1
|
Li CMC, Cordes A, Oliphant MUJ, Quinn SA, Thomas M, Selfors LM, Silvestri F, Girnius N, Rinaldi G, Zoeller JJ, Shapiro H, Tsiobikas C, Gupta KP, Pathania S, Regev A, Kadoch C, Muthuswamy SK, Brugge JS. Brca1 haploinsufficiency promotes early tumor onset and epigenetic alterations in a mouse model of hereditary breast cancer. Nat Genet 2024; 56:2763-2775. [PMID: 39528827 DOI: 10.1038/s41588-024-01958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Germline BRCA1 mutation carriers face a high breast cancer risk; however, the underlying mechanisms for this risk are not completely understood. Using a new genetically engineered mouse model of germline Brca1 heterozygosity, we demonstrate that early tumor onset in a Brca1 heterozygous background cannot be fully explained by the conventional 'two-hit' hypothesis, suggesting the existence of inherent tumor-promoting alterations in the Brca1 heterozygous state. Single-cell RNA sequencing and assay for transposase-accessible chromatin with sequencing analyses uncover a unique set of differentially accessible chromatin regions in ostensibly normal Brca1 heterozygous mammary epithelial cells, distinct from wild-type cells and partially mimicking the chromatin and RNA-level changes in tumor cells. Transcription factor analyses identify loss of ELF5 and gain of AP-1 sites in these epigenetically primed regions; in vivo experiments further implicate AP-1 and Wnt10a as strong promoters of Brca1-related breast cancer. These findings reveal a previously unappreciated epigenetic effect of Brca1 haploinsufficiency in accelerating tumorigenesis, advancing our mechanistic understanding and informing potential therapeutic strategies.
Collapse
Affiliation(s)
| | - Alyssa Cordes
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - S Aidan Quinn
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mayura Thomas
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Jason J Zoeller
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hana Shapiro
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Kushali P Gupta
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Shailja Pathania
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Senthil K Muthuswamy
- Cancer Research Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Wang H, Li B, Zuo L, Wang B, Yan Y, Tian K, Zhou R, Wang C, Chen X, Jiang Y, Zheng H, Qin F, Zhang B, Yu Y, Liu CP, Xu Y, Gao J, Qi Z, Deng W, Ji X. The transcriptional coactivator RUVBL2 regulates Pol II clustering with diverse transcription factors. Nat Commun 2022; 13:5703. [PMID: 36171202 PMCID: PMC9519968 DOI: 10.1038/s41467-022-33433-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
RNA polymerase II (Pol II) apparatuses are compartmentalized into transcriptional clusters. Whether protein factors control these clusters remains unknown. In this study, we find that the ATPase-associated with diverse cellular activities (AAA + ) ATPase RUVBL2 co-occupies promoters with Pol II and various transcription factors. RUVBL2 interacts with unphosphorylated Pol II in chromatin to promote RPB1 carboxy-terminal domain (CTD) clustering and transcription initiation. Rapid depletion of RUVBL2 leads to a decrease in the number of Pol II clusters and inhibits nascent RNA synthesis, and tethering RUVBL2 to an active promoter enhances Pol II clustering at the promoter. We also identify target genes that are directly linked to the RUVBL2-Pol II axis. Many of these genes are hallmarks of cancers and encode proteins with diverse cellular functions. Our results demonstrate an emerging activity for RUVBL2 in regulating Pol II cluster formation in the nucleus.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, 610500, China
| | - Boyuan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Linyu Zuo
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Bo Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences (CLS), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yan Yan
- Institute for TCM-X; MOE Key Laboratory of Bioinformatics; Bioinformatics Division, BNRist (Beijing National Research Center for Information Science and Technology); Department of Automation, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Kai Tian
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Rong Zhou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Chenlu Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yongpeng Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Haonan Zheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Fangfei Qin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Bin Zhang
- Departments of Pathology and Laboratory Medicine, and Pediatrics, University of Rochester Medical Center, 601 Elmwood Ave, Box 608, Rochester, NY, 14642, USA
| | - Yang Yu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao-Pei Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Juntao Gao
- Institute for TCM-X; MOE Key Laboratory of Bioinformatics; Bioinformatics Division, BNRist (Beijing National Research Center for Information Science and Technology); Department of Automation, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Zhi Qi
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Wulan Deng
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences (CLS), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Nepomuceno TC, Dos Santos APP, Fernandes VC, Elias ABR, Gomes TT, Suarez-Kurtz G, Iversen ES, Couch FJ, Monteiro ANA, Carvalho MA. Assessment of small in-frame indels and C-terminal nonsense variants of BRCA1 using a validated functional assay. Sci Rep 2022; 12:16203. [PMID: 36171434 PMCID: PMC9519549 DOI: 10.1038/s41598-022-20500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
BRCA1 (Breast Cancer 1, early onset) is linked to breast and ovarian cancer predisposition. Still, the risks conferred by a significant portion of BRCA1 variants identified in the population remains unknown. Most of these variants of uncertain significance are missense alterations. However, the functional implications of small in-frame deletions and/or insertions (indels) are also difficult to predict. Our group has previously evaluated the functional impact of 347 missense variants using an extensively validated transcriptional activity assay. Here we show a systematic assessment of 30 naturally occurring in-frame indels located at the C-terminal region of BRCA1. We identified positions sensitive and tolerant to alterations, expanding the knowledge of structural determinants of BRCA1 function. We further designed and assessed the impact of four single codon deletions in the tBRCT linker region and six nonsense variants at the C-terminus end of BRCA1. Amino acid substitutions, deletions or insertions in the disordered region do not significantly impact activity and are not likely to constitute pathogenic alleles. On the other hand, a sizeable fraction of in-frame indels at the BRCT domain significantly impact function. We then use a Bayesian integrative statistical model to derive the probability of pathogenicity for each variant. Our data highlights the importance of assessing the impact of small in-frame indels in BRCA1 to improve risk assessment and clinical decisions for carriers.
Collapse
Affiliation(s)
- Thales C Nepomuceno
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil.,Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Ana P P Dos Santos
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Vanessa C Fernandes
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Anna B R Elias
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Thiago T Gomes
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Guilherme Suarez-Kurtz
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, NC, 27708, USA
| | | | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| | - Marcelo A Carvalho
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil. .,Laboratório de Genética Molecular, Instituto Federal Do Rio de Janeiro, Rua Senador Furtado, Campus Rio de Janeiro121, Rio de Janeiro, RJ, 20270-021, Brazil.
| |
Collapse
|
4
|
Gañez-Zapater A, Mackowiak SD, Guo Y, Tarbier M, Jordán-Pla A, Friedländer MR, Visa N, Östlund Farrants AK. The SWI/SNF subunit BRG1 affects alternative splicing by changing RNA binding factor interactions with nascent RNA. Mol Genet Genomics 2022; 297:463-484. [PMID: 35187582 PMCID: PMC8960663 DOI: 10.1007/s00438-022-01863-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/23/2022] [Indexed: 11/29/2022]
Abstract
BRG1 and BRM are ATPase core subunits of the human SWI/SNF chromatin remodelling complexes mainly associated with transcriptional initiation. They also have a role in alternative splicing, which has been shown for BRM-containing SWI/SNF complexes at a few genes. Here, we have identified a subset of genes which harbour alternative exons that are affected by SWI/SNF ATPases by expressing the ATPases BRG1 and BRM in C33A cells, a BRG1- and BRM-deficient cell line, and analysed the effect on splicing by RNA sequencing. BRG1- and BRM-affected sub-sets of genes favouring both exon inclusion and exon skipping, with only a minor overlap between the ATPase. Some of the changes in alternative splicing induced by BRG1 and BRM expression did not require the ATPase activity. The BRG1-ATPase independent included exons displayed an exon signature of a high GC content. By investigating three genes with exons affected by the BRG-ATPase-deficient variant, we show that these exons accumulated phosphorylated RNA pol II CTD, both serine 2 and serine 5 phosphorylation, without an enrichment of the RNA polymerase II. The ATPases were recruited to the alternative exons, together with both core and signature subunits of SWI/SNF complexes, and promoted the binding of RNA binding factors to chromatin and RNA at the alternative exons. The interaction with the nascent RNP, however, did not reflect the association to chromatin. The hnRNPL, hnRNPU and SAM68 proteins associated with chromatin in cells expressing BRG1 and BRM wild type, but the binding of hnRNPU to the nascent RNP was excluded. This suggests that SWI/SNF can regulate alternative splicing by interacting with splicing-RNA binding factor and influence their binding to the nascent pre-mRNA particle.
