jens Völker
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Rd., Piscataway, NJ, 08854
| | - Kenneth J Breslauer
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Rd., Piscataway, NJ, 08854.,Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903
| | - Bohdan Schneider
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Videnska, 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
35
|
Nakano SI, Oka H, Fujii M, Sugimoto N. Use of a Ureido-Substituted Deoxycytidine Module for DNA Assemblies. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 35:370-8. [PMID: 27152551 DOI: 10.1080/15257770.2016.1174262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ureido-substituted cytosine derivatives are promising for constructing self-assembly structures that can be applied to nanotechnology research. However, conventional cytosine modules achieve assembly in organic solvents. In this study, an N-phenylcarbamoyl deoxycytidine nucleoside was incorporated into a C-rich oligonucleotide to achieve self-assembly in aqueous solution. The results show that the capability of the module to form DNA assemblies varied depending on the number of modules incorporated. The deoxycytidine derivative has a potential application in the development of smart materials based on DNA assembly.
Collapse
Affiliation(s)
- Shu-Ichi Nakano
- a Department of Nanobiochemistry , Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University , Kobe , Japan
| | - Hirohito Oka
- b Department of Chemistry , Faculty of Science and Engineering, Konan University , Kobe , Japan
| | - Masayuki Fujii
- c Molecular Engineering Institute (MEI), Kinki University , Fukuoka , Japan.,d Department of Environmental and Biological Chemistry , Kinki University , Fukuoka , Japan
| | - Naoki Sugimoto
- a Department of Nanobiochemistry , Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University , Kobe , Japan.,e Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University , Kobe , Japan
| |
Collapse
|
36
|
Bedrat A, Lacroix L, Mergny JL. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res 2016; 44:1746-59. [PMID: 26792894 PMCID: PMC4770238 DOI: 10.1093/nar/gkw006] [Citation(s) in RCA: 475] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/03/2016] [Indexed: 01/01/2023] Open
Abstract
Critical evidence for the biological relevance of G-quadruplexes (G4) has recently been obtained in seminal studies performed in a variety of organisms. Four-stranded G-quadruplex DNA structures are promising drug targets as these non-canonical structures appear to be involved in a number of key biological processes. Given the growing interest for G4, accurate tools to predict G-quadruplex propensity of a given DNA or RNA sequence are needed. Several algorithms such as Quadparser predict quadruplex forming propensity. However, a number of studies have established that sequences that are not detected by these tools do form G4 structures (false negatives) and that other sequences predicted to form G4 structures do not (false positives). Here we report development and testing of a radically different algorithm, G4Hunter that takes into account G-richness and G-skewness of a given sequence and gives a quadruplex propensity score as output. To validate this model, we tested it on a large dataset of 392 published sequences and experimentally evaluated quadruplex forming potential of 209 sequences using a combination of biophysical methods to assess quadruplex formation in vitro. We experimentally validated the G4Hunter algorithm on a short complete genome, that of the human mitochondria (16.6 kb), because of its relatively high GC content and GC skewness as well as the biological relevance of these quadruplexes near instability hotspots. We then applied the algorithm to genomes of a number of species, including humans, allowing us to conclude that the number of sequences capable of forming stable quadruplexes (at least in vitro) in the human genome is significantly higher, by a factor of 2–10, than previously thought.
Collapse
Affiliation(s)
- Amina Bedrat
- Université de Bordeaux, ARNA Laboratory, F-33000 Bordeaux, France Inserm U1212, CNRS UMR 5320, IECB, F-33600 Pessac, France
| | - Laurent Lacroix
- CNRS-Université de Toulouse UMR5099, F-31000 Toulouse, France
| | - Jean-Louis Mergny
- Université de Bordeaux, ARNA Laboratory, F-33000 Bordeaux, France Inserm U1212, CNRS UMR 5320, IECB, F-33600 Pessac, France
| |
Collapse
|
37
|
El-Sayed AA, Pedersen EB, Khaireldin NY. Thermal Stability of Modified i-Motif Oligonucleotides with Naphthalimide Intercalating Nucleic Acids. Helv Chim Acta 2016. [DOI: 10.1002/hlca.201500140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
38
|
Benabou S, Garavís M, Lyonnais S, Eritja R, González C, Gargallo R. Understanding the effect of the nature of the nucleobase in the loops on the stability of the i-motif structure. Phys Chem Chem Phys 2016; 18:7997-8004. [DOI: 10.1039/c5cp07428b] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The nature of bases in the loops affects the acid–base and thermal stability of i-motif structures.
