1
|
Ding H, Zhang N, Cao L, Gong P, Wang X, Li X, Cheng S, Li J, Zhang X. First identification of telomeric DNA sequences in Trichomonas vaginalis. Acta Trop 2022; 225:106196. [PMID: 34687640 DOI: 10.1016/j.actatropica.2021.106196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 11/28/2022]
Abstract
Trichomoniasis is the most common nonviral sexually transmitted disease; it is caused by Trichomonas vaginalis and seriously threatens human reproductive health. Telomeres are specialised DNA-protein complexes at the ends of chromosomes that have a protective function. The aim of the present study was to identify and characterise the telomeric DNA of T. vaginalis-which has not been previously reported-by multiple molecular methods including sequencing, the Bal nuclease (BAL) 31 nuclease assay, fluorescence in situ hybridisation (FISH), and Southern blotting. We found numerous repeated units of TTTTAGGG in T. vaginalis genomic DNA digested with S1 nuclease in combination with XbaI restriction enzyme. The (TTTTAGGG)n tandem repeats were also highly sensitive to BAL 31 exonuclease digestion. We confirmed that the (TTTTAGGG)n repeats were located at the end of T. vaginalis chromosomes by FISH. Restriction enzyme digestion combined with Southern blotting using a digoxigenin-labelled (TTTTAGGG)5 probe showed that the T. vaginalis telomeric DNA length varied from 1.0 to 1.5 kb. This is the first report on the telomeric DNA sequence of T. vaginalis which includes the length and distribution on chromosomes; our findings lay a foundation for further study on telomere maintenance mechanisms in T. vaginalis.
Collapse
Affiliation(s)
- He Ding
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lili Cao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Parasite, Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun 130062, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaocen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xin Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shuqin Cheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
de Oliveira BCD, Shiburah ME, Paiva SC, Vieira MR, Morea EGO, da Silva MS, Alves CDS, Segatto M, Gutierrez-Rodrigues F, Borges JC, Calado RT, Cano MIN. Possible Involvement of Hsp90 in the Regulation of Telomere Length and Telomerase Activity During the Leishmania amazonensis Developmental Cycle and Population Proliferation. Front Cell Dev Biol 2021; 9:713415. [PMID: 34778247 PMCID: PMC8581162 DOI: 10.3389/fcell.2021.713415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/29/2021] [Indexed: 12/29/2022] Open
Abstract
The Leishmania developmental cycle comprises three main life forms in two hosts, indicating that the parasite is continually challenged due to drastic environmental changes. The disruption of this cycle is critical for discovering new therapies to eradicate leishmaniasis, a neglected disease that affects millions worldwide. Telomeres, the physical ends of chromosomes, maintain genome stability and cell proliferation and are potential antiparasitic drug targets. Therefore, understanding how telomere length is regulated during parasite development is vital. Here, we show that telomeres form clusters spread in the nucleoplasm of the three parasite life forms. We also observed that amastigotes telomeres are shorter than metacyclic and procyclic promastigotes and that in parasites with continuous in vitro passages, telomere length increases over time. These observed differences in telomere length among parasite’s life stages were not due to lack/inhibition of telomerase since enzyme activity was detected in all parasite life stages, although the catalysis was temperature-dependent. These data led us to test if, similar to other eukaryotes, parasite telomere length maintenance could be regulated by Hsp83, the ortholog of Hsp90 in trypanosomatids, and Leishmania (LHsp90). Parasites were then treated with the Hsp90 inhibitor 17AAG. The results showed that 17AAG disturbed parasite growth, induced accumulation into G2/M phases, and telomere shortening in a time-dependent manner. It has also inhibited procyclic promastigote’s telomerase activity. Besides, LHsp90 interacts with the telomerase TERT component as shown by immunoprecipitation, strongly suggesting a new role for LHsp90 as a parasite telomerase component involved in controlling telomere length maintenance and parasite life span.
Collapse
Affiliation(s)
- Beatriz C D de Oliveira
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Mark E Shiburah
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Stepany C Paiva
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Marina R Vieira
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Edna Gicela O Morea
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Marcelo Santos da Silva
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Cristiane de Santis Alves
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil
| | | | | | - Júlio C Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Rodrigo T Calado
- Hemocentro da Faculdade de Medicina de Ribeirão Preto, Universidade of São Paulo, São Paulo, Brazil
| | - Maria Isabel N Cano
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
3
|
Assis LHC, Andrade-Silva D, Shiburah ME, de Oliveira BCD, Paiva SC, Abuchery BE, Ferri YG, Fontes VS, de Oliveira LS, da Silva MS, Cano MIN. Cell Cycle, Telomeres, and Telomerase in Leishmania spp.: What Do We Know So Far? Cells 2021; 10:cells10113195. [PMID: 34831418 PMCID: PMC8621916 DOI: 10.3390/cells10113195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/18/2022] Open
Abstract
Leishmaniases belong to the inglorious group of neglected tropical diseases, presenting different degrees of manifestations severity. It is caused by the transmission of more than 20 species of parasites of the Leishmania genus. Nevertheless, the disease remains on the priority list for developing new treatments, since it affects millions in a vast geographical area, especially low-income people. Molecular biology studies are pioneers in parasitic research with the aim of discovering potential targets for drug development. Among them are the telomeres, DNA–protein structures that play an important role in the long term in cell cycle/survival. Telomeres are the physical ends of eukaryotic chromosomes. Due to their multiple interactions with different proteins that confer a likewise complex dynamic, they have emerged as objects of interest in many medical studies, including studies on leishmaniases. This review aims to gather information and elucidate what we know about the phenomena behind Leishmania spp. telomere maintenance and how it impacts the parasite’s cell cycle.
Collapse
Affiliation(s)
- Luiz H. C. Assis
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Débora Andrade-Silva
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Mark E. Shiburah
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Beatriz C. D. de Oliveira
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Stephany C. Paiva
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Bryan E. Abuchery
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (B.E.A.); (Y.G.F.)
| | - Yete G. Ferri
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (B.E.A.); (Y.G.F.)
| | - Veronica S. Fontes
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Leilane S. de Oliveira
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Marcelo S. da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (B.E.A.); (Y.G.F.)
- Correspondence: (M.S.d.S.); (M.I.N.C.)
| | - Maria Isabel N. Cano
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
- Correspondence: (M.S.d.S.); (M.I.N.C.)
| |
Collapse
|
4
|
Abstract
Telomeres are the ends of linear eukaryotic chromosomes facilitating the resolution of the ‘end replication and protection’ problems, associated with linearity. At the nucleotide level, telomeres typically represent stretches of tandemly arranged telomeric repeats, which vary in length and sequence among different groups of organisms. Recently, a composition of the telomere-associated protein complex has been scrutinized in Trypanosoma brucei. In this work, we subjected proteins from that list to a more detailed bioinformatic analysis and delineated a core set of 20 conserved proteins putatively associated with telomeres in trypanosomatids. Out of these, two proteins (Ku70 and Ku80) are conspicuously missing in representatives of the genus Blastocrithidia, yet telomeres in these species do not appear to be affected. In this work, based on the analysis of a large set of trypanosomatids widely different in their phylogenetic position and life strategies, we demonstrated that telomeres of trypanosomatids are diverse in length, even within groups of closely related species. Our analysis showed that the expression of two proteins predicted to be associated with telomeres (those encoding telomerase and telomere-associated hypothetical protein orthologous to Tb927.6.4330) may directly affect and account for the differences in telomere length within the species of the Leishmania mexicana complex.
Collapse
|
5
|
Conter CC, Mota CA, Dos Santos BA, de Souza Braga L, de Souza Terron M, Navasconi TR, Fernandes ACBS, Demarchi IG, de Castro KRR, Aristides SMA, Lonardoni MVC, Teixeira JJV, Silveira TGV. PCR primers designed for new world Leishmania: A systematic review. Exp Parasitol 2019; 207:107773. [PMID: 31605671 DOI: 10.1016/j.exppara.2019.107773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 01/03/2023]
Abstract
Studies of the primers that were designed to detect New World Leishmania were systematically reviewed to report the characteristics of each target, detection limit, specificity of the primers designed and diagnostic sensibility. The papers identified in the databases PubMed and Web of Science involved 50 studies. Minicircle is the most applied target in molecular research for diagnosis, due to its high sensitivity in detecting Leishmania in different clinical samples, a characteristic that can be partially attributed to the higher number of copies of the minicircle per cell. The other molecular targets shown in this review were less sensitive to diagnostic use because of the lower number of copies of the target gene per cell, but more specific for identification of the subgenus and/or species. The choice of the best target is an important step towards the result of the research. The target allows the design of primers that are specific to the genus, subgenus or a particular species and also imparts sensitivity to the method for diagnosis. The findings of this systematic review provide the advantages and disadvantages of the main molecular targets and primers designed for New World Leishmania, offering information so that the researcher can choose the PCR system best suited to their research need. This is a timely and extremely thorough review of the primers designed for New World Leishmania.