Collapse
Affiliation(s)
- Antoni Gañez-Zapater
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, The Arrhenius Laboratories F4, 106 91, Stockholm, Sweden
- Center for Genomic Regulation, 08003, Barcelona, Spain
| | - Sebastian D Mackowiak
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Yuan Guo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, The Arrhenius Laboratories F4, 106 91, Stockholm, Sweden
| | - Marcel Tarbier
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Antonio Jordán-Pla
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, The Arrhenius Laboratories F4, 106 91, Stockholm, Sweden
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencies Biológicas, Valencia University, C/Dr. Moliner, 50, 46100, Burjassot, Spain
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Neus Visa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, The Arrhenius Laboratories F4, 106 91, Stockholm, Sweden
| | - Ann-Kristin Östlund Farrants
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, The Arrhenius Laboratories F4, 106 91, Stockholm, Sweden.
| |
Collapse
|
5
|
Basuroy T, de la Serna IL. SETD7 in cardiomyocyte differentiation and cardiac function. Stem Cell Investig 2019; 6:29. [PMID: 31620476 DOI: 10.21037/sci.2019.08.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/30/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Tupa Basuroy
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - Ivana L de la Serna
- University of Toledo College of Medicine and Life Sciences, Department of Cancer Biology, Toledo, OH, USA
| |
Collapse
|
6
|
Fufa TD, Byun JS, Wakano C, Fernandez AG, Pise-Masison CA, Gardner K. The Tax oncogene enhances ELL incorporation into p300 and P-TEFb containing protein complexes to activate transcription. Biochem Biophys Res Commun 2015; 465:5-11. [PMID: 26188510 DOI: 10.1016/j.bbrc.2015.07.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/14/2015] [Indexed: 10/23/2022]
Abstract
The eleven-nineteen lysine-rich leukemia protein (ELL) is a key regulator of RNA polymerase II mediated transcription. ELL facilitates RNA polymerase II transcription pause site entry and release by dynamically interacting with p300 and the positive transcription elongation factor b (P-TEFb). In this study, we investigated the role of ELL during the HTLV-1 Tax oncogene induced transactivation. We show that ectopic expression of Tax enhances ELL incorporation into p300 and P-TEFb containing transcriptional complexes and the subsequent recruitment of these complexes to target genes in vivo. Depletion of ELL abrogates Tax induced transactivation of the immediate early genes Fos, Egr2 and NF-kB, suggesting that ELL is an essential cellular cofactor of the Tax oncogene. Thus, our study identifies a novel mechanism of ELL-dependent transactivation of immediate early genes by Tax and provides the rational for further defining the genome-wide targets of Tax and ELL.
Collapse
Affiliation(s)
| | - Jung S Byun
- National Cancer Institute, Bethesda, MD 20892, USA
| | - Clay Wakano
- National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
7
|
Turinetto V, Giachino C. Multiple facets of histone variant H2AX: a DNA double-strand-break marker with several biological functions. Nucleic Acids Res 2015; 43:2489-98. [PMID: 25712102 PMCID: PMC4357700 DOI: 10.1093/nar/gkv061] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the last decade, many papers highlighted that the histone variant H2AX and its phosphorylation on Ser 139 (γH2AX) cannot be simply considered a specific DNA double-strand-break (DSB) marker with a role restricted to the DNA damage response, but rather as a ‘protagonist’ in different scenarios. This review will present and discuss an up-to-date view regarding the ‘non-canonical’ H2AX roles, focusing in particular on possible functional and structural parts in contexts different from the canonical DNA DSB response. We will present aspects concerning sex chromosome inactivation in male germ cells, X inactivation in female somatic cells and mitosis, but will also focus on the more recent studies regarding embryonic and neural stem cell development, asymmetric sister chromosome segregation in stem cells and cellular senescence maintenance. We will discuss whether in these new contexts there might be a relation with the canonical DNA DSB signalling function that could justify γH2AX formation. The authors will emphasize that, just as H2AX phosphorylation signals chromatin alteration and serves the canonical function of recruiting DSB repair factors, so the modification of H2AX in contexts other than the DNA damage response may contribute towards creating a specific chromatin structure frame allowing ‘non-canonical’ functions to be carried out in different cell types.
Collapse
Affiliation(s)
- Valentina Turinetto
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
| |
Collapse
|
8
|
Kasper LH, Qu C, Obenauer JC, McGoldrick DJ, Brindle PK. Genome-wide and single-cell analyses reveal a context dependent relationship between CBP recruitment and gene expression. Nucleic Acids Res 2014; 42:11363-82. [PMID: 25249627 PMCID: PMC4191404 DOI: 10.1093/nar/gku827] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 12/31/2022] Open
Abstract
Genome-wide distribution of histone H3K18 and H3K27 acetyltransferases, CBP (CREBBP) and p300 (EP300), is used to map enhancers and promoters, but whether these elements functionally require CBP/p300 remains largely uncertain. Here we compared global CBP recruitment with gene expression in wild-type and CBP/p300 double-knockout (dKO) fibroblasts. ChIP-seq using CBP-null cells as a control revealed nearby CBP recruitment for 20% of constitutively-expressed genes, but surprisingly, three-quarters of these genes were unaffected or slightly activated in dKO cells. Computationally defined enhancer-promoter-units (EPUs) having a CBP peak near the enhancer-like element were more predictive, with CBP/p300 deletion attenuating expression of 40% of such constitutively-expressed genes. Examining signal-responsive (Hypoxia Inducible Factor) genes showed that 97% were within 50 kilobases of an inducible CBP peak, and 70% of these required CBP/p300 for full induction. Unexpectedly, most inducible CBP peaks occurred near signal-nonresponsive genes. Finally, single-cell expression analysis revealed additional context dependence where some signal-responsive genes were not uniformly dependent on CBP/p300 in individual cells. While CBP/p300 was needed for full induction of some genes in single-cells, for other genes CBP/p300 increased the probability of maximal expression. Thus, target gene context influences the transcriptional requirement for CBP/p300, possibly by multiple mechanisms.
Collapse
Affiliation(s)
- Lawryn H Kasper
- Department of Biochemistry, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Chunxu Qu
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - John C Obenauer
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Daniel J McGoldrick
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Paul K Brindle
- Department of Biochemistry, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
9
|
Nuclear distribution of RNA polymerase II and mRNA processing machinery in early mammalian embryos. BIOMED RESEARCH INTERNATIONAL 2014; 2014:681596. [PMID: 24868542 PMCID: PMC4020508 DOI: 10.1155/2014/681596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/11/2014] [Indexed: 11/17/2022]
Abstract
Spatial distribution of components of nuclear metabolism provides a significant impact on regulation of the processes of gene expression. While distribution of the key nuclear antigens and their association with the defined nuclear domains were thoroughly traced in mammalian somatic cells, similar data for the preimplantation embryos are scanty and fragmental. However, the period of cleavage is characterized by the most drastic and dynamic nuclear reorganizations accompanying zygotic gene activation. In this minireview, we try to summarize the results of studies concerning distribution of major factors involved in RNA polymerase II-dependent transcription, pre-mRNA splicing mRNA export that have been carried out on early embryos of mammals.
Collapse
|
10
|
Abstract
Precursor mRNA splicing is one of the most highly regulated processes in metazoan species. In addition to generating vast repertoires of RNAs and proteins, splicing has a profound impact on other gene regulatory layers, including mRNA transcription, turnover, transport, and translation. Conversely, factors regulating chromatin and transcription complexes impact the splicing process. This extensive crosstalk between gene regulatory layers takes advantage of dynamic spatial, physical, and temporal organizational properties of the cell nucleus, and further emphasizes the importance of developing a multidimensional understanding of splicing control.
Collapse
|
11
|
RNAP-II molecules participate in the anchoring of the ORC to rDNA replication origins. PLoS One 2013; 8:e53405. [PMID: 23308214 PMCID: PMC3537633 DOI: 10.1371/journal.pone.0053405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 11/29/2012] [Indexed: 12/29/2022] Open
Abstract
The replication of genomic DNA is limited to a single round per cell cycle. The first component, which recognises and remains bound to origins from recognition until activation and replication elongation, is the origin recognition complex. How origin recognition complex (ORC) proteins remain associated with chromatin throughout the cell cycle is not yet completely understood. Several genome-wide studies have undoubtedly demonstrated that RNA polymerase II (RNAP-II) binding sites overlap with replication origins and with the binding sites of the replication components. RNAP-II is no longer merely associated with transcription elongation. Several reports have demonstrated that RNAP-II molecules affect chromatin structure, transcription, mRNA processing, recombination and DNA repair, among others. Most of these activities have been reported to directly depend on the interaction of proteins with the C-terminal domain (CTD) of RNAP-II. Two-dimensional gels results and ChIP analysis presented herein suggest that stalled RNAP-II molecules bound to the rDNA chromatin participate in the anchoring of ORC proteins to origins during the G1 and S-phases. The results show that in the absence of RNAP-II, Orc1p, Orc2p and Cdc6p do not bind to origins. Moreover, co-immunoprecipitation experiments suggest that Ser2P-CTD and hypophosphorylated RNAP-II interact with Orc1p. In the context of rDNA, cryptic transcription by RNAP-II did not negatively interfere with DNA replication. However, the results indicate that RNAP-II is not necessary to maintain the binding of ORCs to the origins during metaphase. These findings highlight for the first time the potential importance of stalled RNAP-II in the regulation of DNA replication.
Collapse
|
12
|
Josling GA, Selvarajah SA, Petter M, Duffy MF. The role of bromodomain proteins in regulating gene expression. Genes (Basel) 2012; 3:320-43. [PMID: 24704920 PMCID: PMC3899951 DOI: 10.3390/genes3020320] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/11/2012] [Accepted: 05/17/2012] [Indexed: 11/25/2022] Open
Abstract
Histone modifications are important in regulating gene expression in eukaryotes. Of the numerous histone modifications which have been identified, acetylation is one of the best characterised and is generally associated with active genes. Histone acetylation can directly affect chromatin structure by neutralising charges on the histone tail, and can also function as a binding site for proteins which can directly or indirectly regulate transcription. Bromodomains specifically bind to acetylated lysine residues on histone tails, and bromodomain proteins play an important role in anchoring the complexes of which they are a part to acetylated chromatin. Bromodomain proteins are involved in a diverse range of functions, such as acetylating histones, remodeling chromatin, and recruiting other factors necessary for transcription. These proteins thus play a critical role in the regulation of transcription.
