1
|
Narducci DN, Hansen AS. Putative looping factor ZNF143/ZFP143 is an essential transcriptional regulator with no looping function. Mol Cell 2025; 85:9-23.e9. [PMID: 39708803 DOI: 10.1016/j.molcel.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/20/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
Interactions between distal loci, including those involving enhancers and promoters, are a central mechanism of gene regulation in mammals, yet the protein regulators of these interactions remain largely undetermined. The zinc-finger transcription factor (TF) ZNF143/ZFP143 has been strongly implicated as a regulator of chromatin interactions, functioning either with or without CTCF. However, how ZNF143/ZFP143 functions as a looping factor is not well understood. Here, we tagged both CTCF and ZNF143/ZFP143 with dual-purpose degron/imaging tags to combinatorially assess their looping function and effect on each other. We find that ZNF143/ZFP143, contrary to prior reports, possesses no general looping function in mouse and human cells and that it largely functions independently of CTCF. Instead, ZNF143/ZFP143 is an essential and highly conserved transcription factor that largely binds promoters proximally, exhibits an extremely stable chromatin dwell time (>20 min), and regulates an important subset of mitochondrial and ribosomal genes.
Collapse
Affiliation(s)
- Domenic N Narducci
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Zhang M, Huang H, Li J, Wu Q. ZNF143 deletion alters enhancer/promoter looping and CTCF/cohesin geometry. Cell Rep 2024; 43:113663. [PMID: 38206813 DOI: 10.1016/j.celrep.2023.113663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/28/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
The transcription factor ZNF143 contains a central domain of seven zinc fingers in a tandem array and is involved in 3D genome construction. However, the mechanism by which ZNF143 functions in chromatin looping remains unclear. Here, we show that ZNF143 directionally recognizes a diverse range of genomic sites directly within enhancers and promoters and is required for chromatin looping between these sites. In addition, ZNF143 is located between CTCF and cohesin at numerous CTCF sites, and ZNF143 removal narrows the space between CTCF and cohesin. Moreover, genetic deletion of ZNF143, in conjunction with acute CTCF degradation, reveals that ZNF143 and CTCF collaborate to regulate higher-order topological chromatin organization. Finally, CTCF depletion enlarges direct ZNF143 chromatin looping. Thus, ZNF143 is recruited by CTCF to the CTCF sites to regulate CTCF/cohesin configuration and TAD (topologically associating domain) formation, whereas directional recognition of genomic DNA motifs directly by ZNF143 itself regulates promoter activity via chromatin looping.
Collapse
Affiliation(s)
- Mo Zhang
- Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Medical Genomics, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; WLA Laboratories, Shanghai 201203, China
| | - Haiyan Huang
- Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Medical Genomics, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; WLA Laboratories, Shanghai 201203, China
| | - Jingwei Li
- Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Medical Genomics, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; WLA Laboratories, Shanghai 201203, China
| | - Qiang Wu
- Center for Comparative Biomedicine, Ministry of Education Key Laboratory of Systems Biomedicine, State Key Laboratory of Medical Genomics, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; WLA Laboratories, Shanghai 201203, China.
| |
Collapse
|
3
|
Lata E, Choquet K, Sagliocco F, Brais B, Bernard G, Teichmann M. RNA Polymerase III Subunit Mutations in Genetic Diseases. Front Mol Biosci 2021; 8:696438. [PMID: 34395528 PMCID: PMC8362101 DOI: 10.3389/fmolb.2021.696438] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
RNA polymerase (Pol) III transcribes small untranslated RNAs such as 5S ribosomal RNA, transfer RNAs, and U6 small nuclear RNA. Because of the functions of these RNAs, Pol III transcription is best known for its essential contribution to RNA maturation and translation. Surprisingly, it was discovered in the last decade that various inherited mutations in genes encoding nine distinct subunits of Pol III cause tissue-specific diseases rather than a general failure of all vital functions. Mutations in the POLR3A, POLR3C, POLR3E and POLR3F subunits are associated with susceptibility to varicella zoster virus-induced encephalitis and pneumonitis. In addition, an ever-increasing number of distinct mutations in the POLR3A, POLR3B, POLR1C and POLR3K subunits cause a spectrum of neurodegenerative diseases, which includes most notably hypomyelinating leukodystrophy. Furthermore, other rare diseases are also associated with mutations in genes encoding subunits of Pol III (POLR3H, POLR3GL) and the BRF1 component of the TFIIIB transcription initiation factor. Although the causal relationship between these mutations and disease development is widely accepted, the exact molecular mechanisms underlying disease pathogenesis remain enigmatic. Here, we review the current knowledge on the functional impact of specific mutations, possible Pol III-related disease-causing mechanisms, and animal models that may help to better understand the links between Pol III mutations and disease.
