1
|
Lancaster EE, Vladimirov VI, Riley BP, Landry JW, Roberson-Nay R, York TP. LARGE-SCALE INTEGRATION OF DNA METHYLATION AND GENE EXPRESSION ARRAY PLATFORMS IDENTIFIES BOTH cis AND trans RELATIONSHIPS. Epigenetics 2022; 17:1753-1773. [PMID: 35608069 PMCID: PMC9621057 DOI: 10.1080/15592294.2022.2079293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although epigenome-wide association studies (EWAS) have been successful in identifying DNA methylation (DNAm) patterns associated with disease states, any further characterization of etiologic mechanisms underlying disease remains elusive. This knowledge gap does not originate from a lack of DNAm–trait associations, but rather stems from study design issues that affect the interpretability of EWAS results. Despite known limitations in predicting the function of a particular CpG site, most EWAS maintain the broad assumption that altered DNAm results in a concomitant change of transcription at the most proximal gene. This study integrated DNAm and gene expression (GE) measurements in two cohorts, the Adolescent and Young Adult Twin Study (AYATS) and the Pregnancy, Race, Environment, Genes (PREG) study, to improve the understanding of epigenomic regulatory mechanisms. CpG sites associated with GE in cis were enriched in areas of transcription factor binding and areas of intermediate-to-low CpG density. CpG sites associated with trans GE were also enriched in areas of known regulatory significance, including enhancer regions. These results highlight issues with restricting DNAm-transcript annotations to small genomic intervals and question the validity of assuming a cis DNAm–GE pathway. Based on these findings, the interpretation of EWAS results is limited in studies without multi-omic support and further research should identify genomic regions in which GE-associated DNAm is overrepresented. An in-depth characterization of GE-associated CpG sites could improve predictions of the downstream functional impact of altered DNAm and inform best practices for interpreting DNAm–trait associations generated by EWAS.
Collapse
Affiliation(s)
- Eva E Lancaster
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA 23220
| | | | - Brien P Riley
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA 23220.,Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23220
| | - Joseph W Landry
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23220
| | - Roxann Roberson-Nay
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA 23220.,Department of Psychology, Virginia Commonwealth University, Richmond, VA 23220
| | - Timothy P York
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23220.,Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA 23220
| |
Collapse
|
2
|
Abstract
The intestinal tract is the entry gate for nutrients and symbiotic organisms, being in constant contact with external environment. DNA methylation is one of the keys to how environmental conditions, diet and nutritional status included, shape functionality in the gut and systemically. This review aims to summarise findings on the importance of methylation to gut development, differentiation and function. Evidence to date on how external factors such as diet, dietary supplements, nutritional status and microbiota modifications modulate intestinal function through DNA methylation is also presented.
Collapse
|
3
|
Lee SY, Yang J, Park JH, Shin HK, Kim WJ, Kim SY, Lee EJ, Hwang I, Lee CS, Lee J, Kim HS. The MicroRNA-92a/Sp1/MyoD Axis Regulates Hypoxic Stimulation of Myogenic Lineage Differentiation in Mouse Embryonic Stem Cells. Mol Ther 2019; 28:142-156. [PMID: 31606324 DOI: 10.1016/j.ymthe.2019.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 01/07/2023] Open
Abstract
Hypoxic microenvironments exist in developing embryonic tissues and determine stem cell fate. We previously demonstrated that hypoxic priming plays roles in lineage commitment of embryonic stem cells. In the present study, we found that hypoxia-primed embryoid bodies (Hyp-EBs) efficiently differentiate into the myogenic lineage, resulting in the induction of the myogenic marker MyoD, which was not mediated by hypoxia-inducible factor 1α (HIF1α) or HIF2α, but rather by Sp1 induction and binding to the MyoD promoter. Knockdown of Sp1 in Hyp-EBs abrogated hypoxia-induced MyoD expression and myogenic differentiation. Importantly, in the cardiotoxin-muscle injury mice model, Hyp-EB transplantation facilitated muscle regeneration in vivo, whereas transplantation of Sp1-knockdown Hyp-EBs failed to do. Moreover, we compared microRNA (miRNA) expression profiles between EBs under normoxia versus hypoxia and found that hypoxia-mediated Sp1 induction was mediated by the suppression of miRNA-92a, which directly targeted the 3' untranslated region (3' UTR) of Sp1. Further, the inhibitory effect of miRNA-92a on Sp1 in luciferase assay was abolished by a point mutation in specific sequence in the Sp1 3' UTR that is required for the binding of miRNA-92a. Collectively, these results suggest that hypoxic priming enhances EB commitment to the myogenic lineage through miR-92a/Sp1/MyoD regulatory axis, suggesting a new pathway that promotes myogenic-lineage differentiation.
Collapse
Affiliation(s)
- Seo-Yeon Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Korean Medical Science Research Center for Healthy-Aging, Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Republic of Korea
| | - Jimin Yang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung Hwa Park
- Korean Medical Science Research Center for Healthy-Aging, Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Korean Medical Science Research Center for Healthy-Aging, Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Republic of Korea
| | - Woo Jean Kim
- Department of Anatomy, College of Medicine, Kosin University, Busan 49267, Republic of Korea
| | - Su-Yeon Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun Ju Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Injoo Hwang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Choon-Soo Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jaewon Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyo-Soo Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Molecular Medicine & Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
DNA methylation in mice is influenced by genetics as well as sex and life experience. Nat Commun 2019; 10:305. [PMID: 30659182 PMCID: PMC6338756 DOI: 10.1038/s41467-018-08067-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 11/15/2018] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is an essential epigenetic process in mammals, intimately involved in gene regulation. Here we address the extent to which genetics, sex, and pregnancy influence genomic DNA methylation by intercrossing 2 inbred mouse strains, C57BL/6N and C3H/HeN, and analyzing DNA methylation in parents and offspring using whole-genome bisulfite sequencing. Differential methylation across genotype is detected at thousands of loci and is preserved on parental alleles in offspring. In comparison of autosomal DNA methylation patterns across sex, hundreds of differentially methylated regions are detected. Comparison of animals with different histories of pregnancy within our study reveals a CpG methylation pattern that is restricted to female animals that had borne offspring. Collectively, our results demonstrate the stability of CpG methylation across generations, clarify the interplay of epigenetics with genetics and sex, and suggest that CpG methylation may serve as an epigenetic record of life events in somatic tissues at loci whose expression is linked to the relevant biology. DNA methylation is an epigenetic mark involved in gene regulation. Here the authors investigate the extent to which genetics, sex and pregnancy influence genomic DNA methylation in mice, providing evidence of the stability of CpG methylation across generation and suggest that CpG methylation may serve as an epigenetic record of life events in somatic tissues at loci whose expression is linked to the relevant biology.