Collapse
Affiliation(s)
- Gabrielle A Josling
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia.
| | - Shamista A Selvarajah
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia.
| | - Michaela Petter
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia.
| | - Michael F Duffy
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia.
| |
Collapse
|
13
|
Wang QT. Epigenetic regulation of cardiac development and function by polycomb group and trithorax group proteins. Dev Dyn 2012; 241:1021-33. [PMID: 22514007 DOI: 10.1002/dvdy.23796] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2012] [Indexed: 12/29/2022] Open
Abstract
Heart disease is a leading cause of death and disability in developed countries. Heart disease includes a broad range of diseases that affect the development and/or function of the cardiovascular system. Some of these diseases, such as congenital heart defects, are present at birth. Others develop over time and may be influenced by both genetic and environmental factors. Many of the known heart diseases are associated with abnormal expression of genes. Understanding the factors and mechanisms that regulate gene expression in the heart is essential for the detection, treatment, and prevention of heart diseases. Polycomb Group (PcG) and Trithorax Group (TrxG) proteins are special families of chromatin factors that regulate developmental gene expression in many tissues and organs. Accumulating evidence suggests that these proteins are important regulators of development and function of the heart as well. A better understanding of their roles and functional mechanisms will translate into new opportunities for combating heart disease.
Collapse
Affiliation(s)
- Q Tian Wang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA.
| |
Collapse
|
14
|
Li XH, Fang DN, Zeng CM. Knockdown of MED19 by short hairpin RNA-mediated gene silencing inhibits pancreatic cancer cell proliferation. Cancer Biother Radiopharm 2012; 26:495-501. [PMID: 21834715 DOI: 10.1089/cbr.2010.0863] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abnormal gene transcription plays an important role in oncogenesis. In cancer cells, the improper activation of specific genes is usually ascribed to aberrant transcription machinery including transcription factors, RNA polymerase II, and Mediator complex. This study reports on short hairpin RNA (shRNA)-mediated gene silencing of MED19, a subunit of Mediator complex, and its effect on the growth of pancreatic cancer cells. RNA interference was performed by lentivirus shRNA system to specifically knockdown MED19 expression in Aspc-1 and Panc-1 cells. The knockdown efficiency of MED19 was confirmed by quantitative RT-PCR and western blot. The effect of MED19 shRNA on Aspc-1 and Panc-1 cell proliferation was evaluated by methylthiazoletetrazolium assay, BrdU incorporation assay, colony formation assay, and flow cytometry assay. This study shows that downregulation of MED19 remarkably reduced cancer cell proliferation and colony formation capacity in two pancreatic cancer cell lines. In addition, downregulated MED19 induced G1-phase cell cycle arrest and apoptosis. This study provides a potent role of MED19 in promoting pancreatic cancer growth and a possible drug target for cancer therapy.
Collapse
Affiliation(s)
- Xing-Hua Li
- Department of Digestion Medicine, Shanghai Eighth People's Hospital, No. 8 Caobao Road, Shanghai, China.
| | | | | |
Collapse
|
15
|
Vizlin-Hodzic D, Runnberg R, Ryme J, Simonsson S, Simonsson T. SAF-A forms a complex with BRG1 and both components are required for RNA polymerase II mediated transcription. PLoS One 2011; 6:e28049. [PMID: 22162999 PMCID: PMC3232189 DOI: 10.1371/journal.pone.0028049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/31/2011] [Indexed: 11/18/2022] Open
Abstract
Background Scaffold attachment factor A (SAF-A) participates in the regulation of gene expression by organizing chromatin into transcriptionally active domains and by interacting directly with RNA polymerase II. Methodology Here we use co-localization, co-immunoprecipitation (co-IP) and in situ proximity ligation assay (PLA) to identify Brahma Related Gene 1 (BRG1), the ATP-driven motor of the human SWI-SNF chromatin remodeling complex, as another SAF-A interaction partner in mouse embryonic stem (mES) cells. We also employ RNA interference to investigate functional aspects of the SAF-A/BRG1 interaction. Principal Findings We find that endogenous SAF-A protein interacts with endogenous BRG1 protein in mES cells, and that the interaction does not solely depend on the presence of mRNA. Moreover the interaction remains intact when cells are induced to differentiate. Functional analyses reveal that dual depletion of SAF-A and BRG1 abolishes global transcription by RNA polymerase II, while the nucleolar RNA polymerase I transcription machinery remains unaffected. Conclusions We demonstrate that SAF-A interacts with BRG1 and that both components are required for RNA Polymerase II Mediated Transcription.
Collapse
Affiliation(s)
- Dzeneta Vizlin-Hodzic
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Rikard Runnberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jessica Ryme
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Stina Simonsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- * E-mail: (ST); (TS)
| | - Tomas Simonsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- * E-mail: (ST); (TS)
| |
Collapse
|
16
|
Gorski JJ, Savage KI, Mulligan JM, McDade SS, Blayney JK, Ge Z, Harkin DP. Profiling of the BRCA1 transcriptome through microarray and ChIP-chip analysis. Nucleic Acids Res 2011; 39:9536-48. [PMID: 21880590 PMCID: PMC3239190 DOI: 10.1093/nar/gkr679] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 11/16/2022] Open
Abstract
A role for BRCA1 in the direct and indirect regulation of transcription is well established. However, a comprehensive view of the degree to which BRCA1 impacts transcriptional regulation on a genome-wide level has not been defined. We performed genome-wide expression profiling and ChIP-chip analysis, comparison of which revealed that although BRCA1 depletion results in transcriptional changes in 1294 genes, only 44 of these are promoter bound by BRCA1. However, 27% of these transcripts were linked to transcriptional regulation possibly explaining the large number of indirect transcriptional changes observed by microarray analysis. We show that no specific consensus sequence exists for BRCA1 DNA binding but rather demonstrate the presence of a number of known and novel transcription factor (TF)- binding sites commonly found on BRCA1 bound promoters. Co-immunoprecipitations confirmed that BRCA1 interacts with a number of these TFs including AP2-α, PAX2 and ZF5. Finally, we show that BRCA1 is bound to a subset of promoters of genes that are not altered by BRCA1 loss, but are transcriptionally regulated in a BRCA1-dependent manner upon DNA damage. These data suggest a model, whereby BRCA1 is present on defined promoters as part of an inactive complex poised to respond to various genotoxic stimuli.
Collapse
Affiliation(s)
- Julia J Gorski
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL and ALMAC Diagnostics, Craigavon BT63 5QD, UK.
| | | | | | | | | | | | | |
Collapse
|
17
|
Cohen I, Poręba E, Kamieniarz K, Schneider R. Histone modifiers in cancer: friends or foes? Genes Cancer 2011; 2:631-47. [PMID: 21941619 DOI: 10.1177/1947601911417176] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Covalent modifications of histones can regulate all DNA-dependent processes. In the last few years, it has become more and more evident that histone modifications are key players in the regulation of chromatin states and dynamics as well as in gene expression. Therefore, histone modifications and the enzymatic machineries that set them are crucial regulators that can control cellular proliferation, differentiation, plasticity, and malignancy processes. This review discusses the biology and biochemistry of covalent histone posttranslational modifications (PTMs) and evaluates the dual role of their modifiers in cancer: as oncogenes that can initiate and amplify tumorigenesis or as tumor suppressors.
Collapse
Affiliation(s)
- Idan Cohen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | | | | |
Collapse
|
18
|
Dynamic acetylation of all lysine-4 trimethylated histone H3 is evolutionarily conserved and mediated by p300/CBP. Proc Natl Acad Sci U S A 2011; 108:7814-9. [PMID: 21518915 DOI: 10.1073/pnas.1100099108] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone modifications are reported to show different behaviors, associations, and functions in different genomic niches and organisms. We show here that rapid, continuous turnover of acetylation specifically targeted to all K4-trimethylated H3 tails (H3K4me3), but not to bulk histone H3 or H3 carrying other methylated lysines, is a common uniform characteristic of chromatin biology in higher eukaryotes, being precisely conserved in human, mouse, and Drosophila. Furthermore, dynamic acetylation targeted to H3K4me3 is mediated by the same lysine acetyltransferase, p300/cAMP response element binding (CREB)-binding protein (CBP), in both mouse and fly cells. RNA interference or chemical inhibition of p300/CBP using a newly discovered small molecule inhibitor, C646, blocks dynamic acetylation of H3K4me3 globally in mouse and fly cells, and locally across the promoter and start-site of inducible genes in the mouse, thereby disrupting RNA polymerase II association and the activation of these genes. Thus, rapid dynamic acetylation of all H3K4me3 mediated by p300/CBP is a general, evolutionarily conserved phenomenon playing an essential role in the induction of immediate-early (IE) genes. These studies indicate a more global function of p300/CBP in mediating rapid turnover of acetylation of all H3K4me3 across the nuclei of higher eukaryotes, rather than a tight promoter-restricted function targeted by complex formation with specific transcription factors.