Collapse
Affiliation(s)
- Elisabeth Lata
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Karine Choquet
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Francis Sagliocco
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Bernard Brais
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Martin Teichmann
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| |
Collapse
|
4
|
Maksimenko OG, Fursenko DV, Belova EV, Georgiev PG. CTCF As an Example of DNA-Binding Transcription Factors Containing Clusters of C2H2-Type Zinc Fingers. Acta Naturae 2021; 13:31-46. [PMID: 33959385 PMCID: PMC8084297 DOI: 10.32607/actanaturae.11206] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
In mammals, most of the boundaries of topologically associating domains and all well-studied insulators are rich in binding sites for the CTCF protein. According to existing experimental data, CTCF is a key factor in the organization of the architecture of mammalian chromosomes. A characteristic feature of the CTCF is that the central part of the protein contains a cluster consisting of eleven domains of C2H2-type zinc fingers, five of which specifically bind to a long DNA sequence conserved in most animals. The class of transcription factors that carry a cluster of C2H2-type zinc fingers consisting of five or more domains (C2H2 proteins) is widely represented in all groups of animals. The functions of most C2H2 proteins still remain unknown. This review presents data on the structure and possible functions of these proteins, using the example of the vertebrate CTCF protein and several well- characterized C2H2 proteins in Drosophila and mammals.
Collapse
Affiliation(s)
- O. G. Maksimenko
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | | - E. V. Belova
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | |
Collapse
|
5
|
Huning L, Kunkel GR. The ubiquitous transcriptional protein ZNF143 activates a diversity of genes while assisting to organize chromatin structure. Gene 2020; 769:145205. [PMID: 33031894 DOI: 10.1016/j.gene.2020.145205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
Zinc Finger Protein 143 (ZNF143) is a pervasive C2H2 zinc-finger transcriptional activator protein regulating the efficiency of eukaryotic promoter regions. ZNF143 is able to activate transcription at both protein coding genes and small RNA genes transcribed by either RNA polymerase II or RNA polymerase III. Target genes regulated by ZNF143 are involved in an array of different cellular processes including both cancer and development. Although a key player in regulating eukaryotic genes, the molecular mechanism by with ZNF143 binds and activates genes transcribed by two different polymerases is still relatively unknown. In addition to its role as a transcriptional regulator, recent genomics experiments have implicated ZNF143 as a potential co-factor involved in chromatin looping and establishing higher order structure within the genome. This review focuses primarily on possible activation mechanisms of promoters by ZNF143, with less emphasis on the role of ZNF143 in cancer and development, and its function in establishing higher order chromatin contacts within the genome.
Collapse
Affiliation(s)
- Laura Huning
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | - Gary R Kunkel
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.
| |
Collapse
|
6
|
Ye B, Yang G, Li Y, Zhang C, Wang Q, Yu G. ZNF143 in Chromatin Looping and Gene Regulation. Front Genet 2020; 11:338. [PMID: 32318100 PMCID: PMC7154149 DOI: 10.3389/fgene.2020.00338] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/20/2020] [Indexed: 01/02/2023] Open
Abstract
ZNF143, a human homolog of the transcriptional activator Staf, is a C2H2-type protein consisting of seven zinc finger domains. As a transcription factor (TF), ZNF143 is sequence specifically binding to chromatin and activates the expression of protein-coding and non-coding genes on a genome scale. Although it is ubiquitous expressed, its expression in cancer cells and tissues is usually higher than that in normal cells and tissues. Therefore, abnormal expression of ZNF143 is related to cancer cell survival, proliferation, differentiation, migration, and invasion, suggesting that new small molecules can be designed by targeting ZNF143 as it may be a good potential biomarker and therapeutic target for related cancers. However, the mechanism on how ZNF143 regulates its targeting gene remains unclear. Recently, with the development of chromatin conformation capture (3C) and its derivatives, and high-throughput sequencing technology, new findings have been obtained in the study of ZNF143. Pioneering studies have showed that ZNF143 binds directly to promoters and contributes to chromatin interactions connecting promoters to distal regulatory elements, such as enhancers. Further, it has proved that ZNF143 is involved in CCCTC-binding factor (CTCF) in establishing the conserved chromatin loops by cooperating with cohesin and other partners. These results indicate that ZNF143 is a key loop formation factor. In addition, we report ZNF143 is dynamically bound to chromatin during the cell cycle demonstrated that it is a potential mitotic bookmarking factor. It may be associated with CTCF for mitosis-to-G1 phase transition and chromatin loop re-establishment in early G1 phase. In the future, researchers could further clarify the fine mechanism of ZNF143 in mediating chromatin loops with the help of CUT&RUN (CUT&Tag) and Cut-C technology. Thus, in this review, we summarize the research progress of TF ZNF143 in detail and also predict the potential functions of ZNF143 in cell fate and identity based on our recent discoveries.