Collapse
Affiliation(s)
- Sanae Benabou
- Department of Analytical Chemistry
- University of Barcelona
- E-08028 Barcelona
- Spain
| | - Miguel Garavís
- Institute of Physical Chemistry “Rocasolano”
- CSIC
- E-28006 Madrid
- Spain
| | - Sébastien Lyonnais
- Institute of Molecular Biology of Barcelona (IBMB-CSIC)
- 08028 Barcelona
- Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN
- E-08034 Barcelona
- Spain
| | - Carlos González
- Institute of Physical Chemistry “Rocasolano”
- CSIC
- E-28006 Madrid
- Spain
- BIOESTRAN
| | - Raimundo Gargallo
- Department of Analytical Chemistry
- University of Barcelona
- E-08028 Barcelona
- Spain
- BIOESTRAN
| |
Collapse
|
39
|
Aviñó A, Huertas CS, Lechuga LM, Eritja R. Sensitive and label-free detection of miRNA-145 by triplex formation. Anal Bioanal Chem 2015; 408:885-93. [DOI: 10.1007/s00216-015-9180-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/07/2015] [Accepted: 11/09/2015] [Indexed: 12/01/2022]
|
40
|
Bielecka P, Juskowiak B. Fluorescent Sensor for PH Monitoring Based on an i-Motif---Switching Aptamer Containing a Tricyclic Cytosine Analogue (tC). Molecules 2015; 20:18511-25. [PMID: 26473815 PMCID: PMC6332284 DOI: 10.3390/molecules201018511] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/24/2015] [Accepted: 10/06/2015] [Indexed: 12/16/2022] Open
Abstract
There are cytosine-rich regions in the genome that bind protons with high specificity. Thus protonated C-rich sequence may undergo folding to tetraplex structures called i-motifs. Therefore, one can regard such specific C-rich oligonucleotides as aptamers that recognize protons and undergo conformational transitions. Proper labeling of the aptamer with a fluorescent tag constitutes a platform to construct a pH-sensitive aptasensor. Since the hemiprotonated C-C⁺ base pairs are responsible for the folded tetraplex structure of i-motif, we decided to substitute one of cytosines in an aptamer sequence with its fluorescent analogue, 1,3-diaza-2-oxophenothiazine (tC). In this paper we report on three tC-modified fluorescent probes that contain RET related sequences as a proton recognizing aptamer. Results of the circular dichroism (CD), UV absorption melting experiments, and steady-state fluorescence measurements of these tC-modified i-motif probes are presented and discussed. The pH-induced i-motif formation by the probes resulted in fluorescence quenching of tC fluorophore. Efficiency of quenching was related to the pH variations. Suitability of the sensor for monitoring pH changes was also demonstrated.
Collapse
Affiliation(s)
- Patrycja Bielecka
- Laboratory of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b 61-614 Poznan, Poland.
| | - Bernard Juskowiak
- Laboratory of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b 61-614 Poznan, Poland.
| |
Collapse
|
41
|
Nesterova IV, Elsiddieg SO, Nesterov EE. A dual input DNA-based molecular switch. MOLECULAR BIOSYSTEMS 2015; 10:2810-4. [PMID: 25099914 DOI: 10.1039/c4mb00363b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have designed and characterized a DNA-based molecular switch which processes two physiologically relevant inputs: pH (i.e. alkalinisation) and enzymatic activity, and generates a chemical output (in situ synthesized oligonucleotide). The design, based on allosteric interactions between i-motif and hairpin stem within the DNA molecule, addresses such critical physiological system parameters as molecular simplicity, tunability, orthogonality of the two input sensing domains, and compatibility with intracellular operation/delivery.