Collapse
|
19
|
Human AP endonuclease (APE1/Ref-1) and its acetylation regulate YB-1-p300 recruitment and RNA polymerase II loading in the drug-induced activation of multidrug resistance gene MDR1. Oncogene 2010; 30:482-93. [PMID: 20856196 PMCID: PMC3010319 DOI: 10.1038/onc.2010.435] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Overexpression of human AP-endonuclease (APE1/Ref-1), a key enzyme in the DNA base excision repair (BER) pathway, is often associated with tumor cell resistance to various anticancer drugs. In this study, we examined the molecular basis of transcriptional regulatory (non repair) function of APE1 in promoting resistance to certain types of drugs. We have recently shown that APE1 stably interacts with Y-box-binding protein 1 (YB-1), and acts as its coactivator for the expression of multidrug resistance gene MDR1, thereby causing drug-resistance. Here we show for the first time that APE1 is stably associated with the basic transcription factor RNA polymerase II (RNA pol II) and the coactivator p300 on the endogenous MDR1 promoter. APE1’s depletion significantly reduces YB-1/p300 recruitment to the promoter, resulting in reduced RNA pol II loading. Drug-induced APE1 acetylation which is mediated by p300 enhances formation of acetylated APE1 (AcAPE1)/YB-1/p300 complex on the MDR1 promoter. Enhanced recruitment of this complex increases MDR1 promoter dependent luciferase activity and its endogenous expression. Using APE1 downregulated cells and cells overexpressing wild type APE1 or its nonacetylable mutant we have demonstrated that the loss of APE1’s acetylation impaired MDR1 activation and sensitizes the cells to cisplatin or etoposide. We have thus established the basis for APE1’s acetylation-dependent regulatory function in inducing MDR1-mediated drug resistance.
Collapse
|
20
|
Zhou G, Liu Y, Wu SY, Tie F, Lou H, Chiang CM, Luo G. Purification of a novel RECQL5-SWI/SNF-RNAPII super complex. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 1:101-111. [PMID: 21968968 PMCID: PMC3180044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 07/08/2010] [Indexed: 05/31/2023]
Abstract
RecQ helicases are members of an evolutionary conserved family of DNA helicases. They are homologous to the RecQ helicase of E. coli, the founding member of the family. These enzymes include gene products of disease-causing genes in Bloom, Werner, and Rothmund-Thomson syndrome. To date, these proteins have been implicated in many aspects of DNA metabolism, including DNA replication, repair, and recombination. We reported here that RECQL5, a newer member of the human RecQ helicase family, physically interacts with SWI/SNF complex and RNAPII core complex within the context of a super complex. RECQL5 was detected in the RNAPII holoenzyme but not in purified RNAPII core complex. Together, these data link RECQL5 to the assembly of the RNAPII transcription machinery and suggest that this helicase may have a regulatory role in RNAPII transcription or an RNAPII-related process or processes.
Collapse
Affiliation(s)
- Guangjin Zhou
- Department of Genetics, Case Reserve UniversityCleveland, OH 44106USA
- Case Comprehensive Cancer Centre, University Hospitals of ClevelandCleveland, OH 44106USA
| | - Yifei Liu
- Department of Genetics, Case Reserve UniversityCleveland, OH 44106USA
- Case Comprehensive Cancer Centre, University Hospitals of ClevelandCleveland, OH 44106USA
- School of Life SciencesSun Yat-sen UniversityGuangzhouChina
| | - Shwu-Yuan Wu
- Simmons Comprehensive Cancer Center, Department of Biochemistry, and Department of Pharmacology, University of Texas Southwestern Medical Center5323 Harry Hines Boulevard, Dallas, Texas 75390USA
| | - Feng Tie
- Department of Genetics, Case Reserve UniversityCleveland, OH 44106USA
- Case Comprehensive Cancer Centre, University Hospitals of ClevelandCleveland, OH 44106USA
| | - Hua Lou
- Department of Genetics, Case Reserve UniversityCleveland, OH 44106USA
- Case Comprehensive Cancer Centre, University Hospitals of ClevelandCleveland, OH 44106USA
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, Department of Biochemistry, and Department of Pharmacology, University of Texas Southwestern Medical Center5323 Harry Hines Boulevard, Dallas, Texas 75390USA
| | - Guangbin Luo
- Department of Genetics, Case Reserve UniversityCleveland, OH 44106USA
- Case Comprehensive Cancer Centre, University Hospitals of ClevelandCleveland, OH 44106USA
| |
Collapse
|
21
|
Chen YL, Monteith N, Law PY, Loh HH. Dynamic association of p300 with the promoter of the G protein-coupled rat delta opioid receptor gene during NGF-induced neuronal differentiation. Biochem Biophys Res Commun 2010; 396:294-8. [DOI: 10.1016/j.bbrc.2010.04.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 04/10/2010] [Indexed: 12/15/2022]
|
22
|
Abstract
BRCA1, the breast cancer- and ovarian cancer-specific tumor suppressor, can be a transcriptional repressor or a transcriptional activator, depending on the promoter context. To identify the genes activated or repressed by BRCA1, we have analyzed microarray results from cells depleted of BRCA1 and revealed a number of genes regulated by BRCA1 on the level of transcription. Among the genes repressed by BRCA1, we have identified amphiregulin (AREG) and early growth response-1 (EGR1). Results indicate that BRCA1 regulates AREG transcription directly through binding to the AREG promoter, however, we could not detect BRCA1 on the EGR1 promoter, suggesting that EGR1 is indirectly regulated by BRCA1. In an attempt to identify the mechanism of the AREG transcriptional repression by BRCA1, we have mapped two independent BRCA1 response elements on the AREG located at positions -202/-182 and +19/+122. BRCA1 depletion leads to induction of the AREG protein. Taken together, our data build the connection between BRCA1 loss of function and AREG upregulation-a change in gene expression often observed in breast cancer.
Collapse
Affiliation(s)
- Ekaterina P Lamber
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
23
|
Cao Y, Vo T, Millien G, Tagne JB, Kotton D, Mason RJ, Williams MC, Ramirez MI. Epigenetic mechanisms modulate thyroid transcription factor 1-mediated transcription of the surfactant protein B gene. J Biol Chem 2009; 285:2152-64. [PMID: 19906647 DOI: 10.1074/jbc.m109.039172] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Epigenetic regulation of transcription plays an important role in cell-specific gene expression by altering chromatin structure and access of transcriptional regulators to DNA binding sites. Surfactant protein B (Sftpb) is a developmentally regulated lung epithelial gene critical for lung function. Thyroid transcription factor 1 (Nkx2-1) regulates Sftpb gene expression in various species. We show that Nkx2-1 binds to the mouse Sftpb (mSftpb) promoter in the lung. In a mouse lung epithelial cell line (MLE-15), Nkx2-1 knockdown reduces Sftpb expression, and mutation of Nkx2-1 cis-elements significantly reduces mSftpb promoter activity. Whether chromatin structure modulates Nkx2-1 regulation of Sftpb transcription is unknown. We found that DNA methylation of the mSftpb promoter inversely correlates with known patterns of Sftpb expression in vivo. The mSftpb promoter activity can be manipulated by altering its cytosine methylation status in vitro. Nkx2-1 activation of the mSftpb promoter is impaired by DNA methylation. The unmethylated Sftpb promoter shows an active chromatin structure enriched in the histone modification H3K4me3 (histone 3-lysine 4 trimethylated). The ATP-dependent chromatin remodeling protein Brg1 is recruited to the Sftpb promoter in Sftpb-expressing, but not in non-expressing tissues and cell lines. Brg1 knockdown in MLE-15 cells greatly decreases H3K4me3 levels at the Sftpb promoter region and expression of the Sftpb gene. Brg1 can be co-immunoprecipitated with Nkx2-1 protein. Last, Nkx2-1 and Brg1 with intact ATPase activity are required for mSftpb promoter activation in vitro. Our findings suggest that DNA methylation and chromatin modifications cooperate with Nkx2-1 to regulate Sftpb gene cell specific expression.
Collapse
Affiliation(s)
- Yuxia Cao
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
The transcriptional activity of Pygopus is enhanced by its interaction with cAMP-response-element-binding protein (CREB)-binding protein. Biochem J 2009; 422:493-501. [PMID: 19555349 DOI: 10.1042/bj20090134] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pygopus is a core component of the beta-catenin/TCF (T-cell factor) transcriptional activation complex required for the expression of canonical Wnt target genes. Recent evidence suggests that Pygopus could interpret histone methylation associated with target genes and it was shown to be required for histone acetylation. The involvement of a specific acetyltransferase, however, was not determined. In this report, we demonstrate that Pygopus can interact with the HAT (histone acetyltransferase) CBP [CREB (cAMP-responsive-element-binding protein)-binding protein]. The interaction is via the NHD (N-terminal homology domain) of Pygopus, which binds to two regions in the vicinity of the HAT domain of CBP. Transfected and endogenous hPygo2 (human Pygopus2) and CBP proteins co-immunoprecipitate in HEK-293 (human embryonic kidney 293) cells and both proteins co-localize in SW480 colorectal cancer cells. The interaction with CBP also enhances both DNA-tethered and TCF/LEF1 (lymphoid enhancing factor 1)-dependent transcriptional activity of Pygopus. Furthermore, immunoprecipitated Pygopus protein complexes displayed CBP-dependent histone acetyltransferase activity. Our data support a model in which the NHD region of Pygopus is required to augment TCF/beta-catenin-mediated transcriptional activation by a mechanism that includes both transcriptional activation and histone acetylation resulting from the recruitment of the CBP histone acetyltransferase.