Collapse
Affiliation(s)
- Bingyu Ye
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,College of Life Sciences, Henan Normal University, Xinxiang, China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, China
| | - Ganggang Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,College of Life Sciences, Henan Normal University, Xinxiang, China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, China
| | - Yuanmeng Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Chunyan Zhang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,College of Life Sciences, Henan Normal University, Xinxiang, China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, China
| | - Qiwen Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,College of Life Sciences, Henan Normal University, Xinxiang, China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,College of Life Sciences, Henan Normal University, Xinxiang, China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, China
| |
Collapse
|
7
|
Gonzalez D, Luyten A, Bartholdy B, Zhou Q, Kardosova M, Ebralidze A, Swanson KD, Radomska HS, Zhang P, Kobayashi SS, Welner RS, Levantini E, Steidl U, Chong G, Collombet S, Choi MH, Friedman AD, Scott LM, Alberich-Jorda M, Tenen DG. ZNF143 protein is an important regulator of the myeloid transcription factor C/EBPα. J Biol Chem 2017; 292:18924-18936. [PMID: 28900037 PMCID: PMC5704476 DOI: 10.1074/jbc.m117.811109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
The transcription factor C/EBPα is essential for myeloid differentiation and is frequently dysregulated in acute myeloid leukemia. Although studied extensively, the precise regulation of its gene by upstream factors has remained largely elusive. Here, we investigated its transcriptional activation during myeloid differentiation. We identified an evolutionarily conserved octameric sequence, CCCAGCAG, ∼100 bases upstream of the CEBPA transcription start site, and demonstrated through mutational analysis that this sequence is crucial for C/EBPα expression. This sequence is present in the genes encoding C/EBPα in humans, rodents, chickens, and frogs and is also present in the promoters of other C/EBP family members. We identified that ZNF143, the human homolog of the Xenopus transcriptional activator STAF, specifically binds to this 8-bp sequence to activate C/EBPα expression in myeloid cells through a mechanism that is distinct from that observed in liver cells and adipocytes. Altogether, our data suggest that ZNF143 plays an important role in the expression of C/EBPα in myeloid cells.