Collapse
Affiliation(s)
- Carolina Cella Conter
- Graduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Camila Alves Mota
- Graduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Laís de Souza Braga
- Graduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Taísa Rocha Navasconi
- Graduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Izabel Galhardo Demarchi
- Department of Clinical Analyses and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Stiles JK, Hicock PI, Shah PH, Meade JC. Genomic organization, transcription, splicing and gene regulation inLeishmania. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1999.11813485] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Peška V, Sitová Z, Fajkus P, Fajkus J. BAL31-NGS approach for identification of telomeres de novo in large genomes. Methods 2016; 114:16-27. [PMID: 27595912 DOI: 10.1016/j.ymeth.2016.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/22/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022] Open
Abstract
This article describes a novel method to identify as yet undiscovered telomere sequences, which combines next generation sequencing (NGS) with BAL31 digestion of high molecular weight DNA. The method was applied to two groups of plants: i) dicots, genus Cestrum, and ii) monocots, Allium species (e.g. A. ursinum and A. cepa). Both groups consist of species with large genomes (tens of Gb) and a low number of chromosomes (2n=14-16), full of repeat elements. Both genera lack typical telomeric repeats and multiple studies have attempted to characterize alternative telomeric sequences. However, despite interesting hypotheses and suggestions of alternative candidate telomeres (retrotransposons, rDNA, satellite repeats) these studies have not resolved the question. In a novel approach based on the two most general features of eukaryotic telomeres, their repetitive character and sensitivity to BAL31 nuclease digestion, we have taken advantage of the capacity and current affordability of NGS in combination with the robustness of classical BAL31 nuclease digestion of chromosomal termini. While representative samples of most repeat elements were ensured by low-coverage (less than 5%) genomic shot-gun NGS, candidate telomeres were identified as under-represented sequences in BAL31-treated samples.
Collapse
Affiliation(s)
- Vratislav Peška
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic
| | - Zdeňka Sitová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Petr Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-61265 Brno, Czech Republic; Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| |
Collapse
|
8
|
Lambertz U, Oviedo Ovando ME, Vasconcelos EJR, Unrau PJ, Myler PJ, Reiner NE. Small RNAs derived from tRNAs and rRNAs are highly enriched in exosomes from both old and new world Leishmania providing evidence for conserved exosomal RNA Packaging. BMC Genomics 2015; 16:151. [PMID: 25764986 PMCID: PMC4352550 DOI: 10.1186/s12864-015-1260-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 01/09/2023] Open
Abstract
Background Leishmania use exosomes to communicate with their mammalian hosts and these secreted vesicles appear to contribute to pathogenesis by delivering protein virulence factors to macrophages. In other eukaryotes, exosomes were found to carry RNA cargo, such as mRNAs and small non-coding RNAs, capable of altering recipient cell phenotype. Whether leishmania exosomes also contain RNAs which they are able to deliver to bystander cells is not known. Here, we show that leishmania exosomes indeed contain RNAs and compare and contrast the RNA content of exosomes released by Leishmania donovani and Leishmania braziliensis. Results We purified RNA from exosomes collected from axenic amastigote culture supernatant and found that when compared with total leishmania RNA, exosomes mainly contained short RNA sequences. Exosomes with intact membranes were capable of protecting their RNA cargo from degradation by RNase. Moreover, exosome RNA cargo was delivered to host cell cytoplasm in vitro. Sequencing of exosomal RNA indicated that the majority of cargo sequences were derived from non-coding RNA species such as rRNA and tRNA. In depth analysis revealed the presence of tRNA-derived small RNAs, a novel RNA type with suspected regulatory functions. Northern blotting confirmed the specific and selective enrichment of tRNA-derived small RNAs in exosomes. We also identified a number of novel transcripts, which appeared to be specifically enriched in exosomes compared to total cell RNA. In addition, we observed the presence of sequences mapping to siRNA-coding regions in L. braziliensis , but not in L. donovani exosomes. Conclusions These results show that leishmania exosomes are selectively and specifically enriched in small RNAs derived almost exclusively from non-coding RNAs. These exosomes are competent to deliver their cargo of novel, potential small regulatory RNAs to macrophages where they may influence parasite-host cell interactions. The remarkably high degree of congruence in exosomal RNA content between L. donovani and L. braziliensis, argues for the presence of a conserved mechanism for exosomal RNA packaging in leishmania. These findings open up a new avenue of research on non-canonical, small RNA pathways in this trypanosomatid, which may elucidate pathogenesis and identify novel therapeutic approaches. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1260-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulrike Lambertz
- Departments of Medicine, Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
| | - Mariana E Oviedo Ovando
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| | | | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| | - Peter J Myler
- Seattle Biomedical Research Institute, Seattle, WA, USA. .,Departments of Global Health and Biomedical Informatics & Medical Education, University of Washington, Washington, WA, USA.
| | - Neil E Reiner
- Departments of Medicine, Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
The putative Leishmania telomerase RNA (LeishTER) undergoes trans-splicing and contains a conserved template sequence. PLoS One 2014; 9:e112061. [PMID: 25391020 PMCID: PMC4229120 DOI: 10.1371/journal.pone.0112061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/11/2014] [Indexed: 02/07/2023] Open
Abstract
Telomerase RNAs (TERs) are highly divergent between species, varying in size and sequence composition. Here, we identify a candidate for the telomerase RNA component of Leishmania genus, which includes species that cause leishmaniasis, a neglected tropical disease. Merging a thorough computational screening combined with RNA-seq evidence, we mapped a non-coding RNA gene localized in a syntenic locus on chromosome 25 of five Leishmania species that shares partial synteny with both Trypanosoma brucei TER locus and a putative TER candidate-containing locus of Crithidia fasciculata. Using target-driven molecular biology approaches, we detected a ∼2,100 nt transcript (LeishTER) that contains a 5′ spliced leader (SL) cap, a putative 3′ polyA tail and a predicted C/D box snoRNA domain. LeishTER is expressed at similar levels in the logarithmic and stationary growth phases of promastigote forms. A 5′SL capped LeishTER co-immunoprecipitated and co-localized with the telomerase protein component (TERT) in a cell cycle-dependent manner. Prediction of its secondary structure strongly suggests the existence of a bona fide single-stranded template sequence and a conserved C[U/C]GUCA motif-containing helix II, representing the template boundary element. This study paves the way for further investigations on the biogenesis of parasite TERT ribonucleoproteins (RNPs) and its role in parasite telomere biology.
Collapse
|
10
|
Leishmania major telomerase TERT protein has a nuclear/mitochondrial eclipsed distribution that is affected by oxidative stress. Infect Immun 2014; 83:57-66. [PMID: 25312950 DOI: 10.1128/iai.02269-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In its canonical role the reverse transcriptase telomerase recovers the telomeric repeats that are lost during DNA replication. Other locations and activities have been recently described for the telomerase protein subunit TERT in mammalian cells. In the present work, using biochemistry, molecular biology, and electron microscopy techniques, we found that in the human parasite Leishmania major, TERT (and telomerase activity) shared locations between the nuclear, mitochondrial, and cytoplasmic compartments. Also, some telomerase activity and TERT protein could be found in ∼ 100-nm nanovesicles. In the mitochondrial compartment, TERT appears to be mainly associated with the kinetoplast DNA. When Leishmania cells were exposed to H2O2, TERT changed its relative abundance and activity between the nuclear and mitochondrial compartments, with the majority of activity residing in the mitochondrion. Finally, overexpression of TERT in Leishmania transfected cells not only increased the parasitic cell growth rate but also increased their resistance to oxidative stress.
Collapse
|
11
|
Atayde VD, Shi H, Franklin JB, Carriero N, Notton T, Lye LF, Owens K, Beverley SM, Tschudi C, Ullu E. The structure and repertoire of small interfering RNAs in Leishmania (Viannia) braziliensis reveal diversification in the trypanosomatid RNAi pathway. Mol Microbiol 2012; 87:580-93. [PMID: 23217017 DOI: 10.1111/mmi.12117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2012] [Indexed: 12/01/2022]
Abstract
Among trypanosomatid protozoa the mechanism of RNA interference (RNAi) has been investigated in Trypanosoma brucei and to a lesser extent in Leishmania braziliensis. Although these two parasitic organisms belong to the same family, they are evolutionarily distantly related raising questions about the conservation of the RNAi pathway. Here we carried out an in-depth analysis of small interfering RNAs (siRNAs) associated with L. braziliensis Argonaute1 (LbrAGO1). In contrast to T. brucei, Leishmania siRNAs are sensitive to 3' end oxidation, indicating the absence of blocking groups, and the Leishmania genome does not code for a HEN1 RNA 2'-O-methyltransferase, which modifies small RNA 3' ends. Consistent with this observation, ~20% of siRNA 3' ends carry non-templated uridines. Thus siRNA biogenesis, and most likely their metabolism, is different in these organisms. Similarly to T. brucei, putative mobile elements and repeats constitute the major Leishmania siRNA-producing loci and AGO1 ablation leads to accumulation of long transcripts derived from putative mobile elements. However, contrary to T. brucei, no siRNAs were detected from other genomic regions with the potential to form double-stranded RNA, namely sites of convergent transcription and inverted repeats. Thus, our results indicate that organism-specific diversification has occurred in the RNAi pathway during evolution of the trypanosomatid lineage.