Collapse
|
25
|
Gautier VW, Gu L, O'Donoghue N, Pennington S, Sheehy N, Hall WW. In vitro nuclear interactome of the HIV-1 Tat protein. Retrovirology 2009; 6:47. [PMID: 19454010 PMCID: PMC2702331 DOI: 10.1186/1742-4690-6-47] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 05/19/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One facet of the complexity underlying the biology of HIV-1 resides not only in its limited number of viral proteins, but in the extensive repertoire of cellular proteins they interact with and their higher-order assembly. HIV-1 encodes the regulatory protein Tat (86-101aa), which is essential for HIV-1 replication and primarily orchestrates HIV-1 provirus transcriptional regulation. Previous studies have demonstrated that Tat function is highly dependent on specific interactions with a range of cellular proteins. However they can only partially account for the intricate molecular mechanisms underlying the dynamics of proviral gene expression. To obtain a comprehensive nuclear interaction map of Tat in T-cells, we have designed a proteomic strategy based on affinity chromatography coupled with mass spectrometry. RESULTS Our approach resulted in the identification of a total of 183 candidates as Tat nuclear partners, 90% of which have not been previously characterised. Subsequently we applied in silico analysis, to validate and characterise our dataset which revealed that the Tat nuclear interactome exhibits unique signature(s). First, motif composition analysis highlighted that our dataset is enriched for domains mediating protein, RNA and DNA interactions, and helicase and ATPase activities. Secondly, functional classification and network reconstruction clearly depicted Tat as a polyvalent protein adaptor and positioned Tat at the nexus of a densely interconnected interaction network involved in a range of biological processes which included gene expression regulation, RNA biogenesis, chromatin structure, chromosome organisation, DNA replication and nuclear architecture. CONCLUSION We have completed the in vitro Tat nuclear interactome and have highlighted its modular network properties and particularly those involved in the coordination of gene expression by Tat. Ultimately, the highly specialised set of molecular interactions identified will provide a framework to further advance our understanding of the mechanisms of HIV-1 proviral gene silencing and activation.
Collapse
Affiliation(s)
- Virginie W Gautier
- UCD-Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| | | | | | | | | | | |
Collapse
|
26
|
Wu SC, Zhang Y. Minireview: role of protein methylation and demethylation in nuclear hormone signaling. Mol Endocrinol 2009; 23:1323-34. [PMID: 19407220 DOI: 10.1210/me.2009-0131] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nuclear hormone receptors (NRs) are transcription factors responsible for mediating the biological effects of hormones during development, metabolism, and homeostasis. Induction of NR target genes is accomplished through the assembly of hormone-bound NR complexes at target promoters and coincides with changes in histone modifications that promote transcription. Some coactivators and corepressors of NR can enhance or inhibit NR function by covalently modifying histones. One such modification is methylation, which plays important roles in transcriptional regulation. Histone methylation is catalyzed by histone methyltransferases and reversed by histone demethylases. Recent studies have uncovered the importance of these enzymes in the regulation of NR target genes. In addition to histones, these enzymes have nonhistone substrates and can methylate and demethylate NRs and coregulatory proteins in order to modulate their function. This review discusses recent progress in our understanding of the role of methylation and demethylation of histones, NRs, and their coregulators in NR-mediated transcription.
Collapse
Affiliation(s)
- Susan C Wu
- Howard Hughes Medical Institute, Department of Biochemistry, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | |
Collapse
|
27
|
Clark J, Simon DK. Transcribe to survive: transcriptional control of antioxidant defense programs for neuroprotection in Parkinson's disease. Antioxid Redox Signal 2009; 11:509-28. [PMID: 18717631 DOI: 10.1089/ars.2008.2241] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive, primarily motor disorder that is characterized by loss of dopaminergic (DA) neurons within the substantia nigra (SN). Cell death in PD has been associated with impaired mitochondrial function and increased oxidative stress. Strategies to reduce the oxidative load in DA cells may be beneficial in slowing the progression of PD. The transcription factor nuclear factor-erythroid 2 (NF-E2) related factor 2 (NRF2) is emerging as a master regulator of antioxidant defense systems, which makes it an attractive target for manipulations that aim to increase cellular resistance to oxidative stress. Peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1 alpha (PGC1alpha) is a regulator of mitochondrial biogenesis genes that simultaneously upregulates many genes known to protect against oxidative stress. Pgc-1alpha knockout mice show enhanced susceptibility to SN neuronal loss following MPTP exposure, whilst overexpression of Pgc-1alpha appears to protect against oxidative stress in vitro. This makes PGC-1alpha a highly attractive target for neuroprotective therapies in PD. This review will explore the mechanisms behind the induction of NRF2 and PGC-1alpha in response to oxidative stress and identify common pathways that may provide targets for upregulating antioxidant defense programs.
Collapse
Affiliation(s)
- Joanne Clark
- Beth Israel Deaconess Medical Center, Department of Neurology, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
28
|
Reguart N, Cardona AF, Carrasco E, Gomez P, Taron M, Rosell R. BRCA1: A New Genomic Marker for Non–Small-Cell Lung Cancer. Clin Lung Cancer 2008; 9:331-9. [PMID: 19073515 DOI: 10.3816/clc.2008.n.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Noemí Reguart
- Medical Oncology Service, Catalan Institute of Oncology, ICO, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Hou T, Ray S, Lee C, Brasier AR. The STAT3 NH2-terminal domain stabilizes enhanceosome assembly by interacting with the p300 bromodomain. J Biol Chem 2008; 283:30725-34. [PMID: 18782771 DOI: 10.1074/jbc.m805941200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a latent transcription factor mainly activated by the interleukin-6 cytokine family. Previous studies have shown that activated STAT3 recruits p300, a coactivator whose intrinsic histone acetyltransferase activity is essential for transcription. Here we investigated the function of the STAT3 NH(2)-terminal domain and how its interaction with p300 regulates STAT3 signal transduction. In STAT3(-/-) mouse embryonic fibroblasts, a stably expressed NH(2) terminus-deficient STAT3 mutant (STAT3-DeltaN) was unable to efficiently induce either STAT3-mediated reporter activity or endogenous mRNA expression. Chromatin immunoprecipitation assays were performed to determine whether the NH(2)-terminal domain regulates p300 recruitment or stabilizes enhanceosome assembly. Despite equivalent levels of STAT3 binding, cells expressing the STAT3-DeltaN mutant were unable to recruit p300 and RNA polymerase II to the native socs3 promoter as efficiently as those expressing STAT3-full length. We previously reported that the STAT3 NH(2)-terminal domain is acetylated by p300 at Lys-49 and Lys-87. By introducing K49R/K87R mutations, here we found that the acetylation status of the STAT3 NH(2)-terminal domain regulates its interaction with p300. In addition, the STAT3 NH(2)-terminal binding site maps to the p300 bromodomain, a region spanning from amino acids 995 to 1255. Finally a p300 mutant lacking the bromodomain (p300-DeltaB) exhibited a weaker binding to STAT3, and the enhanceosome formation on the socs3 promoter was inhibited when p300-DeltaB was overexpressed. Taken together, our data suggest that the STAT3 NH(2)-terminal domain plays an important role in the interleukin-6 signaling pathway by interacting with the p300 bromodomain, thereby stabilizing enhanceosome assembly.
Collapse
Affiliation(s)
- Tieying Hou
- Department of Biochemistry, University of Texas Medical Branch, Galveston, Texas 77555-1060, USA
| | | | | | | |
Collapse
|
30
|
Proteomics of RNA polymerase II holoenzymes during P19 cardiomyogenesis. Open Life Sci 2007. [DOI: 10.2478/s11535-007-0040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractThe embryonal carcinoma P19 model has allowed the elucidation of a role for several transcription factors in cell differentiation. Here, the regulation of the RNA polymerase II machinery has been explored through its association with multifunctional complexes involved in transcription. An interaction proteomics analysis of TFIIS-purified RNA polymerase II (RNAPII) holoenzymes during cardiomyogenesis is described. Modifications of protein complexes that may be associated with transcriptionally active and activator responsive RNAPII holoenzymes were detected in a serum and DMSO dependent manner. Subunits of the PAF1 and Mediator complexes were correlated with holoenzymes from non-differentiated and terminally differentiated P19 cultures respectively. Moreover, high levels of nucleolin were identified in all forms of holoenzymes by two-dimensional gel electrophoresis, and suggest that nucleolin could bind to RNAPII and TFIIS. Several proteins that were identified in the RNAPII holoenzymes are known to have functions in mRNA processing and may bind to nucleolin. A novel function for nucleolin is proposed as a possible pivotal platform between transcription, mRNA processing and export.
Collapse
|
31
|
Aiyar SE, Cho H, Lee J, Li R. Concerted transcriptional regulation by BRCA1 and COBRA1 in breast cancer cells. Int J Biol Sci 2007; 3:486-92. [PMID: 18071589 PMCID: PMC2096739 DOI: 10.7150/ijbs.3.486] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 11/22/2007] [Indexed: 12/17/2022] Open
Abstract
Cofactor of BRCA1 (COBRA1) was first identified as a protein that binds to the breast cancer susceptibility gene product BRCA1. COBRA1 modulates estrogen-dependent and independent transcription and suppresses the growth of breast cancer cells. Its expression is significantly reduced in metastatic and recurrent breast cancer, pointing to a tumor suppressor function in breast cancer development. In light of these initial implications of COBRA1 in human breast cancer, the current investigation sought to obtain more direct functional evidence that links COBRA1 with BRCA1 in transcriptional regulation in breast cancer cells. Small hairpin RNA (shRNA)-mediated gene knockdown and gene expression microarray were used to study the impact of COBRA1 and BRCA1 on global transcription in the same breast cancer cell background. The gene expression profiling study in tissue culture cells uncovers a significant overlap of COBRA1- and BRCA1-regulated genes, many of which have been previously implicated in breast cancer progression. The data shown herein support the notion that COBRA1 and BRCA1 may engage in common gene regulatory pathways to suppress breast cancer progression.