Collapse
Affiliation(s)
- David Gonzalez
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Annouck Luyten
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
| | - Boris Bartholdy
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Qiling Zhou
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
| | - Miroslava Kardosova
- the Institute of Molecular Genetics of the ASCR, Prague 142 20, Czech Republic
- the Childhood Leukaemia Investigation Prague, Second Faculty of Medicine Charles University, University Hospital Motol, Prague 150 06, Czech Republic
| | - Alex Ebralidze
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Kenneth D Swanson
- the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Hanna S Radomska
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
- The Ohio State University, Comprehensive Cancer Center, Columbus, Ohio 43210, and
| | - Pu Zhang
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Susumu S Kobayashi
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
- the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Robert S Welner
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
- the Hematology/Oncology Department, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Elena Levantini
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
- the Institute of Biomedical Technologies, National Research Council, 56124 Pisa, Italy
| | - Ulrich Steidl
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
- the Department of Cell Biology, and Department of Medicine (Oncology), Albert Einstein College of Medicine, New York, New York 10461
| | - Gilbert Chong
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
| | - Samuel Collombet
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
| | - Min Hee Choi
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
| | | | - Linda M Scott
- the The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Meritxell Alberich-Jorda
- the Institute of Molecular Genetics of the ASCR, Prague 142 20, Czech Republic,
- the Childhood Leukaemia Investigation Prague, Second Faculty of Medicine Charles University, University Hospital Motol, Prague 150 06, Czech Republic
| | - Daniel G Tenen
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore,
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
8
|
Laszkiewicz A, Sniezewski L, Kasztura M, Bzdzion L, Cebrat M, Kisielow P. Bidirectional activity of the NWC promoter is responsible for RAG-2 transcription in non-lymphoid cells. PLoS One 2012; 7:e44807. [PMID: 22984564 PMCID: PMC3439442 DOI: 10.1371/journal.pone.0044807] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/14/2012] [Indexed: 11/18/2022] Open
Abstract
The recombination-activating genes (RAG-1 and RAG-2) encode a V(D)J recombinase responsible for rearrangements of antigen-receptor genes during T and B cell development, and RAG expression is known to correlate strictly with the process of rearrangement. In contrast to RAG-1, the expression of RAG-2 was not previously detected during any other stage of lymphopoiesis or in any other normal tissue. Here we report that the CpG island-associated promoter of the NWC gene (the third evolutionarily conserved gene in the RAG locus), which is located in the second intron of RAG-2, has bidirectional activity and is responsible for the detectable transcription of RAG-2 in some non-lymphoid tissues. We also identify evolutionarily conserved promoter fragments responsible for this bidirectional activity, and show that it is activated by transcription factor ZFP143. The possible implications of our findings are briefly discussed.
Collapse
Affiliation(s)
- Agnieszka Laszkiewicz
- Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Lukasz Sniezewski
- Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Monika Kasztura
- Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Lukasz Bzdzion
- Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Malgorzata Cebrat
- Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- * E-mail:
| | - Pawel Kisielow
- Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
9
|
Forced Expression of ZNF143 Restrains Cancer Cell Growth. Cancers (Basel) 2011; 3:3909-20. [PMID: 24213117 PMCID: PMC3763402 DOI: 10.3390/cancers3043909] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/10/2011] [Accepted: 10/12/2011] [Indexed: 12/30/2022] Open
Abstract
We previously reported that the transcription factor Zinc Finger Protein 143 (ZNF143) regulates the expression of genes associated with cell cycle and cell division, and that downregulation of ZNF143 induces cell cycle arrest at G2/M. To assess the function of ZNF143 expression in the cell cycle, we established two cells with forced expression of ZNF143 derived from PC3 prostate cancer cell lines. These cell lines overexpress genes associated with cell cycle and cell division, such as polo-like kinase 1 (PLK1), aurora kinase B (AURKB) and some minichromosome maintenance complex components (MCM). However, the doubling time of cells with forced expression of ZNF143 was approximately twice as long as its control counterpart cell line. Analysis following serum starvation and re-seeding showed that PC3 cells were synchronized at G1 in the cell cycle. Also, ZNF143 expression fluctuated, and was at its lowest level in G2/M. However, PC3 cells with forced expression of ZNF143 synchronized at G2/M, and showed lack of cell cycle-dependent fluctuation of nuclear expression of MCM proteins. Furthermore, G2/M population of both cisplatin-resistant PCDP6 cells over-expressing ZNF143 (derived from PC3 cells) and cells with forced expression of ZNF143 was significantly higher than that of each counterpart, and the doubling time of PCDP6 cells is about 2.5 times longer than that of PC3 cells. These data suggested that fluctuations in ZNF143 expression are required both for gene expression associated with cell cycle and for cell division.