Collapse
Affiliation(s)
- Vanessa D Atayde
- Departments of Internal Medicine, Yale University, New Haven, CT 06536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fulwiler AL, Boitz JM, Yates PA, Carter NS, Ullman B. Characterization of amplicons that suppress the conditional lethal growth phenotype of a Leishmania donovani mutant lacking normal purine salvage mechanisms. Mol Biochem Parasitol 2011; 175:76-82. [DOI: 10.1016/j.molbiopara.2010.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 10/19/2022]
|
13
|
Sequencing and analysis of chromosomal extremities of Trypanosoma rangeli in comparison with Trypanosoma cruzi lineages. Parasitol Res 2010; 108:459-66. [DOI: 10.1007/s00436-010-2087-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 09/16/2010] [Indexed: 11/25/2022]
|
14
|
Galindo MM, Rodriguez E, Rojas MG, Figarella K, Campelo R, Ramírez JL. A heat-activated and thermoresistant telomerase activity in Leishmania major Friedlin. Acta Trop 2009; 111:86-9. [PMID: 19426669 DOI: 10.1016/j.actatropica.2009.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 01/29/2009] [Accepted: 02/07/2009] [Indexed: 11/27/2022]
Abstract
Here we studied the telomerase activity of the human parasite Leishmania major. In this organism we have detected a high activity of this enzyme once several parameters such as heat activation, sequence of extension primer, and protein concentration are adjusted. The activity was not only heat activated, but also very resistant to heat denaturation. We believe L. major telomerase is an important activity and it may provide an adequate drug therapy target.
Collapse
|
15
|
Otto TD, Gomes LHF, Alves-Ferreira M, de Miranda AB, Degrave WM. ReRep: computational detection of repetitive sequences in genome survey sequences (GSS). BMC Bioinformatics 2008; 9:366. [PMID: 18782453 PMCID: PMC2559850 DOI: 10.1186/1471-2105-9-366] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 09/09/2008] [Indexed: 11/21/2022] Open
Abstract
Background Genome survey sequences (GSS) offer a preliminary global view of a genome since, unlike ESTs, they cover coding as well as non-coding DNA and include repetitive regions of the genome. A more precise estimation of the nature, quantity and variability of repetitive sequences very early in a genome sequencing project is of considerable importance, as such data strongly influence the estimation of genome coverage, library quality and progress in scaffold construction. Also, the elimination of repetitive sequences from the initial assembly process is important to avoid errors and unnecessary complexity. Repetitive sequences are also of interest in a variety of other studies, for instance as molecular markers. Results We designed and implemented a straightforward pipeline called ReRep, which combines bioinformatics tools for identifying repetitive structures in a GSS dataset. In a case study, we first applied the pipeline to a set of 970 GSSs, sequenced in our laboratory from the human pathogen Leishmania braziliensis, the causative agent of leishmaniosis, an important public health problem in Brazil. We also verified the applicability of ReRep to new sequencing technologies using a set of 454-reads of an Escheria coli. The behaviour of several parameters in the algorithm is evaluated and suggestions are made for tuning of the analysis. Conclusion The ReRep approach for identification of repetitive elements in GSS datasets proved to be straightforward and efficient. Several potential repetitive sequences were found in a L. braziliensis GSS dataset generated in our laboratory, and further validated by the analysis of a more complete genomic dataset from the EMBL and Sanger Centre databases. ReRep also identified most of the E. coli K12 repeats prior to assembly in an example dataset obtained by automated sequencing using 454 technology. The parameters controlling the algorithm behaved consistently and may be tuned to the properties of the dataset, in particular to the length of sequencing reads and the genome coverage. ReRep is freely available for academic use at .
Collapse
Affiliation(s)
- Thomas D Otto
- Laboratory for Functional Genomics and Bioinformatics, IOC, Fiocruz, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
16
|
Requena JM, Folgueira C, López MC, Thomas MC. The SIDER2 elements, interspersed repeated sequences that populate the Leishmania genomes, constitute subfamilies showing chromosomal proximity relationship. BMC Genomics 2008; 9:263. [PMID: 18518959 PMCID: PMC2424063 DOI: 10.1186/1471-2164-9-263] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 06/02/2008] [Indexed: 12/03/2022] Open
Abstract
Background Protozoan parasites of the genus Leishmania are causative agents of a diverse spectrum of human diseases collectively known as leishmaniasis. These eukaryotic pathogens that diverged early from the main eukaryotic lineage possess a number of unusual genomic, molecular and biochemical features. The completion of the genome projects for three Leishmania species has generated invaluable information enabling a direct analysis of genome structure and organization. Results By using DNA macroarrays, made with Leishmania infantum genomic clones and hybridized with total DNA from the parasite, we identified a clone containing a repeated sequence. An analysis of the recently completed genome sequence of L. infantum, using this repeated sequence as bait, led to the identification of a new class of repeated elements that are interspersed along the different L. infantum chromosomes. These elements turned out to be homologues of SIDER2 sequences, which were recently identified in the Leishmania major genome; thus, we adopted this nomenclature for the Leishmania elements described herein. Since SIDER2 elements are very heterogeneous in sequence, their precise identification is rather laborious. We have characterized 54 LiSIDER2 elements in chromosome 32 and 27 ones in chromosome 20. The mean size for these elements is 550 bp and their sequence is G+C rich (mean value of 66.5%). On the basis of sequence similarity, these elements can be grouped in subfamilies that show a remarkable relationship of proximity, i.e. SIDER2s of a given subfamily locate close in a chromosomal region without intercalating elements. For comparative purposes, we have identified the SIDER2 elements existing in L. major and Leishmania braziliensis chromosomes 32. While SIDER2 elements are highly conserved both in number and location between L. infantum and L. major, no such conservation exists when comparing with SIDER2s in L. braziliensis chromosome 32. Conclusion SIDER2 elements constitute a relevant piece in the Leishmania genome organization. Sequence characteristics, genomic distribution and evolutionarily conservation of SIDER2s are suggestive of relevant functions for these elements in Leishmania. Apart from a proved involvement in post-trancriptional mechanisms of gene regulation, SIDER2 elements could be involved in DNA amplification processes and, perhaps, in chromosome segregation as centromeric sequences.
Collapse
Affiliation(s)
- Jose M Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
17
|
Lira CBB, de Siqueira Neto JL, Khater L, Cagliari TC, Peroni LA, dos Reis JRR, Ramos CHI, Cano MIN. LaTBP1: A Leishmania amazonensis DNA-binding protein that associates in vivo with telomeres and GT-rich DNA using a Myb-like domain. Arch Biochem Biophys 2007; 465:399-409. [PMID: 17678615 DOI: 10.1016/j.abb.2007.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/18/2007] [Accepted: 06/21/2007] [Indexed: 11/19/2022]
Abstract
Different species of Leishmania can cause a variety of medically important diseases, whose control and treatment are still health problems. Telomere binding proteins (TBPs) have potential as targets for anti-parasitic chemotherapy because of their importance for genome stability and cell viability. Here, we describe LaTBP1 a protein that has a Myb-like DNA-binding domain, a feature shared by most double-stranded telomeric proteins. Binding assays using full-length and truncated LaTBP1 combined with spectroscopy analysis were used to map the boundaries of the Myb-like domain near to the protein only tryptophan residue. The Myb-like domain of LaTBP1 contains a conserved hydrophobic cavity implicated in DNA-binding activity. A hypothetical model helped to visualize that it shares structural homology with domains of other Myb-containing proteins. Competition assays and chromatin immunoprecipitation confirmed the specificity of LaTBP1 for telomeric and GT-rich DNAs, suggesting that LaTBP1 is a new TBP.