Collapse
Affiliation(s)
- Sarah E Aiyar
- 1. Department of Biochemistry, Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
32
|
Crish JF, Eckert RL. Synergistic activation of human involucrin gene expression by Fra-1 and p300--evidence for the presence of a multiprotein complex. J Invest Dermatol 2007; 128:530-41. [PMID: 17882273 PMCID: PMC2668529 DOI: 10.1038/sj.jid.5701049] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Involucrin is expressed in the differentiated suprabasal epidermal layers, and an AP1 transcription factor-binding site present in the involucrin promoter distal regulatory region is required for this regulation. This site binds Fra-1, but cofactor interaction at this site has not been adequately characterized. We show that Fra-1 and p300 histone acetyltransferase are present at the AP1 site, as detected by chromatin immunoprecipitation. This interaction is functional, as treating p300 expressing keratinocytes with calcium or 12-O-tetradeconylphorbol-13-acetate, results in a synergistic increase in hINV expression, and this enhanced activation can be reproduced by coexpression of Fra-1 and p300. p300 also co-precipitates with Fra-1, but protein fractionation studies suggest that this interaction requires an additional protein. Fra-1 also interacts with other proteins that interact at the AP1-5 site, including JunD, JunB, Sp1, and P/CAF. Contrary to results in some other systems, Fra-1 functions as a positive transcriptional regulator in human keratinocytes. These studies suggest that a large multiprotein complex, which includes Fra-1, p300, P/CAF, junD, junB, and Sp1 acts at the AP1-5 site to produce a synergistic increase in hINV gene expression.
Collapse
Affiliation(s)
- James F. Crish
- Department of Physiology and Biophysics, Case School of Medicine, Cleveland, Ohio, USA
| | - Richard L. Eckert
- Department of Physiology and Biophysics, Case School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case School of Medicine, Cleveland, Ohio, USA
- Department of Reproductive Biology, Case School of Medicine, Cleveland, Ohio, USA
- Department of Dermatology, Case School of Medicine, Cleveland, Ohio, USA
- Department of Oncology, Case School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
33
|
D'Alessio AC, Weaver ICG, Szyf M. Acetylation-induced transcription is required for active DNA demethylation in methylation-silenced genes. Mol Cell Biol 2007; 27:7462-74. [PMID: 17709385 PMCID: PMC2169050 DOI: 10.1128/mcb.01120-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A hallmark of vertebrate genes is that actively transcribed genes are hypomethylated in critical regulatory sequences. However, the mechanisms that link gene transcription and DNA hypomethylation are unclear. Using a trichostatin A (TSA)-induced replication-independent demethylation assay with HEK 293 cells, we show that RNA transcription is required for DNA demethylation. Histone acetylation precedes but is not sufficient to trigger DNA demethylation. Following histone acetylation, RNA polymerase II (RNAP II) interacts with the methylated promoter. Inhibition of RNAP II transcription with actinomycin D, alpha-amanitin, or CDK7-specific small interfering RNA inhibits DNA demethylation. H3 trimethyl lysine 4 methylation, a marker of actively transcribed genes, was associated with the cytomegalovirus promoter only after demethylation. TSA-induced demethylation of the endogenous cancer testis gene GAGE follows a similar sequence of events and is dependent on RNA transcription as well. These data suggest that DNA demethylation follows rather than precedes early transcription and point towards a novel function for DNA demethylation as a memory of actively transcribed genes.
Collapse
Affiliation(s)
- Ana C D'Alessio
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
34
|
Balakrishnan L, Milavetz B. Histone hyperacetylation during SV40 transcription is regulated by p300 and RNA polymerase II translocation. J Mol Biol 2007; 371:1022-37. [PMID: 17658552 PMCID: PMC1987373 DOI: 10.1016/j.jmb.2007.06.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 06/17/2007] [Accepted: 06/25/2007] [Indexed: 01/03/2023]
Abstract
The effects of the RNA polymerase II (RNAPII) translocation inhibitors alpha amanitin and 5,6-dichloro-1-beta-D-ribobenzimidazole (DRB) and an siRNA targeting p300 on the presence of RNAPII, p300, hyperacetylated H4 and H3 and unmodified H4 and H3 in transcribing simian virus 40 (SV40) minichromosomes were determined. Following treatment with alpha amanitin we observed a profound reduction in the occupancy of the promoter by RNAPII, the loss of p300 from chromatin fragments containing RNAPII, and an increase in the amount of unmodified H4 and H3 associated with the RNAPII. Treatment with DRB had little effect on the presence of RNAPII or p300 but also resulted in a significant increase in the amount of unmodified H4 and H3 present in chromatin fragments associated with RNAPII. Following treatment with a p300 small interfering RNA (siRNA), we observed a significant decrease in late transcription and a corresponding reduction in the amounts of p300 and hyperacetylated histones associated with the transcribing SV40 minichromosomes. We conclude that in transcribing SV40 minichromosomes histone hyperacetylation and deacetylation is dependent upon the presence of p300 and an as yet unknown histone deacetylase associated with the RNAPII complex that occurs coordinately as the RNAPII complex moves through a nucleosome.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, ND 58203, USA
| | | |
Collapse
|
35
|
BRCA1 in initiation, invasion, and metastasis of breast cancer: a perspective from the tumor microenvironment. METASTASIS OF BREAST CANCER 2007. [DOI: 10.1007/978-1-4020-5867-7_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Rytkönen AK, Hillukkala T, Vaara M, Sokka M, Jokela M, Sormunen R, Nasheuer HP, Nethanel T, Kaufmann G, Pospiech H, Syväoja JE. DNA polymerase ε associates with the elongating form of RNA polymerase II and nascent transcripts. FEBS J 2006; 273:5535-49. [PMID: 17212775 DOI: 10.1111/j.1742-4658.2006.05544.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DNA polymerase epsilon co-operates with polymerases alpha and delta in the replicative DNA synthesis of eukaryotic cells. We describe here a specific physical interaction between DNA polymerase epsilon and RNA polymerase II, evidenced by reciprocal immunoprecipitation experiments. The interacting RNA polymerase II was the hyperphosphorylated IIO form implicated in transcriptional elongation, as inferred from (a) its reduced electrophoretic mobility that was lost upon phosphatase treatment, (b) correlation of the interaction with phosphorylation of Ser5 of the C-terminal domain heptapeptide repeat, and (c) the ability of C-terminal domain kinase inhibitors to abolish it. Polymerase epsilon was also shown to UV crosslink specifically alpha-amanitin-sensitive transcripts, unlike DNA polymerase alpha that crosslinked only to RNA-primed nascent DNA. Immunofluorescence microscopy revealed partial colocalization of RNA polymerase IIO and DNA polymerase epsilon, and immunoelectron microscopy revealed RNA polymerase IIO and DNA polymerase epsilon in defined nuclear clusters at various cell cycle stages. The RNA polymerase IIO-DNA polymerase epsilon complex did not relocalize to specific sites of DNA damage after focal UV damage. Their interaction was also independent of active DNA synthesis or defined cell cycle stage.
Collapse
Affiliation(s)
- Anna K Rytkönen
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Inherited germline mutations in either BRCA1 or BRCA2 confer a significant lifetime risk of developing breast or ovarian cancer. Defining how these two genes function at the cellular level is essential for understanding their role in tumour suppression. Although BRCA1 and BRCA2 were independently cloned over 10 years ago, it is only in the last few years that significant progress has been made towards understanding their function in cells. It is now widely accepted that both genes play critical roles in the maintenance of genome stability. Evidence implicates BRCA2 as an integral component of the homologous recombination machinery, whereas BRCA1 is an E3 ubiquitin ligase that has an impact on DNA repair, transcriptional regulation, cell-cycle progression and meiotic sex chromosome inactivation. In this article, I will review the most recent advances and provide a perspective of potential future directions in this field.
Collapse
Affiliation(s)
- S J Boulton
- DNA Damage Response Laboratory, Cancer Research UK, The London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK.
| |
Collapse
|
38
|
Carvalho MA, Couch FJ, Monteiro ANA. Functional assays for BRCA1 and BRCA2. Int J Biochem Cell Biol 2006; 39:298-310. [PMID: 16978908 PMCID: PMC1862449 DOI: 10.1016/j.biocel.2006.08.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 08/01/2006] [Accepted: 08/08/2006] [Indexed: 01/07/2023]
Abstract
Genetic testing for the two major breast cancer susceptibility genes has now been available for several years with more than 70,000 people tested in the USA alone. While the current genetic testing identifies many sequence alterations there are problems with both sensitivity and specificity of the assay. In particular, the genetic testing is limited in its ability to determine which of the many missense mutations identified in BRCA1 and BRCA2 actually predispose to cancer and which are simply neutral alterations. Here we will focus on the limitations in test result interpretation and we will explore how biochemistry and cell biology can help to clarify these issues. Although we limit our discussion to genetic testing of BRCA1 and BRCA2, the problem is common to an expanding group of genes, including ATM and MSH2, in which germ-line missense mutations may also confer increased risk of cancer. Here we advocate the use of functional assays to complement genetic data in the analysis of unclassified missense mutations and propose a set of standards to conduct and interpret these assays.