Collapse
|
5
|
Calvo J, González-Calvo L, Dervishi E, Blanco M, Iguácel L, Sarto P, Pérez-Campo F, Serrano M, Bolado-Carrancio A, Rodríguez-Rey J, Joy M. A functional variant in the stearoyl-CoA desaturase (SCD) gene promoter affects gene expression in ovine muscle. Livest Sci 2019. [DOI: 10.1016/j.livsci.2018.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Townsend MH, Felsted AM, Burrup W, Robison RA, O’Neill KL. Examination of Hypoxanthine Guanine Phosphoribosyltransferase as a biomarker for colorectal cancer patients. Mol Cell Oncol 2018; 5:e1481810. [PMID: 30250925 PMCID: PMC6149734 DOI: 10.1080/23723556.2018.1481810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022]
Abstract
The aim of this study is to investigate these enzymes as possible biomarkers in two colorectal cancer cell lines: HT29, SW480, SW620, and Colo205. With 1,168,929 individuals currently diagnosed with colorectal cancer in the United States, there remains a need to find biomarkers to improve diagnosis and expand treatment options for patients. Due to their role in proliferation and cell cycle regulation, we hypothesized an increase in salvage pathway enzyme (APRT, DCK, and HPRT) expression and possible presentation within colon cancer cells. Enzyme surface localization was assessed utilizing confocal microscopy, flow cytometry, and scanning electron microscopy. General protein expression was evaluated utilizing immunohistochemistry and Western blot analysis. While we found no statistically significant presence of either APRT or DCK on the membranes of SW620, Colo205, and HT29 cells, but found significant expression of HPRT on the surface of HT29, SW480, and SW620 cells. The average population fluorescence increased by 28%, 58%, and 40% in HT29, SW620, and SW480 cells, respectively, when compared to isotype controls. Confocal microscopy images revealed direct overlap between SW620 cells stained with a membrane dye and anti-HPRT antibody, indicating co-localization on the plasma membrane. In addition, cells treated with gold labelled HPRT antibody experienced significant changes in gold weight percentage on both SW620 and HT29 cells when compared to isotype controls. When evaluating expression within normal tissue, there was insignificant levels of HPRT binding. These data collectively suggest that HPRT may be a possible biomarker target for the identification and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Michelle H. Townsend
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Abigail M. Felsted
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Weston Burrup
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Kim L. O’Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
7
|
Collings CK, Anderson JN. Links between DNA methylation and nucleosome occupancy in the human genome. Epigenetics Chromatin 2017; 10:18. [PMID: 28413449 PMCID: PMC5387343 DOI: 10.1186/s13072-017-0125-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
Background DNA methylation is an epigenetic modification that is enriched in heterochromatin but depleted at active promoters and enhancers. However, the debate on whether or not DNA methylation is a reliable indicator of high nucleosome occupancy has not been settled. For example, the methylation levels of DNA flanking CTCF sites are higher in linker DNA than in nucleosomal DNA, while other studies have shown that the nucleosome core is the preferred site of methylation. In this study, we make progress toward understanding these conflicting phenomena by implementing a bioinformatics approach that combines MNase-seq and NOMe-seq data and by comprehensively profiling DNA methylation and nucleosome occupancy throughout the human genome. Results The results demonstrated that increasing methylated CpG density is correlated with nucleosome occupancy in the total genome and within nearly all subgenomic regions. Features with elevated methylated CpG density such as exons, SINE-Alu sequences, H3K36-trimethylated peaks, and methylated CpG islands are among the highest nucleosome occupied elements in the genome, while some of the lowest occupancies are displayed by unmethylated CpG islands and unmethylated transcription factor binding sites. Additionally, outside of CpG islands, the density of CpGs within nucleosomes was shown to be important for the nucleosomal location of DNA methylation with low CpG frequencies favoring linker methylation and high CpG frequencies favoring core particle methylation. Prominent exceptions to the correlations between methylated CpG density and nucleosome occupancy include CpG islands marked by H3K27me3 and CpG-poor heterochromatin marked by H3K9me3, and these modifications, along with DNA methylation, distinguish the major silencing mechanisms of the human epigenome. Conclusions Thus, the relationship between DNA methylation and nucleosome occupancy is influenced by the density of methylated CpG dinucleotides and by other epigenomic components in chromatin. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0125-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clayton K Collings
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611 USA
| | - John N Anderson
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907 USA
| |
Collapse
|
8
|
Barger SW. Gene regulation and genetics in neurochemistry, past to future. J Neurochem 2016; 139 Suppl 2:24-57. [PMID: 27747882 DOI: 10.1111/jnc.13629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 03/01/2016] [Accepted: 03/30/2016] [Indexed: 12/14/2022]
Abstract
Ask any neuroscientist to name the most profound discoveries in the field in the past 60 years, and at or near the top of the list will be a phenomenon or technique related to genes and their expression. Indeed, our understanding of genetics and gene regulation has ushered in whole new systems of knowledge and new empirical approaches, many of which could not have even been imagined prior to the molecular biology boon of recent decades. Neurochemistry, in the classic sense, intersects with these concepts in the manifestation of neuropeptides, obviously dependent upon the central dogma (the established rules by which DNA sequence is eventually converted into protein primary structure) not only for their conformation but also for their levels and locales of expression. But, expanding these considerations to non-peptide neurotransmitters illustrates how gene regulatory events impact neurochemistry in a much broader sense, extending beyond the neurochemicals that translate electrical signals into chemical ones in the synapse, to also include every aspect of neural development, structure, function, and pathology. From the beginning, the mutability - yet relative stability - of genes and their expression patterns were recognized as potential substrates for some of the most intriguing phenomena in neurobiology - those instances of plasticity required for learning and memory. Near-heretical speculation was offered in the idea that perhaps the very sequence of the genome was altered to encode memories. A fascinating component of the intervening progress includes evidence that the central dogma is not nearly as rigid and consistent as we once thought. And this mutability extends to the potential to manipulate that code for both experimental and clinical purposes. Astonishing progress has been made in the molecular biology of neurochemistry during the 60 years since this journal debuted. Many of the gains in conceptual understanding have been driven by methodological progress, from automated high-throughput sequencing instruments to recombinant-DNA vectors that can convey color-coded genetic modifications in the chromosomes of live adult animals. This review covers the highlights of these advances, both theoretical and technological, along with a brief window into the promising science ahead. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Steven W Barger
- Department of Geriatrics, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA. .,Geriatric Research Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.
| |
Collapse
|
9
|
Guintivano J, Kaminsky ZA. Role of epigenetic factors in the development of mental illness throughout life. Neurosci Res 2016; 102:56-66. [DOI: 10.1016/j.neures.2014.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 12/15/2022]
|
10
|
Chromatin methylation and cardiovascular aging. J Mol Cell Cardiol 2015; 83:21-31. [DOI: 10.1016/j.yjmcc.2015.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/20/2015] [Accepted: 02/12/2015] [Indexed: 12/26/2022]
|
11
|
Abstract
It has been nearly 40 y since it was suggested that genomic methylation patterns could be transmitted via maintenance methylation during S phase and might play a role in the dynamic regulation of gene expression during development [Holliday R, Pugh JE (1975) Science 187(4173):226-232; Riggs AD (1975) Cytogenet Cell Genet 14(1):9-25]. This revolutionary proposal was justified by "... our almost complete ignorance of the mechanism for the unfolding of the genetic program during development" that prevailed at the time. Many correlations between transcriptional activation and demethylation have since been reported, but causation has not been demonstrated and to date there is no reasonable proof of the existence of a complex biochemical system that activates and represses genes via reversible DNA methylation. Such a system would supplement or replace the conserved web of transcription factors that regulate cellular differentiation in organisms that have unmethylated genomes (such as Caenorhaditis elegans and the Dipteran insects) and those that methylate their genomes. DNA methylation does have essential roles in irreversible promoter silencing, as in the monoallelic expression of imprinted genes, in the silencing of transposons, and in X chromosome inactivation in female mammals. Rather than reinforcing or replacing regulatory pathways that are conserved between organisms that have either methylated or unmethylated genomes, DNA methylation endows genomes with the ability to subject specific sequences to irreversible transcriptional silencing even in the presence of all of the factors required for their expression, an ability that is generally unavailable to organisms that have unmethylated genomes.
Collapse
|
12
|
Medvedeva YA, Khamis AM, Kulakovskiy IV, Ba-Alawi W, Bhuyan MSI, Kawaji H, Lassmann T, Harbers M, Forrest ARR, Bajic VB. Effects of cytosine methylation on transcription factor binding sites. BMC Genomics 2014; 15:119. [PMID: 24669864 PMCID: PMC3986887 DOI: 10.1186/1471-2164-15-119] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/16/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important. RESULTS We found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines "traffic lights". We observed a strong selection against CpG "traffic lights" within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions. CONCLUSIONS Our results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Vladimir B Bajic
- Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
13
|
Estécio MRH, Gallegos J, Dekmezian M, Lu Y, Liang S, Issa JPJ. SINE retrotransposons cause epigenetic reprogramming of adjacent gene promoters. Mol Cancer Res 2012; 10:1332-42. [PMID: 22952045 DOI: 10.1158/1541-7786.mcr-12-0351] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Almost half of the human genome and as much as 40% of the mouse genome is composed of repetitive DNA sequences. The majority of these repeats are retrotransposons of the SINE and LINE families, and such repeats are generally repressed by epigenetic mechanisms. It has been proposed that these elements can act as methylation centers from which DNA methylation spreads into gene promoters in cancer. Contradictory to a methylation center function, we have found that retrotransposons are enriched near promoter CpG islands that stay methylation-free in cancer. Clearly, it is important to determine which influence, if any, these repetitive elements have on nearby gene promoters. Using an in vitro system, we confirm here that SINE B1 elements can influence the activity of downstream gene promoters, with acquisition of DNA methylation and loss of activating histone marks, thus resulting in a repressed state. SINE sequences themselves did not immediately acquire DNA methylation but were marked by H3K9me2 and H3K27me3. Moreover, our bisulfite sequencing data did not support that gain of DNA methylation in gene promoters occurred by methylation spreading from SINE B1 repeats. Genome-wide analysis of SINE repeats distribution showed that their enrichment is directly correlated with the presence of USF1, USF2, and CTCF binding, proteins with insulator function. In summary, our work supports the concept that SINE repeats interfere negatively with gene expression and that their presence near gene promoters is counter-selected, except when the promoter is protected by an insulator element.
Collapse
Affiliation(s)
- Marcos R H Estécio
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Oyer JA, Yates PA, Godsey S, Turker MS. Aberrantly silenced promoters retain a persistent memory of the silenced state after long-term reactivation. Mutat Res 2010; 706:21-7. [PMID: 21035468 DOI: 10.1016/j.mrfmmm.2010.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 10/10/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
Abstract
A hallmark of aberrant DNA methylation-associated silencing is reversibility. However, long-term stability of reactivated promoters has not been explored. To examine this issue, spontaneous reactivant clones were isolated from mouse embryonal carcinoma cells bearing aberrantly silenced Aprt alleles and re-silencing frequencies were determined as long as three months after reactivation occurred. Despite continuous selection for expression of the reactivated Aprt alleles, exceptionally high spontaneous re-silencing frequencies were observed. A DNA methylation analysis demonstrated retention of sporadic methylation of CpG sites in a protected region of the Aprt promoter in many reactivant alleles suggesting a role for these methylated sites in the re-silencing process. In contrast, a chromatin immunoprecipitation (ChIP) analysis for methyl-H3K4, acetyl-H3K9, and dimethyl-H3K9 levels failed to reveal a specific histone modification that could explain high frequency re-silencing. These results demonstrate that aberrantly silenced and reactivated promoters retain a persistent memory of having undergone the silencing process and suggest the failure to eliminate all CpG methylation as a potential contributing mechanism.