Collapse
Affiliation(s)
- Cristina B B Lira
- Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu 18618-000, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lira CBB, Giardini MA, Neto JLS, Conte FF, Cano MIN. Telomere biology of trypanosomatids: beginning to answer some questions. Trends Parasitol 2007; 23:357-62. [PMID: 17580124 DOI: 10.1016/j.pt.2007.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 04/26/2007] [Accepted: 06/06/2007] [Indexed: 11/26/2022]
Abstract
Studies of telomere structure and maintenance in trypanosomatids have provided insights into the evolutionary origin and conservation of some telomeric components shared by trypanosomes and vertebrates. For example, trypanosomatid telomeres are maintained by telomerase and consist of the canonical TTAGGG repeats, which in Trypanosoma brucei can form telomeric loops (t-loops). However, the telomeric chromatin of trypanosomatids is composed of organism-specific proteins and other proteins that share little sequence similarity with their vertebrate counterparts. Because telomere maintenance mechanisms are essential for genome stability, we propose that the particular features shown by the trypanosome telomeric chromatin hold the key for the design of antiparasitic drugs.
Collapse
Affiliation(s)
- Cristina B B Lira
- Laboratório de Telômeros, Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | | | | | | | | |
Collapse
|
19
|
Dias FC, Ruiz JC, Lopes WCZ, Squina FM, Renzi A, Cruz AK, Tosi LRO. Organization of H locus conserved repeats in Leishmania (Viannia) braziliensis correlates with lack of gene amplification and drug resistance. Parasitol Res 2007; 101:667-76. [PMID: 17393181 DOI: 10.1007/s00436-007-0528-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 03/14/2007] [Indexed: 11/27/2022]
Abstract
Resistance to antimonials is a major problem when treating visceral leishmaniasis in India and has already been described for New World parasites. Clinical response to meglumine antimoniate in patients infected with parasites of the Viannia sub-genus can be widely variable, suggesting the presence of mechanisms of drug resistance. In this work, we have compared L. major and L. braziliensis mutants selected in different drugs. The cross-resistance profiles of some cell lines resembled those of mutants bearing H locus amplicons. However, amplified episomal molecules were exclusively detected in L. major mutants. The analysis of the L. braziliensis H region revealed a strong conservation of gene synteny. The typical intergenic repeats that are believed to mediate the amplification of the H locus in species of the Leishmania sub-genus are partially conserved in the Viannia species. The conservation of these non-coding elements in equivalent positions in both species is indicative of their relevance within this locus. The absence of amplicons in L. braziliensis suggests that this species may not favour extra-chromosomal gene amplification as a source of phenotypic heterogeneity and fitness maintenance in changing environments.
Collapse
Affiliation(s)
- Fabricio C Dias
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Ribeirão Preto, Sao Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
Genest PA, ter Riet B, Cijsouw T, van Luenen HG, Borst P. Telomeric localization of the modified DNA base J in the genome of the protozoan parasite Leishmania. Nucleic Acids Res 2007; 35:2116-24. [PMID: 17329373 PMCID: PMC1874636 DOI: 10.1093/nar/gkm050] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Base J or β-d-glucosylhydroxymethyluracil is a DNA modification replacing a fraction of thymine in the nuclear DNA of kinetoplastid parasites and of Euglena. J is located in the telomeric sequences of Trypanosoma brucei and in other simple repeat DNA sequences. In addition, J was found in the inactive variant surface glycoprotein (VSG) expression sites, but not in the active expression site of T. brucei, suggesting that J could play a role in transcription silencing in T. brucei. We have now looked at the distribution of J in the genomes of other kinetoplastid parasites. First, we analyzed the DNA sequences immunoprecipitated with a J-antiserum in Leishmania major Friedlin. Second, we investigated the co-migration of J- and telomeric repeat-containing DNA sequences of various kinetoplastids using J-immunoblots and Southern blots of fragmented DNA. We find only ∼1% of J outside the telomeric repeat sequences of Leishmania sp. and Crithidia fasciculata, in contrast to the substantial fraction of non-telomeric J found in T. brucei, Trypanosoma equiperdum and Trypanoplasma borreli. Our results suggest that J is a telomeric base modification, recruited for other (unknown) functions in some kinetoplastids and Euglena.
Collapse
Affiliation(s)
| | | | | | | | - Piet Borst
- *To whom Correspondence should be addressed. +31 20 512 2880+31 20 669 1383
| |
Collapse
|
21
|
Squina FM, Pedrosa AL, Nunes VS, Cruz AK, Tosi LRO. Shuttle mutagenesis and targeted disruption of a telomere-located essential gene of Leishmania. Parasitology 2006; 134:511-22. [PMID: 17169165 DOI: 10.1017/s0031182006001892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 10/06/2006] [Accepted: 10/10/2006] [Indexed: 11/06/2022]
Abstract
Leishmania mutants have contributed greatly to extend our knowledge of this parasite's biology. Here we report the use of the mariner in vitro transposition system as a source of reagents for shuttle mutagenesis and targeted disruption of Leishmania genes. The locus-specific integration was achieved by the disruption of the subtelomeric gene encoding a DNA-directed RNA polymerase III subunit (RPC2). Further inactivation of RPC2 alleles required the complementation of the intact gene, which was transfected in an episomal context. However, attempts to generate a RPC2 chromosomal null mutant resulted in genomic rearrangements that maintained copies of the intact locus in the genome. The maintenance of the RPC2 chromosomal locus in complemented mutants was not mediated by an increase in the number of copies and did not involve chromosomal translocations, which are the typical characteristics of the genomic plasticity of this parasite. Unlike the endogenous locus, the selectable marker used to disrupt RPC2 did not display a tendency to remain in its chromosomal location but was targeted into supernumerary episomal molecules.
Collapse
Affiliation(s)
- F M Squina
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brasil
| | | | | | | | | |
Collapse
|
22
|
Dumas C, Chow C, Müller M, Papadopoulou B. A novel class of developmentally regulated noncoding RNAs in Leishmania. EUKARYOTIC CELL 2006; 5:2033-46. [PMID: 17071827 PMCID: PMC1694821 DOI: 10.1128/ec.00147-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Leishmania is a protozoan parasite that causes serious morbidity and mortality in humans worldwide. The ability of these parasites to survive within the phagolysosomes of mammalian macrophages is dependent on the developmental regulation of a variety of genes. Identifying genomic sequences that are preferentially expressed during the parasite's intracellular growth would provide new insights about the mechanisms controlling stage-specific gene regulation for intracellular development of the parasite. Using a genomic library that differentially hybridized to probes made from total RNA from Leishmania infantum amastigote or promastigote life cycle stages, we identified a new class of noncoding RNAs (ncRNAs) ranging from approximately 300 to 600 nucleotides in size that are expressed specifically in the intracellular amastigote stage. These ncRNAs are transcribed by RNA polymerase II from genomic clusters of tandem head-to-tail repeats, which are mainly located within subtelomeric regions. Remarkably, both the sense and antisense orientations of these ncRNAs are transcribed and are processed by trans splicing and polyadenylation. The levels of antisense transcripts are at least 10-fold lower than those of the sense transcripts and are tightly regulated. The sense and antisense ncRNAs are cytosolic as shown by fluorescence in situ hybridization studies and cosediment with a small ribonucleoprotein complex. Amastigote-specific regulation of these ncRNAs possibly occurs at the level of RNA stability. Interestingly, overexpression of these ncRNAs in promastigotes, as part of an episomal expression vector, failed to produce any transcript, which further highlights the instability of these RNAs in the promastigote stage. This is the first report describing developmentally regulated ncRNAs in protozoan parasites.
Collapse
Affiliation(s)
- Carole Dumas
- Infectious Diseases Research Center, CHUL Research Center, CHUQ, Laval University, 2705 Laurier Blvd., Quebec, Canada G1V 4G2
| | | | | | | |
Collapse
|
23
|
Giardini MA, Lira CBB, Conte FF, Camillo LR, de Siqueira Neto JL, Ramos CHI, Cano MIN. The putative telomerase reverse transcriptase component of Leishmania amazonensis: gene cloning and characterization. Parasitol Res 2006; 98:447-54. [PMID: 16416120 DOI: 10.1007/s00436-005-0036-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 09/26/2005] [Indexed: 01/18/2023]
Abstract
The Leishmania amazonensis telomerase gene was cloned by a polymerase chain reaction-based strategy using primers designed from a Leishmania major sequence that shared similarities with conserved telomerase motifs. The genes from three other species were cloned for comparative purposes. A ClustalW multiple-sequence alignment demonstrated that the Leishmania telomerases show greater homology with each other than with the proteins of other kinetoplastids and eukaryotes. Characterization experiments indicated that the putative Leishmania telomerase gene was probably in single copy and located in the largest chromosomes. A single messenger ribonucleic acid transcript was found in promastigotes. Phylogenetic analysis suggested that Leishmania telomerase might represent a liaison between the oldest and the newest branches of telomerases.