Collapse
|
10
|
Anno YN, Myslinski E, Ngondo-Mbongo RP, Krol A, Poch O, Lecompte O, Carbon P. Genome-wide evidence for an essential role of the human Staf/ZNF143 transcription factor in bidirectional transcription. Nucleic Acids Res 2010; 39:3116-27. [PMID: 21177654 PMCID: PMC3082894 DOI: 10.1093/nar/gkq1301] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In the human genome, ∼10% of the genes are arranged head to head so that their transcription start sites reside within <1 kbp on opposite strands. In this configuration, a bidirectional promoter generally drives expression of the two genes. How bidirectional expression is performed from these particular promoters constitutes a puzzling question. Here, by a combination of in silico and biochemical approaches, we demonstrate that hStaf/ZNF143 is involved in controlling expression from a subset of divergent gene pairs. The binding sites for hStaf/ZNF143 (SBS) are overrepresented in bidirectional versus unidirectional promoters. Chromatin immunoprecipitation assays with a significant set of bidirectional promoters containing putative SBS revealed that 93% of them are associated with hStaf/ZNF143. Expression of dual reporter genes directed by bidirectional promoters are dependent on the SBS integrity and requires hStaf/ZNF143. Furthermore, in some cases, functional SBS are located in bidirectional promoters of gene pairs encoding a noncoding RNA and a protein gene. Remarkably, hStaf/ZNF143 per se exhibits an inherently bidirectional transcription activity, and together our data provide the demonstration that hStaf/ZNF143 is indeed a transcription factor controlling the expression of divergent protein–protein and protein–non-coding RNA gene pairs.
Collapse
Affiliation(s)
- Yannick-Noël Anno
- Department of Structural Biology and Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, The Centre National de la Recherche Scientifique, UMR7104, F-67400 Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Izumi H, Wakasugi T, Shimajiri S, Tanimoto A, Sasaguri Y, Kashiwagi E, Yasuniwa Y, Akiyama M, Han B, Wu Y, Uchiumi T, Arao T, Nishio K, Yamazaki R, Kohno K. Role of ZNF143 in tumor growth through transcriptional regulation of DNA replication and cell-cycle-associated genes. Cancer Sci 2010; 101:2538-45. [PMID: 20860770 PMCID: PMC11159644 DOI: 10.1111/j.1349-7006.2010.01725.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cell cycle is strictly regulated by numerous mechanisms to ensure cell division. The transcriptional regulation of cell-cycle-related genes is poorly understood, with the exception of the E2F family that governs the cell cycle. Here, we show that a transcription factor, zinc finger protein 143 (ZNF143), positively regulates many cell-cycle-associated genes and is highly expressed in multiple solid tumors. RNA-interference (RNAi)-mediated knockdown of ZNF143 showed that expression of 152 genes was downregulated in human prostate cancer PC3 cells. Among these ZNF143 targets, 41 genes (27%) were associated with cell cycle and DNA replication including cell division cycle 6 homolog (CDC6), polo-like kinase 1 (PLK1) and minichromosome maintenance complex component (MCM) DNA replication proteins. Furthermore, RNAi of ZNF143 induced apoptosis following G2/M cell cycle arrest. Cell growth of 10 lung cancer cell lines was significantly correlated with cellular expression of ZNF143. Our data suggest that ZNF143 might be a master regulator of the cell cycle. Our findings also indicate that ZNF143 is a member of the growing list of non-oncogenes that are promising cancer drug targets.
Collapse
Affiliation(s)
- Hiroto Izumi
- Department of Molecular Biology Otorhinolaryngology Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nishihara M, Yamada M, Nozaki M, Nakahira K, Yanagihara I. Transcriptional regulation of the human establishment of cohesion 1 homolog 2 gene. Biochem Biophys Res Commun 2010; 393:111-7. [PMID: 20116366 DOI: 10.1016/j.bbrc.2010.01.094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 01/22/2010] [Indexed: 01/30/2023]
Abstract
Transcriptional regulation of human establishment of cohesion 1 homolog 2 (ESCO2), the causative gene of Roberts syndrome, was investigated. Deletion and mutation analyses of the ESCO2 promoter indicated that the selenocysteine tRNA-activating factor (Staf) binding site (SBS) is an essential element for transcriptional activation of ESCO2. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay revealed that the zinc finger protein 143 (ZNF143), a human homolog of Xenopus Staf, bound to the ESCO2 promoter. The ACTACAN submotif, adjacent to SBS, also contributed to transcriptional activation of ESCO2. EMSA indicated that the ACTACAN submotif was not involved in binding of ZNF143 to SBS. S phase-specific expression of the ESCO2 gene was confirmed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR), but EMSA revealed binding of ZNF143 to SBS in G1/S and G2/M phases. These results demonstrated that SBS functioned as the basal transcriptional activator of the S phase-specific gene ESCO2, but other mechanisms are required for cell cycle-dependent expression.