Collapse
Affiliation(s)
- Jon A Oyer
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
15
|
Estécio MR, Gallegos J, Vallot C, Castoro RJ, Chung W, Maegawa S, Oki Y, Kondo Y, Jelinek J, Shen L, Hartung H, Aplan PD, Czerniak BA, Liang S, Issa JPJ. Genome architecture marked by retrotransposons modulates predisposition to DNA methylation in cancer. Genome Res 2010; 20:1369-82. [DOI: 10.1101/gr.107318.110] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epigenetic silencing plays an important role in cancer development. An attractive hypothesis is that local DNA features may participate in differential predisposition to gene hypermethylation. We found that, compared with methylation-resistant genes, methylation-prone genes have a lower frequency of SINE and LINE retrotransposons near their transcription start site. In several large testing sets, this distribution was highly predictive of promoter methylation. Genome-wide analysis showed that 22% of human genes were predicted to be methylation-prone in cancer; these tended to be genes that are down-regulated in cancer and that function in developmental processes. Moreover, retrotransposon distribution marks a larger fraction of methylation-prone genes compared to Polycomb group protein (PcG) marking in embryonic stem cells; indeed, PcG marking and our predictive model based on retrotransposon frequency appear to be correlated but also complementary. In summary, our data indicate that retrotransposon elements, which are widespread in our genome, are strongly associated with gene promoter DNA methylation in cancer and may in fact play a role in influencing epigenetic regulation in normal and abnormal physiological states.
Collapse
|
16
|
Abstract
Allele-specific DNA methylation (ASM) and allele-specific gene expression (ASE) have long been studied in genomic imprinting and X chromosome inactivation. But these types of allelic asymmetries, along with allele-specific transcription factor binding (ASTF), have turned out to be far more pervasive-affecting many non-imprinted autosomal genes in normal human tissues. ASM, ASE and ASTF have now been mapped genome-wide by microarray-based methods and NextGen sequencing. Multiple studies agree that all three types of allelic asymmetries, as well as the related phenomena of expression and methylation quantitative trait loci, are mostly accounted for by cis-acting regulatory polymorphisms. The precise mechanisms by which this occurs are not yet understood, but there are some testable hypotheses and already a few direct clues. Future challenges include achieving higher resolution maps to locate the epicenters of cis-regulated ASM, using this information to test mechanistic models, and applying genome-wide maps of ASE/ASM/ASTF to pinpoint functional regulatory polymorphisms influencing disease susceptibility.
Collapse
Affiliation(s)
- Benjamin Tycko
- Institute for Cancer Genetics and Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
17
|
Maternal deprivation-caused behavioral abnormalities in adult rats relate to a non-methylation-regulated D2 receptor levels in the nucleus accumbens. Behav Brain Res 2010; 209:281-8. [DOI: 10.1016/j.bbr.2010.02.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/29/2010] [Accepted: 02/02/2010] [Indexed: 12/31/2022]
|
18
|
Athanasiadou R, de Sousa D, Myant K, Merusi C, Stancheva I, Bird A. Targeting of de novo DNA methylation throughout the Oct-4 gene regulatory region in differentiating embryonic stem cells. PLoS One 2010; 5:e9937. [PMID: 20376339 PMCID: PMC2848578 DOI: 10.1371/journal.pone.0009937] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 03/08/2010] [Indexed: 02/07/2023] Open
Abstract
Differentiation of embryonic stem (ES) cells is accompanied by silencing of the Oct-4 gene and de novo DNA methylation of its regulatory region. Previous studies have focused on the requirements for promoter region methylation. We therefore undertook to analyse the progression of DNA methylation of the ∼2000 base pair regulatory region of Oct-4 in ES cells that are wildtype or deficient for key proteins. We find that de novo methylation is initially seeded at two discrete sites, the proximal enhancer and distal promoter, spreading later to neighboring regions, including the remainder of the promoter. De novo methyltransferases Dnmt3a and Dnmt3b cooperate in the initial targeted stage of de novo methylation. Efficient completion of the pattern requires Dnmt3a and Dnmt1, but not Dnmt3b. Methylation of the Oct-4 promoter depends on the histone H3 lysine 9 methyltransferase G9a, as shown previously, but CpG methylation throughout most of the regulatory region accumulates even in the absence of G9a. Analysis of the Oct-4 regulatory domain as a whole has allowed us to detect targeted de novo methylation and to refine our understanding the roles of key protein components in this process.
Collapse
Affiliation(s)
- Rodoniki Athanasiadou
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Dina de Sousa
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin Myant
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Cara Merusi
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Irina Stancheva
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Hesson LB, Hitchins MP, Ward RL. Epimutations and cancer predisposition: importance and mechanisms. Curr Opin Genet Dev 2010; 20:290-8. [PMID: 20359882 DOI: 10.1016/j.gde.2010.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 01/31/2010] [Accepted: 02/20/2010] [Indexed: 01/24/2023]
Abstract
Germline sequence mutations in tumour suppressor genes can cause cancer predisposition syndromes. More recently, epimutations have also been proposed to cause at least one such syndrome, hereditary non-polyposis colorectal cancer (HNPCC). 'Epigenetic predisposition', is defined as an inherited propensity to an altered epigenetic state in normal tissues that confers a predisposition to disease. Genetic sequence variations acting in cis or trans may contribute to epigenetic variations. Understanding the origin of epimutations will inform cancer risk assessment and will also aid the design and application of new therapies that target the epigenome.
Collapse
Affiliation(s)
- Luke B Hesson
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Kensington, New South Wales, Australia
| | | | | |
Collapse
|
20
|
|
21
|
Kalitsis P, Saffery R. Inherent promoter bidirectionality facilitates maintenance of sequence integrity and transcription of parasitic DNA in mammalian genomes. BMC Genomics 2009; 10:498. [PMID: 19860919 PMCID: PMC2777200 DOI: 10.1186/1471-2164-10-498] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 10/27/2009] [Indexed: 02/12/2023] Open
Abstract
Background Many mammalian genes are arranged in a bidirectional manner, sharing a common promoter and regulatory elements. This is especially true for promoters containing a CpG island, usually unmethylated and associated with an 'open' or accessible chromatin structure. In evolutionary terms, a primary function of genomic methylation is postulated to entail protection of the host genome from the disruption associated with activity of parasitic or transposable elements. These are usually epigenetically silenced following insertion into mammalian genomes, becoming sequence degenerate over time. Despite this, it is clear that many transposable element-derived DNAs have evaded host-mediated epigenetic silencing to remain expressed (domesticated) in mammalian genomes, several of which have demonstrated essential roles during mammalian development. Results The current study provides evidence that many CpG island-associated promoters associated with single genes exhibit inherent bidirectionality, facilitating "hijack" by transposable elements to create novel antisense 'head-to-head' bidirectional gene pairs in the genome that facilitates escape from host-mediated epigenetic silencing. This is often associated with an increase in CpG island length and transcriptional activity in the antisense direction. From a list of over 60 predicted protein-coding genes derived from transposable elements in the human genome and 40 in the mouse, we have found that a significant proportion are orientated in a bidirectional manner with CpG associated regulatory regions. Conclusion These data strongly suggest that the selective force that shields endogenous CpG-containing promoter from epigenetic silencing can extend to exogenous foreign DNA elements inserted in close proximity in the antisense orientation, with resulting transcription and maintenance of sequence integrity of such elements in the host genome. Over time, this may result in "domestication" of such elements to provide novel cellular and developmental functions.
Collapse
Affiliation(s)
- Paul Kalitsis
- Chromosome and Chromatin Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne 3052, Victoria, Australia.
| | | |
Collapse
|
22
|
Seguín-Estévez Q, De Palma R, Krawczyk M, Leimgruber E, Villard J, Picard C, Tagliamacco A, Abbate G, Gorski J, Nocera A, Reith W. The transcription factor RFX protects MHC class II genes against epigenetic silencing by DNA methylation. THE JOURNAL OF IMMUNOLOGY 2009; 183:2545-53. [PMID: 19620312 DOI: 10.4049/jimmunol.0900376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Classical and nonclassical MHC class II (MHCII) genes are coregulated by the transcription factor RFX (regulatory factor X) and the transcriptional coactivator CIITA. RFX coordinates the assembly of a multiprotein "enhanceosome" complex on MHCII promoters. This enhanceosome serves as a docking site for the binding of CIITA. Whereas the role of the enhanceosome in recruiting CIITA is well established, little is known about its CIITA-independent functions. A novel role of the enhanceosome was revealed by the analysis of HLA-DOA expression in human MHCII-negative B cell lines lacking RFX or CIITA. HLA-DOA was found to be reactivated by complementation of CIITA-deficient but not RFX-deficient B cells. Silencing of HLA-DOA was associated with DNA methylation at its promoter, and was relieved by the demethylating agent 5-azacytidine. Surprisingly, DNA methylation was also established at the HLA-DRA and HLA-DQB loci in RFX-deficient cells. This was a direct consequence of the absence of RFX, as it could be reversed by restoring RFX function. DNA methylation at the HLA-DOA, HLA-DRA, and HLA-DQB promoters was observed in RFX-deficient B cells and fibroblasts, but not in CIITA-deficient B cells and fibroblasts, or in wild-type fibroblasts, which lack CIITA expression. These results indicate that RFX and/or enhanceosome assembly plays a key CIITA-independent role in protecting MHCII promoters against DNA methylation. This function is likely to be crucial for retaining MHCII genes in an open chromatin configuration permissive for activation in MHCII-negative cells, such as the precursors of APC and nonprofessional APC before induction with IFN-gamma.