Collapse
Affiliation(s)
- Miriam A Giardini
- Departamento de Patologia Clínica, Núcleo de Medicina e Cirurgia Experimental, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), CP 6109, Campinas, SP, CEP 13083-970, Brazil
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Telomeres are multifunctional genetic elements that cap chromosome ends, playing essential roles in genome stability, chromosome higher-order organization and proliferation control. The telomere field has largely benefited from the study of unicellular eukaryotic organisms such as yeasts. Easy cultivation in laboratory conditions and powerful genetics have placed mainly Saccharomyces cerevisiae, Kluveromyces lactis and Schizosaccharomyces pombe as crucial model organisms for telomere biology research. Studies in these species have made it possible to elucidate the basic mechanisms of telomere maintenance, function and evolution. Moreover, comparative genomic analyses show that telomeres have evolved rapidly among yeast species and functional plasticity emerges as one of the driving forces of this evolution. This provides a precious opportunity to further our understanding of telomere biology.
Collapse
Affiliation(s)
- M T Teixeira
- Laboratoire de Biologie Moléculaire de la Cellule of Ecole Normale Supérieure de Lyon, UMR CNRS/INRA/ENS, IFR 128 BioSciences Lyon Gerland, 46 Allée d'Italie, 69364 Lyon cedex 07, France.
| | | |
Collapse
|
25
|
Pedrosa AL, Silva AM, Ruiz JC, Cruz AK. Characterization of LST-R533: uncovering a novel repetitive element in Leishmania. Int J Parasitol 2005; 36:211-7. [PMID: 16368097 DOI: 10.1016/j.ijpara.2005.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2005] [Revised: 10/07/2005] [Accepted: 10/14/2005] [Indexed: 11/25/2022]
Abstract
We have previously isolated and sequenced a novel repetitive element, now named LST-R533, which is present in four different regions of one extremity of Leishmania major chromosome 20. The repeats are polymorphic in size, ranging from 367 to 533 bp and contain an internal 81 bp sequence with highly conserved segments (14-81 bp long) dispersed throughout the parasite's genome. These sequences were not found in coding regions of any predicted gene in L. major Friedlin genome, but are part of untranslated regions of some Leishmania transcripts. Analysis of the 81 bp sequence revealed significant degrees of identity with retrotransposons described in several other organisms. The presence of the sequence in other species from genus Leishmania was determined by Southern hybridisation and DNA sequencing. This analysis indicated the conservation of the 81-nucleotide element in all the Leishmania species evaluated. No sequences corresponding to LST-R533 or the 81 bp element were found on either Trypanosoma brucei or Trypanosoma cruzi databanks.
Collapse
Affiliation(s)
- André L Pedrosa
- Departamento de Ciências Biológicas, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
26
|
Conte FF, Cano MIN. Genomic organization of telomeric and subtelomeric sequences of Leishmania (Leishmania) amazonensis. Int J Parasitol 2005; 35:1435-43. [PMID: 16126212 DOI: 10.1016/j.ijpara.2005.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 05/20/2005] [Accepted: 05/24/2005] [Indexed: 11/21/2022]
Abstract
Telomeres are DNA-protein complexes that protect linear chromosomes from degradation and fusions. Telomeric DNA is repetitive and G-rich, and protrudes towards the end of the chromosomes as 3'G-overhangs. In Leishmania spp., sequences adjacent to telomeres comprise the Leishmania conserved telomere associated sequences (LCTAS) that are around 100 bp long and contain two conserved sequence elements (CSB1 and CSB2), in addition to non-conserved sequences. The aim of this work was to study the genomic organization of Leishmania (Leishmania) amazonensis telomeric/subtelomeric sequences. Leishmania amazonensis chromosomes were separated in a single Pulsed Field Gel Electrophoresis (PFGE) gel as 25 ethidium bromide-stained bands. All of the bands hybridized with the telomeric probe (5'-TTAGGG-3')3 and with probes generated from the conserved subtelomeric elements (CSB1, CSB2). Terminal restriction fragments (TRF) of L. amazonensis chromosomes were analyzed by hybridizing restriction digested genomic DNA and chromosomal DNA separated in 2D-PFGE with the telomeric probe. The L. amazonensis TRF was estimated to be approximately 3.3 kb long and the telomeres were polymorphic and ranged in size from 0.2 to 1.0 kb. Afa I restriction sites within the conserved CSB1 elements released the telomeres from the rest of the chromosome. Bal 31-sensitive analysis confirmed the presence of terminal Afa I restriction sites and served to differentiate telomeric fragments from interstitial internal sequences. The size of the L. amazonensis 3' G-overhang was estimated by non-denaturing Southern blotting to be approximately 12 nt long. Using similar approaches, the subtelomeric domains CSB1 and CSB2 were found to be present in a low copy number compared to telomeres and were organized in blocks of 0.3-1.5 kb flanked by Hinf I and Hae III restriction sites. A model for the organization of L. amazonensis chromosomal ends is provided.
Collapse
Affiliation(s)
- F F Conte
- Departamento de Patologia Clínica, Núcleo de Medicina e Cirurgia Experimental, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), CP 6109, 13083-970, Campinas, SP, Brazil
| | | |
Collapse
|
27
|
Horn D, Barry JD. The central roles of telomeres and subtelomeres in antigenic variation in African trypanosomes. Chromosome Res 2005; 13:525-33. [PMID: 16132817 DOI: 10.1007/s10577-005-0991-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Telomeres and subtelomeres are important to the virulence of a number of pathogens, as they harbour large diverse gene families associated with the maintenance of infection. Evasion of immunity by African trypanosomes involves the differential expression of variant surface glycoproteins (VSGs), which are encoded by a family of >1500 genes and pseudogenes. This silent archive is located subtelomerically and is activated by gene conversion into specialized transcription units, which themselves are subject to silencing by allelic exclusion. Current research addresses the role of telomeres in the conversion and silencing mechanisms and in the diversification of the VSG archive.
Collapse
Affiliation(s)
- David Horn
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | |
Collapse
|
28
|
Abstract
The structures of specific chromosome regions, centromeres and telomeres, present a number of puzzles. As functions performed by these regions are ubiquitous and essential, their DNA, proteins and chromatin structure are expected to be conserved. Recent studies of centromeric DNA from human, Drosophila and plant species have demonstrated that a hidden universal centromere-specific sequence is highly unlikely. The DNA of telomeres is more conserved consisting of a tandemly repeated 6-8 bp Arabidopsis-like sequence in a majority of organisms as diverse as protozoan, fungi, mammals and plants. However, there are alternatives to short DNA repeats at the ends of chromosomes and for telomere elongation by telomerase. Here we focus on the similarities and diversity that exist among the structural elements, DNA sequences and proteins, that make up terminal domains (telomeres and subtelomeres), and how organisms use these in different ways to fulfil the functions of end-replication and end-protection.
Collapse
Affiliation(s)
- Edward J Louis
- Department of Genetics, University of Leicester, Leicester UK.
| | | |
Collapse
|
29
|
Victoir K, Arevalo J, De Doncker S, Barker DC, Laurent T, Godfroid E, Bollen A, Le Ray D, Dujardin JC. Complexity of the major surface protease (msp) gene organization inLeishmania (Viannia) braziliensis: evolutionary and functional implications. Parasitology 2005; 131:207-14. [PMID: 16145937 DOI: 10.1017/s0031182005007535] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The major surface protease (msp orgp63) ofLeishmaniaplays a major role in the host–parasite interaction. We analysed here the structure of the msp gene locus inLeishmania (Viannia) braziliensisand compared it to results obtained in other species. Physical mapping of cosmid contigs revealed a minimum of 37 genes per haploid genome and at least 8 different msp gene families. Within the same organism, these genes showed a nucleotide sequence varying in certain stretches from 3 to 34%, and a mosaic structure. From an evolutionary point of view, major differences were observed between subgeneraVianniaandLeishmania, both in terms of msp gene number and sequence. Within subgenusViannia, phenetic analysis revealed three clusters in which sequence variants ofL. (Viannia) braziliensisandL. (Viannia) guyanensiswere interspersed. Functional implications of our results were explored from predictedL. (Viannia) braziliensisprotein sequences: regions encoding the msp catalytic site showed a conserved sequence, while regions encoding surface domains possibly involved in the host–parasite interaction (macrophage adhesion sites and immunodominant B-cell and T-cell epitopes) were variable. We speculate that this would be an adaptive strategy of the parasite.