Collapse
Affiliation(s)
- Marcelo A Carvalho
- Department of Risk Assessment, Detection, and Intervention, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | |
Collapse
|
39
|
Nandiwada SL, Li W, Zhang R, Mueller DL. p300/Cyclic AMP-responsive element binding-binding protein mediates transcriptional coactivation by the CD28 T cell costimulatory receptor. THE JOURNAL OF IMMUNOLOGY 2006; 177:401-13. [PMID: 16785536 DOI: 10.4049/jimmunol.177.1.401] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
During Ag stimulation of T cells, the recognition of B7 molecules by the CD28 costimulatory receptor increases the level of c-Fos, a component of the AP-1 transactivator known to bind the 5' Il2 gene enhancer. In this study, we show that the costimulation of Fos transcription by CD28 is associated with increased binding of p300/CREB-binding protein (CBP) molecules at the Fos promoter, and is blocked by an adenoviral E1A molecular antagonist of p300/CBP. Furthermore, transcriptional activation by a C-terminal domain of CBP is strengthened when CD28 molecules are actively signaling. This increased amount and activity of p300/CBP molecules at the Fos gene correlated with higher histone H4 acetylation and RNA polymerase II association with the promoter. These data suggest a global mechanism whereby CD28 signaling influences the rate and intensity of new gene expression during Ag recognition via direct control over the coactivator function of p300/CBP.
Collapse
Affiliation(s)
- Sarada L Nandiwada
- Rheumatic and Autoimmune Diseases Division, and Center for Immunology, University of Minnesota Medical School, 312 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
40
|
Tréand C, du Chéné I, Brès V, Kiernan R, Benarous R, Benkirane M, Emiliani S. Requirement for SWI/SNF chromatin-remodeling complex in Tat-mediated activation of the HIV-1 promoter. EMBO J 2006; 25:1690-9. [PMID: 16601680 PMCID: PMC1440843 DOI: 10.1038/sj.emboj.7601074] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 03/08/2006] [Indexed: 11/09/2022] Open
Abstract
Activation of the human immunodeficiency virus type-1 (HIV-1) promoter in infected cells requires the sequential recruitment of several cellular factors to facilitate the formation of a processive elongation complex. The nucleosomal reorganization of the HIV-1 long terminal repeat (LTR) observed upon Tat stimulation suggests that chromatin-remodeling complexes could play a role during this process. Here, we reported that Tat interacts directly with Brm, a DNA-dependent ATPase subunit of the SWI/SNF chromatin-remodeling complex, to activate the HIV-1 LTR. Inhibition of Brm via small interfering RNAs impaired Tat-mediated transactivation of an integrated HIV-1 promoter. Furthermore, Brm is recruited in vivo to the HIV-1 LTR in a Tat-dependent manner. Interestingly, we found that Tat/Brm interaction is regulated by Tat lysine 50 acetylation. These data show the requirement of Tat-mediated recruitment of SWI/SNF chromatin-remodeling complex to HIV-1 promoter in the activation of the LTR.
Collapse
Affiliation(s)
- Céline Tréand
- Institut Cochin, Département de Génétique et Développement, Paris, France
- Inserm, U567, Paris, France
- CNRS, UMR 8104, Paris, France
- Université Paris 5, Faculté de Médecine René Descartes, UM 3, Paris, France
| | - Isaure du Chéné
- Institut de Génétique Humaine, CNRSUPR1142, Montpellier, France
| | - Vanessa Brès
- Institut de Génétique Humaine, CNRSUPR1142, Montpellier, France
| | | | - Richard Benarous
- Institut Cochin, Département de Génétique et Développement, Paris, France
- Inserm, U567, Paris, France
- CNRS, UMR 8104, Paris, France
- Université Paris 5, Faculté de Médecine René Descartes, UM 3, Paris, France
| | | | - Stéphane Emiliani
- Institut Cochin, Département de Génétique et Développement, Paris, France
- Inserm, U567, Paris, France
- CNRS, UMR 8104, Paris, France
- Université Paris 5, Faculté de Médecine René Descartes, UM 3, Paris, France
- Institut Cochin, Département Maladies Infectieuses, 27 rue du faubourg Saint Jacques, Gustave Roussy, 75014 Paris, France. Tel.: +33 1 40 51 65 76; Fax: +33 1 40 51 65 70; E-mail:
| |
Collapse
|
41
|
Horwitz AA, Sankaran S, Parvin JD. Direct stimulation of transcription initiation by BRCA1 requires both its amino and carboxyl termini. J Biol Chem 2006; 281:8317-20. [PMID: 16473884 DOI: 10.1074/jbc.c500475200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Published experiments suggest that BRCA1 interaction with RNAPII and regulation of a number of target genes may be central to its role as a tumor suppressor. Previous in vivo and in vitro work has implicated the carboxyl terminus of BRCA1 in transcriptional stimulation, but the mechanism of action remains unknown, and whether the full-length protein stimulates transcription is controversial. BRCA1 interacts with a number of enhancer-binding transcriptional activators, suggesting that these factors recruit BRCA1 to promoters, where it stimulates RNA synthesis. To investigate whether BRCA1 has intrinsic transcriptional activity, we established a fully purified transcription assay. We demonstrate here that BRCA1 stimulates transcription initiation across a range of promoters. Both the amino and carboxyl termini of BRCA1 are required for this activity, but the BRCA1-binding partner, BARD1, is not. Our data support a model whereby BRCA1 stabilizes productive preinitiation complexes and thus stimulates transcription.
Collapse
Affiliation(s)
- Andrew A Horwitz
- Program in Biology and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
42
|
Levings PP, Zhou Z, Vieira KF, Crusselle-Davis VJ, Bungert J. Recruitment of transcription complexes to the beta-globin locus control region and transcription of hypersensitive site 3 prior to erythroid differentiation of murine embryonic stem cells. FEBS J 2006; 273:746-55. [PMID: 16441661 DOI: 10.1111/j.1742-4658.2005.05107.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Eukaryotic chromosomal DNA is densely packaged in the nucleus and organized into discrete domains of active and inactive chromatin. Gene loci that are activated during the process of cell differentiation undergo changes that result in modifications of specific histone tail residues and in loosening of chromatin structure. The beta-globin genes are expressed exclusively in erythroid cells. High-level expression of these genes is mediated by a locus control region (LCR), a powerful DNA regulatory element composed of several DNase I hypersensitive (HS) sites and located far upstream of the beta-globin genes. Here we show that RNA polymerase II and specific histone modifications that mark transcriptionally active chromatin domains are associated with the LCR core elements HS2 and HS3 in murine embryonic stem cells prior to differentiation along the erythroid lineage. At this stage HS3 is abundantly transcribed. After in vitro differentiation, RNA Polymerase II can also be detected at the embryonic epsilon- and adult beta-globin genes. These results are consistent with the hypothesis that activation of the beta-globin gene locus is initiated by protein complexes recruited to the LCR.
Collapse
Affiliation(s)
- Padraic P Levings
- Department of Biochemistry and Molecular Biology, University of Florida, Center for Mammalian Genetics, Shands Cancer Center, Powell Gene Therapy Center, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
43
|
Batsché E, Yaniv M, Muchardt C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol 2005; 13:22-9. [PMID: 16341228 DOI: 10.1038/nsmb1030] [Citation(s) in RCA: 366] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 11/01/2005] [Indexed: 11/09/2022]
Abstract
The SWI/SNF (mating-type switch/sucrose nonfermenting) complex involved in chromatin remodeling on promoters has also been detected on the coding region of genes. Here we show that SWI/SNF can function as a regulator of alternative splicing. We found that the catalytic subunit Brm favors inclusion of variant exons in the mRNA of several genes, including E-cadherin, BIM, cyclin D1 and CD44. Consistent with this, Brm associates with several components of the spliceosome and with Sam68, an ERK-activated enhancer of variant exon inclusion. Examination of the CD44 gene revealed that Brm induced accumulation of RNA polymerase II (RNAPII) with a modified CTD phosphorylation pattern on regions encoding variant exons. Altogether, our data suggest that on genes regulated by SWI/SNF, Brm contributes to the crosstalk between transcription and RNA processing by decreasing RNAPII elongation rate and facilitating recruitment of the splicing machinery to variant exons with suboptimal splice sites.
Collapse
Affiliation(s)
- Eric Batsché
- Expression Génétique et Maladies, FRE 2850 du CNRS, Département de Biologie du Développement, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
44
|
Johnson CN, Adkins NL, Georgel P. Chromatin remodeling complexes: ATP-dependent machines in action. Biochem Cell Biol 2005; 83:405-17. [PMID: 16094444 DOI: 10.1139/o05-115] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Since the initial characterization of chromatin remodeling as an ATP-dependent process, many studies have given us insight into how nucleosome-remodeling complexes can affect various nuclear functions. However, the multistep DNA-histone remodeling process has not been completely elucidated. Although new studies are published on a nearly weekly basis, the nature and roles of interactions of the individual SWI/SNF- and ISWI-based remodeling complexes and DNA, core histones, and other chromatin-associated proteins are not fully understood. In addition, the potential changes associated with ATP recruitment and its subsequent hydrolysis have not been fully characterized. This review explores possible mechanisms by which chromatin-remodeling complexes are recruited to specific loci, use ATP hydrolysis to achieve actual remodeling through disruption of DNA-histone interactions, and are released from their chromatin template. We propose possible roles for ATP hydrolysis in a chromatin-release/target-scanning process that offer an alternative to or complement the often overlooked function of delivering the energy required for sliding or dislodging specific subsets of core histones.