Collapse
|
23
|
Abstract
DNA and histone methylation are linked and subjected to mitotic inheritance in mammals. Yet how methylation is propagated and maintained between successive cell divisions is not fully understood. A series of enzyme families that can add methylation marks to cytosine nucleobases, and lysine and arginine amino acid residues has been discovered. Apart from methyltransferases, there are also histone modification enzymes and accessory proteins, which can facilitate and/or target epigenetic marks. Several lysine and arginine demethylases have been discovered recently, and the presence of an active DNA demethylase is speculated in mammalian cells. A mammalian methyl DNA binding protein MBD2 and de novo DNA methyltransferase DNMT3A and DNMT3B are shown experimentally to possess DNA demethylase activity. Thus, complex mammalian epigenetic mechanisms appear to be dynamic yet reversible along with a well-choreographed set of events that take place during mammalian development.
Collapse
|
24
|
Boumber YA, Kondo Y, Chen X, Shen L, Guo Y, Tellez C, Estécio MRH, Ahmed S, Issa JPJ. An Sp1/Sp3 binding polymorphism confers methylation protection. PLoS Genet 2008; 4:e1000162. [PMID: 18725933 PMCID: PMC2515197 DOI: 10.1371/journal.pgen.1000162] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 07/14/2008] [Indexed: 01/13/2023] Open
Abstract
Hundreds of genes show aberrant DNA hypermethylation in cancer, yet little is known about the causes of this hypermethylation. We identified RIL as a frequent methylation target in cancer. In search for factors that influence RIL hypermethylation, we found a 12-bp polymorphic sequence around its transcription start site that creates a long allele. Pyrosequencing of homozygous tumors revealed a 2.1-fold higher methylation for the short alleles (P<0.001). Bisulfite sequencing of cancers heterozygous for RIL showed that the short alleles are 3.1-fold more methylated than the long (P<0.001). The comparison of expression levels between unmethylated long and short EBV-transformed cell lines showed no difference in expression in vivo. Electrophorectic mobility shift assay showed that the inserted region of the long allele binds Sp1 and Sp3 transcription factors, a binding that is absent in the short allele. Transient transfection of RIL allele-specific transgenes showed no effects of the additional Sp1 site on transcription early on. However, stable transfection of methylation-seeded constructs showed gradually decreasing transcription levels from the short allele with eventual spreading of de novo methylation. In contrast, the long allele showed stable levels of expression over time as measured by luciferase and ∼2–3-fold lower levels of methylation by bisulfite sequencing (P<0.001), suggesting that the polymorphic Sp1 site protects against time-dependent silencing. Our finding demonstrates that, in some genes, hypermethylation in cancer is dictated by protein-DNA interactions at the promoters and provides a novel mechanism by which genetic polymorphisms can influence an epigenetic state. The factors that guide DNA hypermethylation in cancer are poorly understood. We identified the candidate tumor-suppressor gene, RIL, as a frequent methylation target in cancer. Here, we report on a 12-bp polymorphic sequence around its transcription start site that creates a long allele. Methylation analysis showed that, in aging colon, colon cancer, and leukemias, the short allele had 2.1–3.1-fold higher methylation than the long allele (P<0.001). Short and long alleles had similar expression levels in EBV-transformed cell lines. Electrophorectic mobility shift assay showed that the inserted region of the long allele binds Sp1 and Sp3 transcription factors. Transfection of RIL allele-specific transgenes showed no effects of the additional Sp1 site on transcription early on, but methylation-seeded constructs showed gradually decreasing transcription from the short allele with eventual spreading of de novo methylation. By contrast, the long allele showed stable expression over time as measured by luciferase, and ∼2–3-fold lower levels of methylation by bisulfite sequencing (P<0.001), suggesting that the polymorphic Sp1 site protects against time-dependent silencing. Our finding demonstrates that in some genes, hypermethylation in cancer is dictated by protein-DNA interactions at the promoters and provides a novel mechanism by which genetic polymorphisms can influence an epigenetic state.
Collapse
Affiliation(s)
- Yanis A. Boumber
- Department of Leukemia, M. D. Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
- Program in Cancer Biology, Graduate School of Biomedical Sciences, University of Texas, Houston, Texas, United States of America
| | - Yutaka Kondo
- Department of Leukemia, M. D. Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
| | - Xuqi Chen
- Department of Leukemia, M. D. Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
| | - Lanlan Shen
- Department of Leukemia, M. D. Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
| | - Yi Guo
- Department of Leukemia, M. D. Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
| | - Carmen Tellez
- Department of Leukemia, M. D. Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
| | - Marcos R. H. Estécio
- Department of Leukemia, M. D. Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
| | - Saira Ahmed
- Department of Leukemia, M. D. Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
| | - Jean-Pierre J. Issa
- Department of Leukemia, M. D. Anderson Cancer Center, University of Texas, Houston, Texas, United States of America
- Program in Cancer Biology, Graduate School of Biomedical Sciences, University of Texas, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Humar B, Guilford P. Hereditary diffuse gastric cancer and lost cell polarity: a short path to cancer. Future Oncol 2008; 4:229-39. [PMID: 18407736 DOI: 10.2217/14796694.4.2.229] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mechanisms that underlie the initiation of human cancer are poorly understood. Here, we describe the development of hereditary diffuse gastric cancer and argue that it arises from the disruption of the regenerative processes that are inherent to all epithelial tissues. This model supports the cancer stem cell hypothesis, in which tumors contain a subpopulation of cells with the key stem cell characteristics of capacity for self renewal, differentiation and limitless replication. We argue that epigenetic modifications induced by common environmental and physiological pressures are able to initiate this disruption. The carcinogenic effects of these modifications are potentially reversible through the use of epigenetic therapies such as DNA demethylating agents and histone deacetylation inhibitors.
Collapse
Affiliation(s)
- Bostjan Humar
- University of Otago, Cancer Genetics Laboratory, Department of Biochemistry, Dunedin, New Zealand.
| | | |
Collapse
|
26
|
Strathdee D, Whitelaw CBA, Clark AJ. Distal transgene insertion affects CpG island maintenance during differentiation. J Biol Chem 2008; 283:11509-15. [PMID: 18308728 DOI: 10.1074/jbc.m709805200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
About half of all genes have a CpG island surrounding the promoter and transcription start site. Most promoter CpG islands are normally unmethylated in all tissues, irrespective of the expression level of the associated gene. Establishment of the appropriate patterns of DNA methylation in the genome is essential for normal development and patterns of gene expression. Aberrant methylation of CpG islands and silencing of the associated genes is frequently observed in cancer. One gene with a 5'-CpG island is cytoplasmic beta-actin, which is an abundantly expressed protein and a major component of microfilaments. Inserting a betageo cassette into the 3'-untranslated region of beta-actin gene led to widespread but not ubiquitous lacZ expression in mice heterozygous for the modified beta-actin allele. Surprisingly, embryos homozygous for this insertion died at mid-gestation. The modified beta-actin allele was expressed in undifferentiated embryonic stem cells but was turned off as these cells differentiate in vitro and in vivo. We demonstrate that the insertion affects the maintenance of the methylation status of the CpG island of the modified beta-actin allele in differentiated but not in undifferentiated embryonic cells. These data suggest that there is a two-step process to defining a CpG island, requiring both embryonic establishment and a signal that maintains the CpG island in differentiated cells. Furthermore, they indicate that features built into the CpG island are not sufficient to direct CpG island maintenance during differentiation.
Collapse
Affiliation(s)
- Douglas Strathdee
- Division of Gene Function and Development, Roslin Institute, Roslin, Midlothian EH25 9PS, United Kingdom.
| | | | | |
Collapse
|
27
|
Chen ZY, Riu E, He CY, Xu H, Kay MA. Silencing of episomal transgene expression in liver by plasmid bacterial backbone DNA is independent of CpG methylation. Mol Ther 2008; 16:548-56. [PMID: 18253155 DOI: 10.1038/sj.mt.6300399] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Minicircle DNA vectors devoid of plasmid bacterial backbone, (BB) DNAs, are transcriptionally persistent, whereas their parent plasmid counterparts are silenced in the liver. In this study we establish that circular plasmid BB provided in trans did not silence a transgene expression cassette in vivo, further confirming our previous conclusions that the covalent attachment of the plasmid BB to the expression cassette is required for DNA silencing. Given the high concentration of CpG dinucleotides in the plasmid BB, we investigated the role of DNA methylation on transgene silencing in vivo. The presence or absence of methylation in CpG motifs in routine plasmid BBs had no significant effect on transcriptional silencing. Furthermore, the removal of the CpG motifs from the BB did not ameliorate transcriptional silencing. Transgene silencing was partially inhibited when two tandem copies of the chicken cHS4 insulator at each end of a routine plasmid vector were used. These results are consistent with the idea that the transcriptional repression observed with plasmid DNA vectors in the liver is caused by formation of repressive heterochromatin on the plasmid DNA backbone, which then spreads and inactivates the transgene in cis, and that CpG content or methylation has little or no influence in the process.