Collapse
Affiliation(s)
- K Victoir
- Laboratory of Molecular Parasitology, Instituut voor Tropische Geneeskunde 'Prins Leopold', 155 Nationalestraat, B-2000 Antwerpen, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Akopyants NS, Matlib RS, Bukanova EN, Smeds MR, Brownstein BH, Stormo GD, Beverley SM. Expression profiling using random genomic DNA microarrays identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major. Mol Biochem Parasitol 2004; 136:71-86. [PMID: 15138069 DOI: 10.1016/j.molbiopara.2004.03.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2004] [Revised: 03/08/2004] [Accepted: 03/09/2004] [Indexed: 11/19/2022]
Abstract
To complete its life cycle, protozoan parasites of the genus Leishmania undergo at least three major developmental transitions. However, previous efforts to identify genes showing stage regulated changes in transcript abundance have yielded relatively few. Here we used expression profiling to assess changes in transcript abundance in three stages: replicating promastigotes and infective non-replicating metacyclics, which occur in the sand fly vector, and in the amastigote stage residing with macrophage phagolysosomes in mammals. Microarrays were developed containing 11,484 PCR products that included a number of known genes and 10,464 random 1 kb genomic DNA fragments. Arrays were hybridized in triplicate and genes showing two-fold or greater changes in 2/3 experiments were scored as differentially expressed. Remarkably, only about one percent of the DNAs expression varied by this criteria, in either stage comparison. Northern blot analysis confirmed the predicted change in mRNA abundance for most of these (68%). This set of genes included most of those previously identified in the literature as differentially regulated as well as a number of novel genes. Notably, Leishmania maxicircle transcripts showed strong up-regulation in metacyclic and amastigote parasites, probably associated with changes in parasite energy metabolism. However, current data suggest that expression profiling using shotgun DNA libraries significantly underestimates the extent of regulated transcripts.
Collapse
Affiliation(s)
- Natalia S Akopyants
- Department of Molecular Microbiology, Center for Infectious Disease Research, Washington University School of Medicine, Campus Box 8230, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Fernández MF, Castellari RR, Conte FF, Gozzo FC, Sabino AA, Pinheiro H, Novello JC, Eberlin MN, Cano MIN. Identification of three proteins that associate in vitro with the Leishmania (Leishmania) amazonensis G-rich telomeric strand. ACTA ACUST UNITED AC 2004; 271:3050-63. [PMID: 15233802 DOI: 10.1111/j.1432-1033.2004.04237.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chromosomal ends of Leishmania (Leishmania) amazonensis contain conserved 5'-TTAGGG-3' telomeric repeats. Protein complexes that associate in vitro with these DNA sequences, Leishmania amazonensis G-strand telomeric protein (LaGT1-3), were identified and characterized by electrophoretic mobility shift assays and UV cross-linking using protein fractions purified from S100 and nuclear extracts. The three complexes did not form (a) with double-stranded DNA and the C-rich telomeric strand, (b) in competition assays using specific telomeric DNA oligonucleotides, or (c) after pretreatment with proteinase K. LaGT1 was the most specific and did not bind a Tetrahymena telomeric sequence. All three LaGTs associated with an RNA sequence cognate to the telomeric G-rich strand and a complex similar to LaGT1 is formed with a double-stranded DNA bearing a 3' G-overhang tail. The protein components of LaGT2 and LaGT3 were purified by affinity chromatography and identified, after renaturation, as approximately 35 and approximately 52 kDa bands, respectively. The <or= 15 kDa protein component of LaGT1 was gel-purified as a UV cross-linked complex of approximately 18-20 kDa. Peptides generated from trypsin digestion of the affinity and gel-purified protein bands were analysed by matrix-assisted laser desorption/ionization-time of flight and electrospray ionization tandem mass spectrometry. The fingerprint and amino acid sequence analysis showed that the protein components of LaGT2 and of LaGT3 were, respectively, similar to the kinetoplastid Rbp38p and to the putative subunit 1 of replication protein A of Leishmania spp., whereas the <or= 15 kDa protein component of LaGT1 was probably a novel Leishmania protein.
Collapse
Affiliation(s)
- Maribel F Fernández
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wickstead B, Ersfeld K, Gull K. Repetitive elements in genomes of parasitic protozoa. Microbiol Mol Biol Rev 2003; 67:360-75, table of contents. [PMID: 12966140 PMCID: PMC193867 DOI: 10.1128/mmbr.67.3.360-375.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repetitive DNA elements have been a part of the genomic fauna of eukaryotes perhaps since their very beginnings. Millions of years of coevolution have given repeats central roles in chromosome maintenance and genetic modulation. Here we review the genomes of parasitic protozoa in the context of the current understanding of repetitive elements. Particular reference is made to repeats in five medically important species with ongoing or completed genome sequencing projects: Plasmodium falciparum, Leishmania major, Trypanosoma brucei, Trypanosoma cruzi, and Giardia lamblia. These organisms are used to illustrate five thematic classes of repeats with different structures and genomic locations. We discuss how these repeat classes may interact with parasitic life-style and also how they can be used as experimental tools. The story which emerges is one of opportunism and upheaval which have been employed to add genetic diversity and genomic flexibility.
Collapse
Affiliation(s)
- Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | |
Collapse
|
33
|
Worthey EA, Martinez-Calvillo S, Schnaufer A, Aggarwal G, Cawthra J, Fazelinia G, Fong C, Fu G, Hassebrock M, Hixson G, Ivens AC, Kiser P, Marsolini F, Rickel E, Rickell E, Salavati R, Sisk E, Sunkin SM, Stuart KD, Myler PJ. Leishmania major chromosome 3 contains two long convergent polycistronic gene clusters separated by a tRNA gene. Nucleic Acids Res 2003; 31:4201-10. [PMID: 12853638 PMCID: PMC167632 DOI: 10.1093/nar/gkg469] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Leishmania parasites (order Kinetoplastida, family Trypanosomatidae) cause a spectrum of human diseases ranging from asymptomatic to lethal. The approximately 33.6 Mb genome is distributed among 36 chromosome pairs that range in size from approximately 0.3 to 2.8 Mb. The complete nucleotide sequence of Leishmania major Friedlin chromosome 1 revealed 79 protein-coding genes organized into two divergent polycistronic gene clusters with the mRNAs transcribed towards the telomeres. We report here the complete nucleotide sequence of chromosome 3 (384 518 bp) and an analysis revealing 95 putative protein-coding ORFs. The ORFs are primarily organized into two large convergent polycistronic gene clusters (i.e. transcribed from the telomeres). In addition, a single gene at the left end is transcribed divergently towards the telomere, and a tRNA gene separates the two convergent gene clusters. Numerous genes have been identified, including those for metabolic enzymes, kinases, transporters, ribosomal proteins, spliceosome components, helicases, an RNA-binding protein and a DNA primase subunit.
Collapse
Affiliation(s)
- E A Worthey
- Seattle Biomedical Research Institute, 4 Nickerson Street, Seattle, WA 98109-1651, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chiurillo MA, Santos MRM, Franco Da Silveira J, Ramírez JL. An improved general approach for cloning and characterizing telomeres: the protozoan parasite Trypanosoma cruzi as model organism. Gene 2002; 294:197-204. [PMID: 12234681 DOI: 10.1016/s0378-1119(02)00768-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We here describe a general strategy for cloning and characterizing telomeric and sub-telomeric regions of the human protozoan parasite Trypanosoma cruzi. The use of a bacterial artificial chromosome vector and a telomeric adaptor produced stable telomeric recombinant clones with inserts ranging from 5 to 25 kb. Analysis of these recombinants provided unique landmarks for chromosomal mapping and sequencing and enabled us to derive a more accurate picture of T. cruzi telomeric organization.
Collapse
Affiliation(s)
- Miguel Angel Chiurillo
- Laboratorio de Genetica Molecular, Instituto de Biologia Experimental Universidad Central de Venezuela calle Suapure, Colinas de Bello Monte, Apdo 47525, Caracas 1041-A, Venezuela
| | | | | | | |
Collapse
|
35
|
Dubessay P, Ravel C, Bastien P, Stuart K, Dedet JP, Blaineau C, Pagès M. Mitotic stability of a coding DNA sequence-free version of Leishmania major chromosome 1 generated by targeted chromosome fragmentation. Gene 2002; 289:151-9. [PMID: 12036593 DOI: 10.1016/s0378-1119(02)00506-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The deletion of a 260-kb segment containing all the coding DNA sequences (CDS) of chromosome 1 of Leishmania major Friedlin strain was performed through homologous recombination during a transfection experiment. This allowed the selection of a mutant clone containing a linear extra chromosome sizing 155 kb (XC155). The structure of XC155 was determined by restriction analysis and DNA cloning and sequencing of the gel-purified chromosome: it is made of a 'mirror' inverted duplication of the 'right' end of chromosome 1a (approximately 25 kb at each end), and in its central part of a complex tandem amplification of the linearized transfection vector containing the hygromycin resistance gene (over approximately 105 kb). No sequence of the coding region of chromosome 1 (including the 1.6-kb 'switch' region) was found. By contrast, XC155 contains two large (approximately 13 kb) clusters of tandemly repeated subtelomeric sequences (272-bp 'satellite' DNA) as well as telomeric hexamer repeats. This extra chromosome was found to be mitotically stable after >150 generations without selective pressure in vitro. Two sequence elements are considered which may have an effect on mitotic stability and participate to centromeric function in this extra chromosome: the amplification of the input vector and the 272-bp 'satellite' DNA bound by telomeric repeats.