Collapse
Affiliation(s)
- Cotteka N Johnson
- Division of Biological Sciences, Marshall University, Huntington, WV 25755, USA
| | | | | |
Collapse
|
45
|
Chadwick BP, Lane TF. BRCA1 associates with the inactive X chromosome in late S-phase, coupled with transient H2AX phosphorylation. Chromosoma 2005; 114:432-9. [PMID: 16240122 DOI: 10.1007/s00412-005-0029-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 09/05/2005] [Accepted: 09/12/2005] [Indexed: 10/25/2022]
Abstract
The BRCA1 tumor suppressor gene encodes an E3-ubiquitin ligase that has been implicated in several distinct biochemical processes. As the cell cycle progresses, BRCA1 proteins interact transiently with nuclear foci containing DNA replication and DNA double-strand repair machinery. A hallmark of these foci is the presence of S139 phosphorylated histone H2AX. BRCA1 was recently shown to associate with facultative heterochromatin at the inactive X chromosome (Xi), where it may play a role in maintaining gene silencing. As the kinetics of this interaction has not been described, we sought to establish whether association of BRCA1 with the Xi also correlated with replication. Here we demonstrate that the interaction of BRCA1 and the Xi is transient, occurring during late S-phase. This interaction is concomitant with the presence of distinct foci of S139 phospho-H2AX and specifically corresponds with late replication of the Xi. BRCA1 and phospho-H2AX appear on the Xi immediately adjacent to CAF-1, a known marker of replication fork activity. Taken together, these data implicate BRCA1 and the H2AX kinase in replication of facultative heterochromatin on the Xi, most likely in a fashion similar to that performed at sites of DNA replication and double-strand break repair observed on somatic chromosomes.
Collapse
Affiliation(s)
- Brian P Chadwick
- Department of Cell Biology, Duke University Medical Center & Institute for Genome Science and Policy, Durham, NC 27710, USA.
| | | |
Collapse
|
46
|
Dryer RL, Covey LR. A Novel NF-κB-Regulated Site within the Human Iγ1 Promoter Requires p300 for Optimal Transcriptional Activity. THE JOURNAL OF IMMUNOLOGY 2005; 175:4499-507. [PMID: 16177093 DOI: 10.4049/jimmunol.175.7.4499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transcriptional activation of germline (GL) promoters occurs through binding of NF-kappaB to three evolutionarily conserved sites within a CD40 response region in the human and mouse GL Igamma and Iepsilon promoters. Here we identify and characterize a novel NF-kappaB binding site (kappaB6) within the human GL Igamma1 promoter that plays an essential role in basal- and CD40-induced transcription. This site is adjacent to identified CREB/activating transcription factor (ATF) sites, present in the Igamma1 but not the Igamma3 promoter, which are important for the amplification of transcription. Our data suggest a cohesive protein complex regulating Igamma1 promoter activity because disruption of any individual NF-kappaB or CREB/ATF site markedly lowers the overall inducible activity of the promoter. In addition, alteration of helical phasing within the promoter indicates spatial orientation of CREB/ATF and NF-kappaB, proteins contributes directly to promoter activity. We found that CREB and p50 transactivators, as well as coactivator p300, interact in vivo with the Igamma1 promoter in the presence and absence of CD40 signaling in Ramos and primary B cells. However, the level of CREB and p300 binding differs as a consequence of activation in primary B cells. Furthermore, overexpression of p300, and not a mutant lacking acetyltransferase activity, significantly increases Igamma1 construct-specific transcription. Together these data support a model whereby CREB and multiple NF-kappaB complexes bind to the Igamma1 promoter and recruit p300. CD40 signals induce p300-dependent changes that result in optimal Igamma1 promoter activity.
Collapse
Affiliation(s)
- Rebecca L Dryer
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
47
|
Zhao LH, Ba XQ, Wang XG, Zhu XJ, Wang L, Zeng XL. BAF complex is closely related to and interacts with NF1/CTF and RNA polymerase II in gene transcriptional activation. Acta Biochim Biophys Sin (Shanghai) 2005; 37:440-6. [PMID: 15999204 DOI: 10.1111/j.1745-7270.2005.00061.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Brg- or hBrm-associated factor (BAF) complexes, a chromatin-remodeling complex family of mammalian cells, facilitate transcriptional activity by remodeling nucleosome structure. Brg1 is the core subunit of Brg-associated factor complexes. In the present study, we investigated the spatial relationship between Brg1 and nuclear factor 1 (NF1/CTF) and RNA polymerase II (RNAP II) upon gene transcriptional activation in vivo by employing immuno-gold labeling. The data showed that Brg1 was closely co-localized with NF1/CTF and RNAP II in HeLa cells. Moreover, the co-immunoprecipitation assay further revealed that Brg1 can be isolated together with NF1/CTF and RNAP II in the ConA-stimulated, but not the resting, T lymphocyte. The combined results suggested that BAF complexes can interact with NF1/CTF and RNAP II, and this interaction is closely dependent on the activation of gene transcription.
Collapse
Affiliation(s)
- Li-Hui Zhao
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | | | | | | | | | | |
Collapse
|
48
|
Hill DA, de la Serna IL, Veal TM, Imbalzano AN. BRCA1 interacts with dominant negative SWI/SNF enzymes without affecting homologous recombination or radiation-induced gene activation of p21 or Mdm2. J Cell Biochem 2005; 91:987-98. [PMID: 15034933 DOI: 10.1002/jcb.20003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BRCA1 is a tumor suppressor gene linked to familial breast and ovarian cancer. The BRCA1 protein has been implicated in a diverse set of cellular functions, including activation of gene expression by the p53 tumor suppressor and control of homologous recombination (HR) during DNA repair. Prior reports have demonstrated that BRCA1 can exist in cells in a complex with the BRG1-based SWI/SNF ATP-dependent chromatin remodeling enzymes and that SWI/SNF components contribute to p53-mediated gene activation. To investigate the link between SWI/SNF function and BRCA1 mediated effects on p53-mediated gene activation and on mechanisms of homologous recombination, we have utilized mammalian cells that inducibly express an ATPase-deficient, dominant negative SWI/SNF enzymes. Mutant SWI/SNF ATPases retain the ability to interact with BRCA1 in cells. We report that expression of dominant negative SWI/SNF enzymes does not affect p53-mediated induction of the p21 cyclin dependent kinase inhibitor or the Mdm2 E3 ubiquitin ligase that regulates p53 in cells exposed to UV or gamma irradiation. Similarly, integration of a reporter that monitors homologous recombination by gene conversion into these cells demonstrated no change in the recombination rate in the absence of functional SWI/SNF enzyme. We conclude that the SWI/SNF chromatin remodeling enzymes may contribute to but are not required for these processes.
Collapse
Affiliation(s)
- David A Hill
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
49
|
Srinivasan S, Armstrong JA, Deuring R, Dahlsveen IK, McNeill H, Tamkun JW. The Drosophila trithorax group protein Kismet facilitates an early step in transcriptional elongation by RNA Polymerase II. Development 2005; 132:1623-35. [PMID: 15728673 DOI: 10.1242/dev.01713] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Drosophila trithorax group gene kismet (kis) was identified in a screen for extragenic suppressors of Polycomb (Pc) and subsequently shown to play important roles in both segmentation and the determination of body segment identities. One of the two major proteins encoded by kis (KIS-L) is related to members of the SWI2/SNF2 and CHD families of ATP-dependent chromatin-remodeling factors. To clarify the role of KIS-L in gene expression, we examined its distribution on larval salivary gland polytene chromosomes. KIS-L is associated with virtually all sites of transcriptionally active chromatin in a pattern that largely overlaps that of RNA Polymerase II (Pol II). The levels of elongating Pol II and the elongation factors SPT6 and CHD1 are dramatically reduced on polytene chromosomes from kis mutant larvae. By contrast, the loss of KIS-L function does not affect the binding of PC to chromatin or the recruitment of Pol II to promoters. These data suggest that KIS-L facilitates an early step in transcriptional elongation by Pol II.
Collapse
Affiliation(s)
- Shrividhya Srinivasan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
50
|
Bitoun E, Davies KE. The robotic mouse: unravelling the function of AF4 in the cerebellum. CEREBELLUM (LONDON, ENGLAND) 2005; 4:250-60. [PMID: 16321881 DOI: 10.1080/14734220500325897] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The devastating nature and lack of effective treatments associated with neurodegenerative diseases have stimulated a world-wide search for the elucidation of their molecular basis to which mouse models have made a major contribution. In combination with transgenic and knockout technologies, large-scale mouse mutagenesis is a powerful approach for the identification of new genes and associated signalling pathways controlling neuronal cell death and survival. Here we review the characterization of the robotic mouse, a novel model of autosomal dominant cerebellar ataxia isolated from an ENU-mutagenesis programme, which develops adult-onset region-specific Purkinje cell loss and cataracts, and displays defects in early T-cell maturation and general growth retardation. The mutated protein, Af4, is a member of the AF4/LAF4/FMR2 (ALF) family of putative transcription factors previously implicated in childhood leukaemia and FRAXE mental retardation. The mutation, which lies in a highly conserved region among the ALF family members, significantly reduces the binding affinity of Af4 to the E3 ubiquitin-ligase Siah-1a, isolated with Siah-2 as interacting proteins in the brain. This leads to a markedly slower turnover of mutant Af4 by the ubiquitin-proteasome pathway and consequently to its abnormal accumulation in the robotic mouse. Importantly, the conservation of the Siah-binding domain of Af4 in all other family members reveals that Siah-mediated proteasomal degradation is a common regulatory mechanism that controls the levels, and thereby the function, of the ALF family. The robotic mouse represents a unique model in which to study the newly revealed role of Af4 in the maintenance of vital functions of Purkinje cells in the cerebellum and further the understanding of its implication in lymphopoeisis.
Collapse
Affiliation(s)
- Emmanuelle Bitoun
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|