Collapse
Affiliation(s)
- Zhi-Ying Chen
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
28
|
Fan S, Fang F, Zhang X, Zhang MQ. Putative zinc finger protein binding sites are over-represented in the boundaries of methylation-resistant CpG islands in the human genome. PLoS One 2007; 2:e1184. [PMID: 18030324 PMCID: PMC2065907 DOI: 10.1371/journal.pone.0001184] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Accepted: 10/26/2007] [Indexed: 12/31/2022] Open
Abstract
Background Majority of CpG dinucleotides in mammalian genomes tend to undergo DNA methylation, but most CpG islands are resistant to such epigenetic modification. Understanding about mechanisms that may lead to the methylation resistance of CpG islands is still very poor. Methodology/Principal Findings Using the genome-scale in vivo DNA methylation data from human brain, we investigated the flanking sequence features of methylation-resistant CpG islands, and discovered that there are several over-represented putative Transcription Factor Binding Sites (TFBSs) in methylation-resistant CpG islands, and a specific group of zinc finger protein binding sites are over-represented in boundary regions (∼400 bp) flanking such CpG islands. About 77% of the over-represented putative TFBSs are conserved among human, mouse and rat. We also observed the enrichment of 4 histone methylations in methylation-resistant CpG islands or their boundaries. Conclusions/Significance Our results suggest a possible mechanism that certain putative zinc finger protein binding sites over-represented in the boundary regions of the methylation-resistant CpG islands may block the spreading of methylation into these islands, and those TFBSs over-represented within the islands may both reinforce the methylation blocking and promote transcription. Some histone modifications may also enhance the immunity of the CpG islands against DNA methylation by augmenting these TFs' binding. We speculate that the dynamical equilibrium between methylation spreading and blocking is likely to be responsible for the establishment and maintenance of the relatively stable DNA methylation pattern in human somatic cells.
Collapse
Affiliation(s)
- Shicai Fan
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
29
|
Cheng Q, Cheng C, Crews KR, Ribeiro RC, Pui CH, Relling MV, Evans WE. Epigenetic regulation of human gamma-glutamyl hydrolase activity in acute lymphoblastic leukemia cells. Am J Hum Genet 2006; 79:264-74. [PMID: 16826517 PMCID: PMC1559484 DOI: 10.1086/505645] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 05/02/2006] [Indexed: 12/31/2022] Open
Abstract
Gamma-glutamyl hydrolase (GGH) catalyzes degradation of the active polyglutamates of natural folates and the antifolate methotrexate (MTX). We found that GGH activity is directly related to GGH messenger RNA expression in acute lymphoblastic leukemia (ALL) cells of patients with a wild-type germline GGH genotype. We identified two CpG islands (CpG1 and CpG2) in the region extending from the GGH promoter through the first exon and into intron 1 and showed that methylation of both CpG islands in the GGH promoter (seen in leukemia cells from approximately 15% of patients with nonhyperdiploid B-lineage ALL) is associated with significantly reduced GGH mRNA expression and catalytic activity and with significantly higher accumulation of MTX polyglutamates (MTXPG(4-7)) in ALL cells. Furthermore, methylation of CpG1 was leukemia-cell specific and had a pronounced effect on GGH expression, whereas methylation of CpG2 was common in leukemia cells and normal leukocytes but did not significantly alter GGH expression. These findings indicate that GGH activity in human leukemia cells is regulated by epigenetic changes, in addition to previously recognized genetic polymorphisms and karyotypic abnormalities, which collectively determine interindividual differences in GGH activity and influence MTXPG accumulation in leukemia cells.
Collapse
Affiliation(s)
- Qing Cheng
- Hematological Malignancies Program, Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
de Wolf CJF, Cupers RMJ, Bertina RM, Vos HL. The Constitutive Expression of Anticoagulant Protein S Is Regulated through Multiple Binding Sites for Sp1 and Sp3 Transcription Factors in the Protein S Gene Promoter. J Biol Chem 2006; 281:17635-43. [PMID: 16672217 DOI: 10.1074/jbc.m603094200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein S (PS) is a vitamin K-dependent plasma protein that inhibits blood coagulation by serving as a nonenzymatic cofactor for activated protein C in the protein C anticoagulant pathway. Low PS levels are a risk factor for the development of deep venous thrombosis. The regulation of PS levels through transcriptional regulation of the PS gene was investigated in this report. A minimal PS gene promoter 370 bp upstream from the translational initiation codon was sufficient for maximal promoter activity in transient transfections regardless of the cell type. A pivotal role for Sp1 in the constitutive expression of the PS gene was demonstrated through electrophoretic mobility shift assay experiments, transient expression of mutant PS promoter-reporter gene constructs, and chromatin immunoprecipitations in HepG2 cells. At least four Sp-binding sites were identified. The two sites most proximal to the translational start codon were found to be indispensable for PS promoter activity, whereas mutation of the two most distal Sp-binding sites had a negligible influence on basal promoter activity. In addition, all other major promoter-binding proteins that were found by electrophoretic mobility shift assay could be positively identified in supershift assays. We identified binding sites for the hepatocyte-specific forkhead transcription factor FOXA2, nuclear factor Y, and the cAMP-response element-binding protein/activating transcription factor family of transcription factors. Their relevance was investigated using site-directed mutagenesis.
Collapse
Affiliation(s)
- Cornelia J F de Wolf
- Hemostasis and Thrombosis Research Center, Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | | | | | | |
Collapse
|
31
|
Yamazaki Y, Fujita TC, Low EW, Alarcón VB, Yanagimachi R, Marikawa Y. Gradual DNA demethylation of the Oct4 promoter in cloned mouse embryos. Mol Reprod Dev 2006; 73:180-8. [PMID: 16245355 DOI: 10.1002/mrd.20411] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
During differentiation, somatic cell nuclei acquire unique patterns of epigenetic modifications, such as DNA methylation, which affect the transcriptional activity of specific genes. Upon transfer into oocytes, however, the somatic nucleus undergoes reprogramming of these epigenetic modifications to achieve pluripotency. Oct4 is one of the critical pluripotency regulators, and is expressed in the germ line, including the pluripotent early embryonic cells. Previous studies showed that the upstream regulatory sequences of the Oct4 gene are distinctly methylated in somatic cells, and the DNA methylation of the regulatory sequences suppresses the transcriptional activity. Thus, successful reprogramming of the somatic cell nucleus to gain pluripotency must be accompanied by the demethylation of the Oct4 regulatory sequences. Here, we investigated the methylation pattern of the Oct4 promoter during early development of cloned mouse embryos. We found that the Oct4 promoter was only gradually demethylated during the early cleavage stages and that the ineffective demethylation of the promoter was associated with developmental retardation. We also found that the upstream sequences of the other pluripotency regulators, namely Nanog, Sox2, and Foxd3, were considerably under-methylated in cumulus cells. These results suggest that the Oct4 gene, as compared to the other pluripotency regulators, needs to undergo extensive demethylation during nuclear reprogramming, and that the failure of such demethylation is associated with inefficient development of cloned somatic cell embryos.
Collapse
Affiliation(s)
- Yukiko Yamazaki
- Institute for Biogenesis Research, Department of Anatomy and Reproductive Biology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96822, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
There are three connected molecular mechanisms of epigenetic cellular memory in mammalian cells: DNA methylation, histone modifications, and RNA interference. The first two have now been firmly linked to neoplastic transformation. Hypermethylation of CpG-rich promoters triggers local histone code modifications resulting in a cellular camouflage mechanism that sequesters gene promoters away from transcription factors and results in stable silencing. This normally restricted mechanism is ubiquitously used in cancer to silence hundreds of genes, among which some critically contribute to the neoplastic phenotype. Virtually every pathway important to cancer formation is affected by this process. Methylation profiling of human cancers reveals tissue-specific epigenetic signatures, as well as tumor-specific signatures, reflecting in particular the presence of epigenetic instability in a subset of cancers affected by the CpG island methylator phenotype. Generally, methylation patterns can be traced to a tissue-specific, proliferation-dependent accumulation of aberrant promoter methylation in aging tissues, a process that can be accelerated by chronic inflammation and less well-defined mechanisms including, possibly, diet and genetic predisposition. The epigenetic machinery can also be altered in cancer by specific lesions in epigenetic effector genes, or by aberrant recruitment of these genes by mutant transcription factors and coactivators. Epigenetic patterns are proving clinically useful in human oncology via risk assessment, early detection, and prognostic classification. Pharmacologic manipulation of these patterns-epigenetic therapy-is also poised to change the way we treat cancer in the clinic.
Collapse
|
33
|
Laird PW. [Randomized controlled trial on haiguiyuyang capsule in the treatment of duodenal ulcer]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2005; 14 Spec No 1:R65-76. [PMID: 15809275 DOI: 10.1093/hmg/ddi113] [Citation(s) in RCA: 342] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To assess the efficacy and safety of haiguiyuyang capsule in the treatment of duodenal ulcer (also diagnosed as weiwan pain and hanrecuoza syndrome according to the theory of TCM). METHODS This is a multi-center clinical trial cooperatively conducted from May 2003 to March 2004 in accordance to the principle of informed consent, to the criteria for subject inclusion, exclusion, discontinuation, and to the relevant guidelines for evaluating the therapeutic effects of new TCM drugs. The design of double-blind, double-dummy and randomized controlled trial was adopted. 438 patients were randomized to the Test group (n = 330, treated with haiguiyuyang capsule) and to the Control group (n = 108, treated with ranitidine). The therapeutic course for both groups was 6 weeks. RESULTS Regarding the efficacy in treating duodenal ulcer, in the Test group, the Marked Efficacy Rate was 66.37% and the Total Efficacy Rate was 82.13%; in the Control group, the Marked Efficacy Rate was 68.61% and the Total Efficacy Rate was 93.34%; there was no significant difference between the two groups (P>0.05). Regarding the efficacy in treating the syndrome diagnosed by TCM, in the Test group, the Marked Efficacy Rate was 70.31% and the Total Efficacy Rate was 93.34%; in the control group, the rates were 71.29% and 91.66% respectively; there was no significant difference between the two groups (P>0.05). Besides, regarding the abatement of distention and fullness of stomach after treatment, the haiguiyuyang capsule was better than ranitidine (P<0.05). No adverse side-effect was observed. CONCLUSION The efficacy of haiguiyuyang capsule in treating duodenal ulcer is similar to that of ranitidine. No obvious adverse effect of it was observed in this trial.