Collapse
Affiliation(s)
- Pascal Dubessay
- CNRS UMR5093 Génome et Biologie Moléculaire des Protozoaires Parasites, Laboratoire de Parasitologie-Mycologie, Faculté de Médecine, 163 Rue A. Broussonet, F-34090 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Fu G, Melville SE. Polymorphism in the subtelomeric regions of chromosomes of Kinetoplastida. Trans R Soc Trop Med Hyg 2002; 96 Suppl 1:S31-40. [PMID: 12055849 DOI: 10.1016/s0035-9203(02)90049-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Leishmania spp. and the related kinetoplastid Trypanosoma brucei are single-celled parasites. In Leishmania, the nuclear genome comprises 36 diploid chromosomes and occasional amplified minichromosomes, while the T. brucei nucleus contains 11 larger diploid chromosomes and a variable number of intermediate-sized and minichromosomes. This paper primarily describes the subtelomeric structure of the larger diploid chromosomes of L. major and T. brucei, although some aspects may also apply to smaller chromosomes. The diploid chromosomes contain most protein-coding genes and vary in size. The telomeric sequence is common to both species, but adjacent subtelomeric repeats vary between species and chromosomes. It is possible that some of the complex repeats described here play a role in stabilizing replication and copy number of the chromosomes. The subtelomeric regions of T. brucei chromosomes differ from those of other protozoan parasites, as they are dedicated to expression sites for variant surface glycoprotein genes, used by the parasite to evade immune destruction by antigenic variation. Variation in these sites creates segmental aneuploidy in many T. brucei chromosomes.
Collapse
Affiliation(s)
- Guoliang Fu
- Imperial College School of Medicine, Hammersmith Hospital, London, W12 0NN, UK
| | | |
Collapse
|
37
|
Chiurillo MA, Ramírez JL. Charaterization of Leishmania major Friedlin telomeric terminus. Mem Inst Oswaldo Cruz 2002; 97:343-6. [PMID: 12048562 DOI: 10.1590/s0074-02762002000300011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here we have characterized Leishmania major (Friedlin) telomeric terminus (the very end) using recombinants obtained by a vector-adaptor cloning protocol. As in L. donovani, the last nine nucleotides of L. major terminus are 5'-GGTTAGGGT-OH 3', differing from Trypanosoma cruzi and T. brucei terminus 5'GGGTTAGGG-OH 3', thus indicating that these sequences are genus specific. We have also made a comparative analysis between L. major and L. donovani telomere-associated sequences, and described a novel non-repeated telomeric associated sequence common to L. major low molecular weight chromosomal bands.
Collapse
Affiliation(s)
- Miguel Angel Chiurillo
- Laboratorio de Genetica Molecular, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| | | |
Collapse
|
38
|
Abstract
Trypanosomatids are severe pathogens in developing countries, where they affect both humans and domestic animals. Factors intrinsic to the host, the toxicity or subcurative effects of the available antiparasite medication and the low perspective of potential vaccines favor research on novel candidates for drug target. Telomeres are essential for the survival of most eukaryotes. In trypanosomatids, events such as antigenic variation and/or gene conversion and duplication occur at telomeric positions, possibly facilitating genome rearrangement. Understanding the role that telomere maintenance might play in the cell life span of trypanosomatids has important implications for therapeutics of parasitic diseases.
Collapse
Affiliation(s)
- M I Cano
- Depart. de Genéticae Evolução, Instituto de Biologyia, Universidade Estadual de Campinas, UNICAMP, Cidade Universitária Zeferino Vaz, 13083-970, Campinas, Brazil.
| |
Collapse
|
39
|
Tamar S, Papadopoulou B. A telomere-mediated chromosome fragmentation approach to assess mitotic stability and ploidy alterations of Leishmania chromosomes. J Biol Chem 2001; 276:11662-73. [PMID: 11152684 DOI: 10.1074/jbc.m009006200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used a telomere-associated chromosome fragmentation strategy to induce internal chromosome-specific breakage of Leishmania chromosomes. The integration of telomeric repeats from the kinetoplastid Trypanosoma brucei into defined positions of the Leishmania genome by homologous recombination can induce chromosome breakage accompanied by the deletion of the chromosomal part that is distal to the site of the break. The cloned telomeric DNA at the end of the truncated chromosomes is functional and it can seed the formation of new telomeric repeats. We found that genome ploidy is often altered upon telomere-mediated chromosome fragmentation events resulting in large chromosomal deletions. In most cases diploidy is either preserved, or partial trisomic cells are observed, but interestingly we report here the generation of partial haploid mutants in this diploid organism. Partial haploid Leishmania mutants should facilitate studies on the function of chromosome-assigned genes. We also present several lines of evidence for the presence of sequences involved in chromosome mitotic stability and segregation during cell cycle in this parasitic protozoan. Telomere-directed chromosome fragmentation studies in Leishmania may constitute a useful tool to assay for centromere function.
Collapse
Affiliation(s)
- S Tamar
- Centre de Recherche en Infectiologie, Centre de Recherche du CHUL et Département de Biologie Médicale, Faculté de Médecine, Université Laval, Québec G1V 4G2, Canada
| | | |
Collapse
|
40
|
Pedrosa AL, Ruiz JC, Tosi LR, Cruz AK. Characterisation of three chromosomal ends of Leishmania major reveals transcriptional activity across arrays of reiterated and unique sequences. Mol Biochem Parasitol 2001; 114:71-80. [PMID: 11356515 DOI: 10.1016/s0166-6851(01)00237-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The 36 chromosomes of the parasite Leishmania major range in size from 200 kb to approximately 2.5 Mb and variation between homologues seems to be restricted to the telomeric and subtelomeric regions. We have isolated three cosmids carrying the telomere hexameric repeat and assigned them to the extreme location of chromosomes 3, 7 and 20. When considering the distribution of repetitive sequences, Southern analysis of the three chromosomal ends indicated the existence of at least two classes of chromosomal extremities: one of them is composed almost exclusively of unique sequences and the other is characterised by patches of both reiterated and unique sequences. We devised a transfection-based strategy that allowed the determination of a map of transcripts in each of the regions examined. Sequencing of the chromosome 20 cosmid revealed the existence of a novel class of reiterated sequence, LST-R378, and 10 ORFs drawing a map of putative genes compatible with the map of transcripts.
Collapse
Affiliation(s)
- A L Pedrosa
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900 14049-900, SP, Ribeirão Preto, Brazil
| | | | | | | |
Collapse
|
41
|
Ogata N, Morino H. Elongation of repetitive DNA by DNA polymerase from a hyperthermophilic bacterium Thermus thermophilus. Nucleic Acids Res 2000; 28:3999-4004. [PMID: 11024180 PMCID: PMC110782 DOI: 10.1093/nar/28.20.3999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Short repetitive DNA sequences are believed to be one of the primordial genetic elements that served as a source of complex large DNA found in the genome of modern organisms. However, the mechanism of its expansion (increase in repeat number) during the course of evolution is unclear. We demonstrate that the DNA polymerase of the hyperthermophilic bacterium Thermus thermophilus can elongate oligoDNA with several tandem repeats to very long DNA in vitro. For instance, 48mer repetitive oligoDNA (TACATGTA)(6), which has 25% GC content and a palindromic sequence, can be elongated up to approximately 10 000 bases by DNA polymerase at 74 degrees C without template DNA. OligoDNA having a different GC content or a quasi-palindromic sequence can also be elongated, but less efficiently. A spectroscopic thermal melting experiment with the oligoDNA showed that its hairpin-coil transition temperature was very close to the elongation reaction temperature (74 degrees C), but was much higher than the temperature at which duplex oligoDNA can exist stably. Taken together, we conclude that repetitive oligoDNA with a palindromic or quasi-palindromic sequence is elongated extensively by a hyperthermophilic DNA polymerase through hairpin-coil transitions. We propose that such an elongation mechanism might have been a driving force to expand primordial short DNA.