Collapse
Affiliation(s)
- Irina V Nesterova
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | |
Collapse
|
42
|
Cao Y, Qin Y, Bruist M, Gao S, Wang B, Wang H, Guo X. Formation and Dissociation of the Interstrand i-Motif by the Sequences d(XnC 4Y m) Monitored with Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:994-1003. [PMID: 25862186 DOI: 10.1007/s13361-015-1093-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
Formation and dissociation of the interstrand i-motifs by DNA with the sequence d(X(n)C(4)Y(m)) (X and Y represent thymine, adenine, or guanine, and n, m range from 0 to 2) are studied with electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD), and UV spectrophotometry. The ion complexes detected in the gas phase and the melting temperatures (Tm) obtained in solution show that a non-C base residue located at 5' end favors formation of the four-stranded structures, with T > A > G for imparting stability. Comparatively, no rule is found when a non-C base is located at the 3' end. Detection of penta- and hexa-stranded ions indicates the formation of i-motifs with more than four strands. In addition, the i-motifs seen in our mass spectra are accompanied by single-, double-, and triple-stranded ions, and the trimeric ions were always less abundant during annealing and heat-induced dissociation process of the DNA strands in solution (pH = 4.5). This provides a direct evidence of a strand-by-strand formation and dissociation pathway of the interstrand i-motif and formation of the triple strands is the rate-limiting step. In contrast, the trimeric ions are abundant when the tetramolecular ions are subjected to collision-induced dissociation (CID) in the gas phase, suggesting different dissociation behaviors of the interstrand i-motif in the gas phase and in solution. Furthermore, hysteretic UV absorption melting and cooling curves reveal an irreversible dissociation and association kinetic process of the interstrand i-motif in solution.
Collapse
Affiliation(s)
- Yanwei Cao
- College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
43
|
Nesterova IV, Nesterov EE. Rational Design of Highly Responsive pH Sensors Based on DNA i-Motif. J Am Chem Soc 2014; 136:8843-6. [DOI: 10.1021/ja501859w] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Irina V. Nesterova
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Evgueni E. Nesterov
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
44
|
Day HA, Pavlou P, Waller ZAE. i-Motif DNA: structure, stability and targeting with ligands. Bioorg Med Chem 2014; 22:4407-18. [PMID: 24957878 DOI: 10.1016/j.bmc.2014.05.047] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/09/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
i-Motifs are four-stranded DNA secondary structures which can form in sequences rich in cytosine. Stabilised by acidic conditions, they are comprised of two parallel-stranded DNA duplexes held together in an antiparallel orientation by intercalated, cytosine-cytosine(+) base pairs. By virtue of their pH dependent folding, i-motif forming DNA sequences have been used extensively as pH switches for applications in nanotechnology. Initially, i-motifs were thought to be unstable at physiological pH, which precluded substantial biological investigation. However, recent advances have shown that this is not always the case and that i-motif stability is highly dependent on factors such as sequence and environmental conditions. In this review, we discuss some of the different i-motif structures investigated to date and the factors which affect their topology, stability and dynamics. Ligands which can interact with these structures are necessary to aid investigations into the potential biological functions of i-motif DNA and herein we review the existing i-motif ligands and give our perspective on the associated challenges with targeting this structure.
Collapse
Affiliation(s)
- Henry A Day
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Pavlos Pavlou
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| |
Collapse
|
45
|
El-Sayed AA, Pedersen EB, Khaireldin NA. Studying the influence of the pyrene intercalator TINA on the stability of DNA i-motifs. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2014; 31:872-9. [PMID: 23215550 DOI: 10.1080/15257770.2012.742199] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Certain cytosine-rich (C-rich) DNA sequences can fold into secondary structures as four-stranded i-motifs with hemiprotonated base pairs. Here we synthesized C-rich TINA-intercalating oligonucleotides by inserting a nonnucleotide pyrene moiety between two C-rich regions. The stability of their i-motif structures was studied by using UV melting temperature measurements and circular dichroism spectra at different pH values under noncrowding and crowding conditions (20% poly(ethylene glycol)). When TINA ((R)-3-((4-(1-pyrenylethynyl)benzyl)oxy) propane-1,2-diol) is inserted, the oligonucleotides could form an i-motif at a higher pH than observed for the corresponding wildtype oligonucleotide.
Collapse
Affiliation(s)
- Ahmed A El-Sayed
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | | | | |
Collapse
|
46
|
Benabou S, Aviñó A, Eritja R, González C, Gargallo R. Fundamental aspects of the nucleic acid i-motif structures. RSC Adv 2014. [DOI: 10.1039/c4ra02129k] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The latest research on fundamental aspects of i-motif structures is reviewed with special attention to their hypothetical rolein vivo.