Collapse
Affiliation(s)
- Peter W Laird
- Department of Surgery and Biochemistry and Molecular Biology, University of Southern California, 90086-9176, USA
| |
Collapse
|
34
|
Abstract
Gastric cancer is believed to result in part from the accumulation of multiple genetic alterations leading to oncogene overexpression and tumor suppressor loss. Epigenetic alterations as a distinct and crucial mechanism to silence a variety of methylated tissue-specific and imprinted genes, have been extensively studied in gastric carcinoma and play important roles in gastric carcinogenesis. This review will briefly discuss the basic aspects of DNA methylation and CpG island methylation, in particular the epigenetic alterations of certain critical genes implicated in gastric carcinogenesis and its relevance of clinical implications.
Collapse
Affiliation(s)
- In Seon Choi
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | | |
Collapse
|
35
|
Abstract
DNA methylation is the epigenetic modification, which introduces 5mC as fifth base onto DNA. As for the distribution of 5mCs, it is well known that they distribute themselves in a non-random fashion in genomic DNA so that methylation pattern is characterized by the presence of methylated cytosines on the bulk of DNA while the unmethylated ones are mainly located within particular regions termed CpG islands. These regions represent about 1% of genomic DNA and are generally found in the promoter region of housekeeping genes. Their unmethylated state, which is an essential condition for the correct expression of correlated genes, is paradoxical if one considers that these regions are termed CpG islands because they are particularly rich in this dinucleotide, which is the best substrate for enzymes involved in DNA methylation. Anomalous insertion of methyl groups in these regions generally leads to the lack of transcription of correlated genes. An interesting scientific problem is to clarify the mechanism(s) whereby CpG islands, which remain protected from methylation in normal cells, are susceptible to methylation in tumor cells. How the CpG moieties in CpG islands become vulnerable or resistant to the action of DNA methyltransferases and can thus lose or maintain their characteristic pattern of methylation is still an open question. Our aim is to gather some mechanisms regarding this intriguing enigma, which, despite all energy spent, still remains an unresolved puzzle.
Collapse
Affiliation(s)
- Paola Caiafa
- Department of Cellular Biotechnology and Hematology, University of Rome La Sapienza, 00161 Rome, Italy.
| | | |
Collapse
|
36
|
Imamura T, Miyauchi-Senda N, Tanaka S, Shiota K. Identification of genetic and epigenetic similarities of SPHK1/Sphk1 in mammals. J Vet Med Sci 2005; 66:1387-93. [PMID: 15585953 DOI: 10.1292/jvms.66.1387] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In normal tissues, methylation of CpG islands is generally accepted to be limited to the inactive X-chromosome and imprinting clusters. Gene Sphk1 has shown complex organization, indicated by multiple alternative splicing and tissue-dependent DNA methylation within the limited area (T-DMR) of the CpG island in the rat. Comparisons among human, mouse and rat SPHK1/Sphk1 genomic DNA revealed five coding exons and association of a CpG island at the 5' end in common. We also found two novel subtypes, for a total of eight mRNA subtypes generated through selective usage of untranslated first exons. A 38-bp region at the 5'-end of T-DMR is highly conserved. This restricted area is specifically hypomethylated in the brain. Here, we examine the complex genetic/epigenetic features of the SPHK1/Sphk1 CpG island, and suggest that the T-DMR is the core target for tissue-dependent CpG island methylation.
Collapse
Affiliation(s)
- Takuya Imamura
- Laboratory of Cellular Biochemistry, Animal Resource Sciences, Veterinary Medical Sciences, The University of Tokyo, Japan
| | | | | | | |
Collapse
|
37
|
Tagoh H, Schebesta A, Lefevre P, Wilson N, Hume D, Busslinger M, Bonifer C. Epigenetic silencing of the c-fms locus during B-lymphopoiesis occurs in discrete steps and is reversible. EMBO J 2004; 23:4275-85. [PMID: 15483629 PMCID: PMC524389 DOI: 10.1038/sj.emboj.7600421] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 08/30/2004] [Indexed: 01/07/2023] Open
Abstract
The murine c-fms (Csf1r) gene encodes the macrophage colony-stimulating factor receptor, which is essential for macrophage development. It is expressed at a low level in haematopoietic stem cells and is switched off in all non-macrophage cell types. To examine the role of chromatin structure in this process we studied epigenetic silencing of c-fms during B-lymphopoiesis. c-fms chromatin in stem cells and multipotent progenitors is in the active conformation and bound by transcription factors. A similar result was obtained with specified common myeloid and lymphoid progenitor cells. In developing B cells, c-fms chromatin is silenced in distinct steps, whereby first the binding of transcription factors and RNA expression is lost, followed by a loss of nuclease accessibility. Interestingly, regions of de novo DNA methylation in B cells overlap with an intronic antisense transcription unit that is differently regulated during lymphopoiesis. However, even at mature B cell stages, c-fms chromatin is still in a poised conformation and c-fms expression can be re-activated by conditional deletion of the transcription factor Pax5.
Collapse
Affiliation(s)
- Hiromi Tagoh
- Molecular Medicine Unit, St James's University Hospital, University of Leeds, Leeds, UK
| | - Alexandra Schebesta
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Pascal Lefevre
- Molecular Medicine Unit, St James's University Hospital, University of Leeds, Leeds, UK
| | - Nicola Wilson
- Molecular Medicine Unit, St James's University Hospital, University of Leeds, Leeds, UK
| | - David Hume
- Institute for Molecular Bioscience, University of Queensland, Queensland, Australia
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - Constanze Bonifer
- Molecular Medicine Unit, St James's University Hospital, University of Leeds, Leeds, UK
- Molecular Medicine Unit, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK. Tel.: +44 113 206 5676; Fax: +44 113 244 4475; E-mail:
| |
Collapse
|
38
|
Hattori N, Nishino K, Ko YG, Hattori N, Ohgane J, Tanaka S, Shiota K. Epigenetic Control of Mouse Oct-4 Gene Expression in Embryonic Stem Cells and Trophoblast Stem Cells. J Biol Chem 2004; 279:17063-9. [PMID: 14761969 DOI: 10.1074/jbc.m309002200] [Citation(s) in RCA: 317] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first cell differentiation event in mammalian embryogenesis segregates inner cell mass lineage from the trophectoderm at the blastocyst stage. Oct-4, a member of the POU family of transcription factors, is necessary for the pluripotency of the inner cell mass lineage. Embryonic stem (ES) cells, which contribute to all of embryonic lineages, express the Oct-4 gene. Trophoblast stem (TS) cells, which have the ability to differentiate into trophoblast lineage in vitro, never contribute to embryonic proper tissues in chimeras and differentiate only into trophoblastic cells in the placenta. Expression of the Oct-4 gene was undetectable and severely repressed in trophoblastic lineage, including the stem cells. We found that the culture of TS cells with 5-aza-2'-deoxycytidine or trichostatin A caused the activation of the Oct-4 gene. Analysis of the DNA methylation status of mouse Oct-4 gene upstream region revealed that Oct-4 enhancer/promoter region was hypomethylated in ES cells but hypermethylated in TS cells. Furthermore, in vitro methylation suppressed Oct-4 enhancer/promoter activity in reporter assay. In the placenta of Dnmt1(n/n) mutant mice, most of the CpGs in the enhancer/promoter region were unmethylated, and Oct-4 gene expression was aberrantly detected. Chromatin immunoprecipitation assay revealed that Oct-4 enhancer/promoter region was hyperacetylated in ES cells compared with TS cells, thus demonstrating that DNA methylation status is closely linked to the chromatin structure of the Oct-4 gene. Here we propose that the epigenetic mechanism, consisting of DNA methylation and chromatin remodeling, underlies the developmental stage- and cell type-specific mechanism of Oct-4 gene expression.