Collapse
Affiliation(s)
- N Ogata
- Taiko Pharmaceutical Co., Ltd, 3-34-14 Uchihonmachi, Suita, Osaka 564-0032, Japan.
| | | |
Collapse
|
42
|
Sohanpal B, Wasawo D, Bishop R. Cloning of telomere-associated DNA using single-specific-primer polymerase chain reaction provides evidence for a conserved sequence directly adjacent to Theileria parva telomeric repeats. Gene 2000; 255:401-9. [PMID: 11024301 DOI: 10.1016/s0378-1119(00)00284-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Telomere-associated (TA) DNA sequences of the intracellular protozoan parasite Theileria parva were isolated by a novel strategy using a modified version of single-specific-primer polymerase chain reaction (SSP-PCR). Nucleotide sequences of non-coding TA DNA from three telomeres (6017bp, 2435bp and 4859bp) contained no extensive tracts of repetitive DNA. Long open reading frames (ORFs) were present at the centromeric ends of two of the TA sequences, the 3' ends of the closest ORFs being only 2670bp and 2719bp from the telomeric repeats. There were regions of significant similarity between the nucleotide sequences of the non-coding regions of different telomeres. The longest region of similarity was a virtually identical 1650bp domain, located directly adjacent to the telomeric repeats of two separate telomeres. Comparison of the telomere proximal sequences defined in this study and two additional T. parva telomeres, whose sequences were determined previously, resulted in identification of a single copy 141bp conserved sequence directly adjacent to the telomeric repeats. The conserved sequence is present at all five T. parva telomeres that have been characterised. The only organism currently known to have a single copy conserved sequence located adjacent to the telomeric repeats is another intracellular protozoan, Leishmania braziliensis.
Collapse
Affiliation(s)
- B Sohanpal
- International Livestock Research Institute (ILRI), PO Box 30709, Nairobi, Kenya
| | | | | |
Collapse
|
43
|
Sunkin SM, Kiser P, Myler PJ, Stuart K. The size difference between leishmania major friedlin chromosome one homologues is localized to sub-telomeric repeats at one chromosomal end. Mol Biochem Parasitol 2000; 109:1-15. [PMID: 10924752 DOI: 10.1016/s0166-6851(00)00215-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Leishmania species are members of the evolutionarily ancient protozoan order Kinetoplastidae and are important human pathogens. The Leishmania genome is relatively small (approximately 34 Mbp) and is distributed among 36 chromosome pairs, ranging in size from 0.3 to 2.5 Mbp. The smallest chromosome of Leishmania major Friedlin, chrl, consists of three homologues which differ in size by approximately 29 kb. Previous sequence and Southern analyses of all three homologues reveal a conserved chromosomal core, consisting of coding and adjacent 'non-informational' sequence. Here we show the size difference between homologues is largely restricted to variation in both the number and content of several sub-telomeric repetitive elements localized on one chromosomal end. These repetitive elements also occur on other chromosomes, but some are more dispersed in the Leishmania genome than others.
Collapse
Affiliation(s)
- S M Sunkin
- Seattle Biomedical Research Institute, WA 98109-1651, USA
| | | | | | | |
Collapse
|
44
|
Rosén M, Edström J. DNA structures common for chironomid telomeres terminating with complex repeats. INSECT MOLECULAR BIOLOGY 2000; 9:341-347. [PMID: 10886419 DOI: 10.1046/j.1365-2583.2000.00193.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tandem repeats, 340 bp long, have been shown to terminate the chromosomes in Chironomus pallidivittatus and similar DNA may be used for this purpose by related insects. In view of the importance of Chironomus in telomere studies, representing in principle a third system after short repeats and Drosophila telomeric retrotransposons, we have investigated the related Chironomus dilutus, to learn what DNA structures are conserved at the chromosome ends. Interspersed subrepeats in the telomeric repeats, which contain a long palindrome, and a zone of about 100 bp of relatively constant subtelomeric DNA towards the junction to the telomeric DNA, are characteristic for C. dilutus as for previously investigated species. C. dilutus has similar subtelomeric DNA at all chromosome ends, but typical telomeric repeats in only seven of the pairs since the eighth telocentric pair contains centromere-specific repeats.
Collapse
Affiliation(s)
- M Rosén
- Department of Genetics, Lund University, Lund, Sweden
| | | |
Collapse
|
45
|
Chiurillo MA, Beck AE, Devos T, Myler PJ, Stuart K, Ramirez JL. Cloning and characterization of Leishmania donovani telomeres. Exp Parasitol 2000; 94:248-58. [PMID: 10831393 DOI: 10.1006/expr.2000.4499] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe here the cloning and sequence characterization of the absolute termini of several telomeres from the human parasite Leishmania donovani using a vector-adapter protocol. The 3' protruding strand of L. donovani telomeres terminates with the sequence 5'-GGTTAGGGT-OH 3'. This single-stranded sequence is adjacent to tandemly repeated blocks of double-stranded sequence consisting of variable numbers of the hexameric repeat 5'-TAGGGT-3', variable numbers of an octameric repeat 5'-TGGTCATG-3', and a single 62-bp sequence, in that order. A number of additional, more chromosome-internal, nonrepeated sequences were found adjacent to the telomere sequences. Hybridization analyses indicated that some of these telomere adjacent sequences are found on all L. donovani chromosomes, some are more abundant on certain subsets of chromosomes, and some are unique to individual chromosomes.
Collapse
Affiliation(s)
- M A Chiurillo
- Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The Leishmania Genome Network (LGN) was born in Rio de Janeiro, Brazil in 1994. In the short period that has elapsed since then, the LGN has focused solely on the acquisition of the resources, and hence data, that have enabled a rational approach to genomic sequencing of the reference strain, Leishmania major Friedlin. This has now been achieved. In this review, Alasdair Ivens and Jennie Blackwell, secretary and chairman of the LGN, respectively, re-examine the approaches that were adopted, comment on some of the interesting data that have been obtained and introduce some genome-wide approaches that will facilitate functional studies of the parasite.
Collapse
Affiliation(s)
- A C Ivens
- The Sanger Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | | |
Collapse
|
47
|
Myler PJ, Audleman L, deVos T, Hixson G, Kiser P, Lemley C, Magness C, Rickel E, Sisk E, Sunkin S, Swartzell S, Westlake T, Bastien P, Fu G, Ivens A, Stuart K. Leishmania major Friedlin chromosome 1 has an unusual distribution of protein-coding genes. Proc Natl Acad Sci U S A 1999; 96:2902-6. [PMID: 10077609 PMCID: PMC15867 DOI: 10.1073/pnas.96.6.2902] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leishmania are evolutionarily ancient protozoans (Kinetoplastidae) and important human pathogens that cause a spectrum of diseases ranging from the asymptomatic to the lethal. The Leishmania genome is relatively small [ approximately 34 megabases (Mb)], lacks substantial repetitive DNA, and is distributed among 36 chromosomes pairs ranging in size from 0.3 Mb to 2.5 Mb, making it a useful candidate for complete genome sequence determination. We report here the nucleotide sequence of the smallest chromosome, chr1. The sequence of chr1 has a 257-kilobase region that is densely packed with 79 protein-coding genes. This region is flanked by telomeric and subtelomeric repetitive elements that vary in number and content among the chr1 homologs, resulting in an approximately 27.5-kilobase size difference. Strikingly, the first 29 genes are all encoded on one DNA strand, whereas the remaining 50 genes are encoded on the opposite strand. Based on the gene density of chr1, we predict a total of approximately 9,800 genes in Leishmania, of which 40% may encode unknown proteins.
Collapse
Affiliation(s)
- P J Myler
- Seattle Biomedical Research Institute, 4 Nickerson Street, Seattle, WA 98109-1651, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fu G, Perona-Wright G, Barker DC. Leishmania braziliensis: characterisation of a complex specific subtelomeric repeat sequence and its use in the detection of parasites. Exp Parasitol 1998; 90:236-43. [PMID: 9806868 DOI: 10.1006/expr.1998.4326] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A 1.6-kb tandem repeat sequence had previously been identified in the subtelomeric region of mini- and megabase chromosomes from Leishmania braziliensis. Southern hybridisation was used to demonstrate that the repeat is complex specific. The sequence was characterised in strains representing four species of the L. braziliensis complex. This data allowed an assessment of the evolutionary relationship of the four species. PCR primers targeted to the repeat amplify only DNA from species of the L. braziliensis complex. Titration assays indicate that a minimum of 50 fg of parasite DNA can be detected by PCR alone. Southern hybridisation increases the limit of detection to 5 fg. Interspecies variation in the repeat sequence enabled restriction enzyme digestion of PCR products to distinguish individual species within the L. braziliensis complex.
Collapse
Affiliation(s)
- G Fu
- MRC Outstation of NIMR, Molteno Laboratories, Department of Pathology, University of Cambridge, CB2 1QP, U.K
| | | | | |
Collapse
|