Collapse
Affiliation(s)
- S. Benabou
- Department of Analytical Chemistry
- University of Barcelona
- E-08028 Barcelona, Spain
| | - A. Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN Networking Centre on Bioengineering
- Biomaterials and Nanomedicine
- E-08034 Barcelona, Spain
| | - R. Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN Networking Centre on Bioengineering
- Biomaterials and Nanomedicine
- E-08034 Barcelona, Spain
| | - C. González
- Institute of Physical Chemistry “Rocasolano”
- CSIC
- E-28006 Madrid, Spain
| | - R. Gargallo
- Department of Analytical Chemistry
- University of Barcelona
- E-08028 Barcelona, Spain
| |
Collapse
|
47
|
Nesterova IV, Elsiddieg SO, Nesterov EE. Design and evaluation of an i-motif-based allosteric control mechanism in DNA-hairpin molecular devices. J Phys Chem B 2013; 117:10115-21. [PMID: 23941235 DOI: 10.1021/jp405230g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Molecular devices designed to assess and manipulate biologically relevant conditions with required accuracy and precision play an essential role in life sciences research. Incorporating allosteric regulation mechanism is an attractive strategy toward more efficient artificial sensing and switching systems. Herein, we report on a new principle of regulating switching parameters of a DNA-based molecular device based on allosteric interaction between spatially separated hairpin stem and a tetraplexed fragment (i.e., i-motif). We characterized thermodynamic and kinetic effects arising from interaction between functional domains of the device and demonstrated the potential of applying the allosteric control principle for rational design of sensors and switches with precisely defined operational characteristics.
Collapse
Affiliation(s)
- Irina V Nesterova
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | |
Collapse
|
48
|
Belotserkovskii BP, Mirkin SM, Hanawalt PC. DNA sequences that interfere with transcription: implications for genome function and stability. Chem Rev 2013; 113:8620-37. [PMID: 23972098 DOI: 10.1021/cr400078y] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Dembska A, Rzepecka P, Juskowiak B. Spectroscopic characterization of i-motif forming c-myc derived sequences double-labeled with pyrene. J Fluoresc 2013; 23:807-12. [PMID: 23519528 PMCID: PMC3696180 DOI: 10.1007/s10895-013-1184-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 02/24/2013] [Indexed: 11/25/2022]
Abstract
In current studies we use the oligonucleotides based on c-myc sequence: CCC CAC CCT CCC CAC CCT CCC C (cmyc22) and CCC CAC CCT CCC CAC CCT CCC CA (cmyc22A) functionalized by pyrene moieties at both termini. Results of the circular dichroism (CD), UV absorption melting experiments, and steady-state fluorescence measurements of pyrene-modified i-motifs as well as their unlabeled precursors are presented and discussed here. The pyrene labels have a remarkable influence on i-motif stability which was deduced from CD spectra and confirmed by UV melting experiments. Both probes emit fluorescence band of pyrene monomer with intensity decreasing upon pH lowering.
Collapse
Affiliation(s)
- Anna Dembska
- Laboratory of Bioanalytical Chemistry, Faculty of Chemistry, A. Mickiewicz University, Umultowska 89b, 61-614, Poznań, Poland.
| | | | | |
Collapse
|
50
|
Mao Y, Zhang J. Understanding thermodynamic competitivity between biopolymer folding and misfolding under large-scale intermolecular interactions. J Am Chem Soc 2011; 134:631-9. [PMID: 22126310 DOI: 10.1021/ja209534c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cooperativity is a hallmark of spontaneous biopolymer folding. The presence of intermolecular interactions could create off-pathway misfolding structures and suppress folding cooperativity. This raises the hypothesis that thermodynamic competitivity between off-pathway misfolding and on-pathway folding may intervene with cooperativity and govern biopolymer folding dynamics under conditions permitting large-scale intermolecular interactions. Here we report direct imaging and theoretical modeling of thermodynamic competitivity between biopolymer folding and misfolding under such conditions, using a two-dimensional array of proton-fueled DNA molecular motors packed at the maximal density as a model system. Time-resolved liquid-phase atomic force microscopy with enhanced phase contrast revealed that the misfolding and folding intermediates transiently self-organize into spatiotemporal patterns on the nanoscale in thermodynamic states far away from equilibrium as a result of thermodynamic competitivity. Computer simulations using a novel cellular-automaton network model provide quantitative insights into how large-scale intermolecular interactions correlate the structural dynamics of individual biomolecules together at the systems level.
Collapse
Affiliation(s)
- Youdong Mao
- Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|