Collapse
Affiliation(s)
- Naoko Hattori
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Ivanova T, Vinokurova S, Petrenko A, Eshilev E, Solovyova N, Kisseljov F, Kisseljova N. Frequent hypermethylation of 5? flanking region ofTIMP-2 gene in cervical cancer. Int J Cancer 2004; 108:882-6. [PMID: 14712492 DOI: 10.1002/ijc.11652] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tissue inhibitor of metalloproteinase-2 (TIMP-2) is an endogenous inhibitor of matrix metalloproteinases (MMPs). This multifunctional protein regulates activities of MMPs and possesses growth promoting effect in cell culture, anti-tumoral, anti-apoptotic and anti-angiogenic effects in animal model systems in vivo. It has been shown that this gene is downregulated in cervical carcinomas. The mechanism of inhibition of TIMP-2 expression remains obscure. We have examined whether aberrant DNA methylation of the 5'CpG island of the TIMP-2 gene is involved in its inhibition during cervical carcinogenesis. Bisulfite-modified DNA sequencing and MSP assay showed aberrant methylation of TIMP-2 5'-CpG island in 17 of 36 (47%) invasive cervical carcinomas and in 2 of 3 cervical cancer cell lines. TIMP-2 gene was mostly unmethylated in the morphologically normal tissues adjacent to the tumors, whereas methylated alleles of this gene were found in 4 samples. Each tumor and each cell line DNA was characterized by unique methylation pattern, however a discrete region of TIMP-2 CpG island upstream to the transcription start site was densely methylated in all hypermethylated DNA samples examined. The expression of TIMP-2 mRNA can be restored in the cell lines, in which this discrete region of TIMP-2 CpG island is methylated, by treatment with demethylating agents, 5-azacytidine and 5-aza-2'-deoxycytidine. Our data suggest that the aberrant methylation of TIMP-2 favors the development of primary cervical tumors. We describe for the first time the aberrant hypermethylation of TIMP-2 gene in human cancer.
Collapse
Affiliation(s)
- Tatyana Ivanova
- N.N. Blochin Cancer Research Center, Russian Academy of Medical Sciences, Institute of Carcinogenesis, Kashirskoye shosse 24, Moscow 115-478, Russia
| | | | | | | | | | | | | |
Collapse
|
40
|
Yates PA, Burman R, Simpson J, Ponomoreva ON, Thayer MJ, Turker MS. Silencing of mouse Aprt is a gradual process in differentiated cells. Mol Cell Biol 2003; 23:4461-70. [PMID: 12808089 PMCID: PMC164859 DOI: 10.1128/mcb.23.13.4461-4470.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mouse Aprt constructs that are highly susceptible to DNA methylation-associated inactivation in embryonal carcinoma cells were transfected into differentiated cells, where they were expressed. Construct silencing was induced by either whole-cell fusion of the expressing differentiated cells with embryonal carcinoma cells or by treatment of the differentiated cells with the DNA demethylating agent 5-aza-2'-deoxycytidine. Induction of silencing was enhanced significantly by the presence of a methylation center fragment positioned upstream of a truncated promoter comprised of two functional Sp1 binding sites. Initial silencing of the Aprt constructs was unstable, as evidenced by high spontaneous reversion frequencies ( approximately 10(-2)). Stably silenced subclones with spontaneous reversion frequencies of <10(-5) were isolated readily from the unstably silenced clones. These reversion frequencies were enhanced significantly by treatment of the cells with 5-aza-2'-deoxycytidine. A bisulfite sequence analysis demonstrated that CpG methylation initiated within the methylation center region on expressing alleles and that the induction of silencing allowed methylation to spread towards and eventually into the promoter region. Combined with the induction of revertants by 5-aza-2'-deoxycytidine, this result suggested that stabilization of silencing was due to an increased density of CpG methylation. All allelic methylation patterns were variegated, which is consistent with a gradual and evolving process. In total, our results demonstrate that silencing of mouse Aprt is a gradual process in the differentiated cells.
Collapse
Affiliation(s)
- Phillip A Yates
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Sciences University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
41
|
Kang SHL, Kiefer CM, Yang TP. Role of the promoter in maintaining transcriptionally active chromatin structure and DNA methylation patterns in vivo. Mol Cell Biol 2003; 23:4150-61. [PMID: 12773559 PMCID: PMC156144 DOI: 10.1128/mcb.23.12.4150-4161.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Establishment and maintenance of differential chromatin structure between transcriptionally competent and repressed genes are critical aspects of transcriptional regulation. The elements and mechanisms that mediate formation and maintenance of these chromatin states in vivo are not well understood. To examine the role of the promoter in maintaining chromatin structure and DNA methylation patterns of the transcriptionally active X-linked HPRT locus, 323 bp of the endogenous human HPRT promoter (from position -222 to +102 relative to the translation start site) was replaced by plasmid sequences by homologous recombination in cultured HT-1080 male fibrosarcoma cells. The targeted cells, which showed no detectable HPRT transcription, were then assayed for effects on DNase I hypersensitivity, general DNase I sensitivity, and DNA methylation patterns across the HPRT locus. In cells carrying the deletion, significantly diminished DNase I hypersensitivity in the 5' flanking region was observed compared to that in parental HT-1080 cells. However, general DNase I sensitivity and DNA methylation patterns were found to be very similar in the mutated cells and in the parental cells. These findings suggest that the promoter and active transcription play a relatively limited role in maintaining transcriptionally potentiated epigenetic states.
Collapse
Affiliation(s)
- Sung-Hae Lee Kang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | | | |
Collapse
|
42
|
Zardo G, Reale A, De Matteis G, Buontempo S, Caiafa P. A role for poly(ADP-ribosyl)ation in DNA methylation. Biochem Cell Biol 2003; 81:197-208. [PMID: 12897854 DOI: 10.1139/o03-050] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aberrant DNA methylation of promoter regions of housekeeping genes leads to gene silencing. Additional epigenetic events, such as histone methylation and acetylation, also play a very important role in the definitive repression of gene expression by DNA methylation. If the aberrant DNA methylation of promoter regions is the starting or the secondary event leading to the gene silencing is still debated. Mechanisms controlling DNA methylation patterns do exist although they have not been ultimately proven. Our data suggest that poly(ADP-ribosyl)ation might be part of this control mechanism. Thus an additional epigenetic modification seems to be involved in maintaining tissue and cell-type methylation patterns that when formed during embryo development, have to be rigorously conserved in adult organisms.
Collapse
Affiliation(s)
- Giuseppe Zardo
- Department of Cellular Biotechnologies and Hematology, University of Rome La Sapienza, Italy
| | | | | | | | | |
Collapse
|
43
|
Kim SG, Chan AOO, Wu TT, Issa JPJ, Hamilton SR, Rashid A. Epigenetic and genetic alterations in duodenal carcinomas are distinct from biliary and ampullary carcinomas. Gastroenterology 2003; 124:1300-10. [PMID: 12730870 DOI: 10.1016/s0016-5085(03)00278-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Carcinomas of the extrahepatic bile ducts, ampulla of Vater, and duodenum are uncommon, and their epigenetic and genetic alterations are not well characterized. METHODS We therefore compared the methylation profile and genetic alterations in 18 extrahepatic biliary, 9 ampullary, and 12 duodenal carcinomas. We evaluated methylation at p16, p14, and human Mut L homologue (hMLH1) by methylation- specific PCR (MSP), and at cyclooxygenase 2 (COX2), O(6)-methyl-guanine methyltransferase (MGMT), estrogen receptor (ER), retinoic acid receptor beta 2 (RAR beta), and T-type calcium channel (CACNA1G) genes, and methylated in tumor 1 (MINT1), MINT2, MINT25, MINT27, and MINT31 loci by combined bisulfite restriction analysis (COBRA); mutation of K-ras, p53, p16, and p14 genes by sequencing; loss of heterozygosity of chromosome 9p; and microsatellite instability (MSI). RESULTS Duodenal carcinomas were methylated more frequently or had increased methylation densities than biliary carcinomas at p14 (P = 0.04), hMLH1 (P = 0.04), MGMT (P = 0.01), MINT1 (P = 0.01), MINT25 (P = 0.01), MINT27 (P = 0.001), RAR beta (P = 0.03), and ER (P = 0.001), and than ampullary carcinomas at RAR beta (P = 0.02) and ER (P = 0.03). In contrast, the methylation profiles of biliary and ampullary carcinomas were not statistically different. Simultaneous methylation of 3 or more CpG islands (CpG island methylator phenotype-high) was more common in duodenal cancers (P = 0.004). MGMT methylation was associated with G-to-A mutation in K-ras (P = 0.006), and hMLH1 methylation was associated with MSI-high (P = 0.01). CONCLUSIONS Our findings indicate that the methylation profile and genetic alterations of duodenal carcinomas are distinct from biliary and ampullary carcinomas, and that tumor-specific methylation is associated with gene mutation and MSI.
Collapse
Affiliation(s)
- Sang Geol Kim
- Department of Pathology, the University of Texas M. D. Anderson Cancer Center, Houston, 77030, USA
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Kominato Y, Hata Y, Takizawa H, Matsumoto K, Yasui K, Tsukada JI, Yamamoto FI. Alternative promoter identified between a hypermethylated upstream region of repetitive elements and a CpG island in human ABO histo-blood group genes. J Biol Chem 2002; 277:37936-48. [PMID: 12151392 DOI: 10.1074/jbc.m204238200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the expression of human histo-blood group ABO genes during erythroid differentiation, using an ex vivo culture of AC133(-)CD34(+) cells obtained from peripheral blood. 5'-Rapid amplification of cDNA ends analysis of RNA from those cells revealed a novel transcription start site, which appeared to mark an alternative starting exon (1a) comprising 27 bp at the 5'-end of a CpG island in ABO genes. Results from reverse transcription-PCR specific to exon 1a indicated that the cells of both erythroid and epithelial lineages utilize this exon as the transcription starting exon. Transient transfection experiments showed that the region just upstream from the transcription start site possesses promoter activity in a cell type-specific manner when placed 5' adjacent to the reporter luciferase gene. Results from bisulfite genomic sequencing and reverse transcription-PCR analysis indicated that hypermethylation of the distal promoter region correlated with the absence of transcripts containing exon 1a, whereas hypermethylation in the interspersed repeats 5' adjacent to the distal promoter was commonly observed in all of the cell lines examined. These results suggest that a functional alternative promoter is located between the hypermethylated region of repetitive elements and the CpG island in the ABO genes.
Collapse
Affiliation(s)
- Yoshihiko Kominato
- First Department of Internal Medicine, Toyama Medical and Pharmaceutical University, Faculty of Medicine, Toyama 930-0194, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Aberrant gene silencing in mammalian cells is associated with promoter region methylation, but the sequence of these two events is not clear. This review will consider the possibility that gene silencing is not a single event, but instead a series of events that begins with a dramatic drop in transcription potential and ends with its complete cessation. This transition will be portrayed as a chaotic process that ensues when transcription levels drop and DNA methylation begins spreading haltingly towards the diminished promoter. According to this view, silencing is stabilized when the promoter region is 'captured' by the spread of DNA methylation near or into its transcription factor binding sites.
Collapse
Affiliation(s)
- Mitchell S Turker
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon, OR 97201, USA.
| |
Collapse
|
47
|
Kikuchi T, Toyota M, Itoh F, Suzuki H, Obata T, Yamamoto H, Kakiuchi H, Kusano M, Issa JPJ, Tokino T, Imai K. Inactivation of p57KIP2 by regional promoter hypermethylation and histone deacetylation in human tumors. Oncogene 2002; 21:2741-9. [PMID: 11965547 DOI: 10.1038/sj.onc.1205376] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2001] [Revised: 01/29/2002] [Accepted: 01/31/2002] [Indexed: 11/08/2022]
Abstract
To clarify the role of DNA methylation in the silencing of the expression of cyclin-dependent kinase inhibitor p57KIP2 seen in certain tumors, we investigated the methylation status of its 5' CpG island in various tumor cell lines and primary cancers. Dense methylation of the region around the transcription start site was detected in 1 out of 10 colorectal, 2 out of 8 gastric, and 6 out of 14 hematopoietic tumor cell lines and in 5 out of 35 (14%) gastric, 6 out of 20 (30%) hepatocellular, and 2 out of 18 (11%) pancreatic cancers; 7 out of 25 (28%) acute myeloid leukemia cases also showed methylation of the p57KIP2 gene, which strongly correlated with the CpG island methylator phenotype (P<0.001). Detailed mapping revealed that dense methylation of the region around the transcription start site (-300 to +400), but not of the edges of the CpG island, was closely associated with gene silencing. 5-aza-2'-deoxycytidine, a methyltransferase inhibitor, restored expression of p57KIP2, and chromatin immunoprecipitation using anti-histone H3 and H4 antibodies showed histone to be deacetylated in cell lines where p57KIP2 was methylated at the transcription start site. Regional methylation and histone deacetylation thus appear to be crucially involved in the silencing of p57KIP2 expression in human tumors.
Collapse
Affiliation(s)
- Takefumi Kikuchi
- First Department of Internal Medicine, Sapporo Medical University, Sapporo 060-8543, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tomatsu S, Orii KO, Islam MR, Shah GN, Grubb JH, Sukegawa K, Suzuki Y, Orii T, Kondo N, Sly WS. Methylation patterns of the human beta-glucuronidase gene locus: boundaries of methylation and general implications for frequent point mutations at CpG dinucleotides. Genomics 2002; 79:363-75. [PMID: 11863366 DOI: 10.1006/geno.2002.6706] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Methylation of CpG islands spanning promoter regions is associated with control of gene expression, although it is unclear what mechanisms define the boundaries between methylated and unmethylated regions in the genome. Methylation of genomic DNA in mammals also affects the frequency of inherited diseases by predisposing them to CpG mutations. To gain insight into these issues, we investigated patterns of cytosine methylation on almost the entire beta-glucuronidase gene (GUSB) from normal leukocyte DNAs by bisulfite genomic sequencing. We mapped the boundaries of methylation that flank the 5'- and 3'-ends of the CpG island region, and correlated methylation status with transitional mutations at CpG sites. GenBank sequence analyses showed that the CpG island of human GUSB is juxtaposed with multiple Alu repeats and also includes multiple Sp1 sites upstream and downstream of the transcription start, which has been suggested to prevent CpG islands from becoming methylated. We show that cytosine methylation is extensive across the entire gene except for CpG sites in the proximal promoter region, exon 1, and part of intron 1; the unmethylated CpG island is embedded between densely methylated flanking regions containing multiple Alu repeats; a sharp boundary separates the methylated and unmethylated regions of the 5'-flank of the CpG island, but a gradual change in methylation density over 1.0 kb is observed in the 3'-flank of the CpG island; boundaries of the 5'-end and 3'-end of the CpG island contain multiple Sp1 sites in addition to Alu repeats; methylation in both strands is symmetrical except at the boundary regions between methylated and unmethylated regions; and nonmethylation of exon 1 correlates with the absence of transitional mutations at CpG sites in exon 1.
Collapse
Affiliation(s)
- Shunji Tomatsu
- E. A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1402 S. Grand Blvd., St. Louis, Missouri, 63104, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Stimson KM, Vertino PM. Methylation-mediated silencing of TMS1/ASC is accompanied by histone hypoacetylation and CpG island-localized changes in chromatin architecture. J Biol Chem 2002; 277:4951-8. [PMID: 11733524 DOI: 10.1074/jbc.m109809200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aberrant methylation of CpG-dense islands in the promoter regions of genes is an acquired epigenetic alteration associated with the silencing of tumor suppressor genes in human cancers. In a screen for endogenous targets of methylation-mediated gene silencing, we identified a novel CpG island-associated gene, TMS1, which is aberrantly methylated and silenced in response to the ectopic expression of DNA methyltransferase-1. TMS1 functions in the regulation of apoptosis and is frequently methylated and silenced in human breast cancers. In this study, we characterized the methylation pattern and chromatin architecture of the TMS1 locus in normal fibroblasts and determined the changes associated with its progressive methylation. In normal fibroblasts expressing TMS1, the CpG island is defined by an unmethylated domain that is separated from densely methylated flanking DNA by distinct 5' and 3' boundaries. Analysis of the nucleoprotein architecture of the locus in intact nuclei revealed three DNase I-hypersensitive sites that map within the CpG island. Strikingly, two of these sites coincided with the 5'- and 3'-methylation boundaries. Methylation of the TMS1 CpG island was accompanied by loss of hypersensitive site formation, hypoacetylation of histones H3 and H4, and gene silencing. This altered chromatin structure was confined to the CpG island and occurred without significant changes in methylation, histone acetylation, or hypersensitive site formation at a fourth DNase I-hypersensitive site 2 kb downstream of the TMS1 CpG island. The data indicate that there are sites of protein binding and/or structural transitions that define the boundaries of the unmethylated CpG island in normal cells and that aberrant methylation overcomes these boundaries to direct a local change in chromatin structure, resulting in gene silencing.
Collapse
Affiliation(s)
- Krista M Stimson
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
50
|
Chan AOO, Issa JPJ, Morris JS, Hamilton SR, Rashid A. Concordant CpG island methylation in hyperplastic polyposis. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:529-36. [PMID: 11839573 PMCID: PMC1850645 DOI: 10.1016/s0002-9440(10)64872-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The CpG island methylator phenotype (CIMP) is a newly described mechanism for carcinogenesis in colorectal carcinomas and adenomas characterized by methylation of multiple CpG islands. The causes of CIMP are unknown. We studied CIMP in hyperplastic polyps (HPs), with emphasis on patients with multiple HPs (5 to 10 HPs), large HPs (one HP >1 cm) or hyperplastic polyposis (>20 HPs). Methylation of p16, MINT1, MINT2, MINT31, and hMLH1 was analyzed by methylation-specific polymerase chain reaction in 102 HPs, 8 serrated adenomas, 19 tubular adenomas, and 9 adenocarcinomas from 17 patients, with multiple/large HPs or hyperplastic polyposis and in 16 sporadic HPs from 14 additional patients. Sporadic HPs were CIMP-negative (not methylated at any locus), but 43% of HPs from multiple/large HPs, or hyperplastic polyposis were CIMP-high (two or more methylated loci, P = 0.00001). Methylation among the four loci was correlated within HPs (odds ratio, 3.41; P = 0.002), and the methylation status of HPs within the same patient was also correlated (odds ratio, 5.92; P = 0.0001). CIMP-high HPs were present primarily in patients with a predominance of HPs in the right colon and/or serrated adenomas (P = 0.0009) and were associated with the absence of K-ras proto-oncogene mutations (odds ratio, 5.08; P = 0.03). Our findings of concordant CpG island methylation of HPs in multiple/large HPs or hyperplastic polyposis supports the concept that some patients have a hypermethylator phenotype characterized by methylation of multiple HPs and other colorectal lesions. The hypermethylator phenotype is related to patient-specific factors, such as carcinogenic exposure or genetic predisposition.
Collapse
Affiliation(s)
- Annie On-On Chan
- Department of Pathology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4095, USA
| | | | | | | | | |
Collapse
|