Collapse
Affiliation(s)
- Masahiro Nishihara
- Department of Developmental Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Osaka 594-1101, Japan
| | | | | | | | | |
Collapse
|
13
|
Kelly VP, Suzuki T, Nakajima O, Arai T, Tamai Y, Takahashi S, Nishimura S, Yamamoto M. The distal sequence element of the selenocysteine tRNA gene is a tissue-dependent enhancer essential for mouse embryogenesis. Mol Cell Biol 2005; 25:3658-69. [PMID: 15831471 PMCID: PMC1084291 DOI: 10.1128/mcb.25.9.3658-3669.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Appropriate expression of the selenocysteine tRNA (tRNA(Sec)) gene is necessary for the production of an entire family of selenoprotein enzymes. This study investigates the consequence of disrupting an upstream enhancer region of the mouse tRNA(Sec) gene (Trsp) known as the distal sequence element (DSE) by use of a conditional repair gene targeting strategy, in which a 3.2-kb insertion was introduced into the promoter of the gene. In the absence of DSE activity, homozygous mice failed to develop in utero beyond embryonic day 7.5 and had severely decreased levels of selenoprotein transcript. Cre-mediated removal of the selection cassette recovered DSE regulation of Trsp, restoring wild-type levels of tRNA(Sec) expression and allowing the generation of viable rescued mice. Further analysis of targeted heterozygous adult mice revealed that the enhancer activity of the DSE is tissue dependent since, in contrast to liver, heart does not require the DSE for normal expression of Trsp. Similarly, in mouse cell lines we showed that the DSE functions as a cell-line-specific inducible element of tRNA(Sec). Together, our data demonstrate that the DSE is a tissue-dependent regulatory element of tRNA(Sec) expression and that its activity is vital for sufficient tRNA(Sec) production during mouse embryogenesis.
Collapse
MESH Headings
- Animals
- Antioxidants/metabolism
- Base Sequence
- Embryo, Mammalian/cytology
- Embryo, Mammalian/enzymology
- Embryonic Development/genetics
- Embryonic Development/physiology
- Enhancer Elements, Genetic/genetics
- Enhancer Elements, Genetic/physiology
- Gene Expression Regulation, Developmental
- Gene Targeting
- Genes, Lethal/genetics
- Glutathione Peroxidase/genetics
- Glutathione Peroxidase/metabolism
- Heme Oxygenase (Decyclizing)/genetics
- Heme Oxygenase (Decyclizing)/metabolism
- Heme Oxygenase-1
- Liver/metabolism
- Membrane Proteins
- Mice/embryology
- Mice/genetics
- Molecular Sequence Data
- Myocardium/metabolism
- Proteins/genetics
- Proteins/metabolism
- RNA, Transfer, Amino Acid-Specific/analysis
- RNA, Transfer, Amino Acid-Specific/genetics
- Selenoproteins
- Tissue Distribution
- Up-Regulation
- Glutathione Peroxidase GPX1
Collapse
Affiliation(s)
- Vincent P Kelly
- Center for TARA, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8577, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Grossman CE, Qian Y, Banki K, Perl A. ZNF143 mediates basal and tissue-specific expression of human transaldolase. J Biol Chem 2003; 279:12190-205. [PMID: 14702349 DOI: 10.1074/jbc.m307039200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transaldolase regulates redox-dependent apoptosis through controlling NADPH and ribose 5-phosphate production via the pentose phosphate pathway. The minimal promoter sufficient to drive chloramphenicol acetyltransferase reporter gene activity was mapped to nucleotides -49 to -1 relative to the transcription start site of the human transaldolase gene. DNase I footprinting with nuclear extracts of transaldolase-expressing cell lines unveiled protection of nucleotides -29 to -16. Electrophoretic mobility shift assays identified a single dominant DNA-protein complex that was abolished by consensus sequence for transcription factor ZNF143/76 or mutation of the ZNF76/143 motif within the transaldolase promoter. Mutation of an AP-2alpha recognition sequence, partially overlapping the ZNF143 motif, increased TAL-H promoter activity in HeLa cells, without significant impact on HepG2 cells, which do not express AP-2alpha. Cooperativity of ZNF143 with AP-2alpha was supported by supershift analysis of HeLa cells where AP-2 may act as cell type-specific repressor of TAL promoter activity. However, overexpression of full-length ZNF143, ZNF76, or dominant-negative DNA-binding domain of ZNF143 enhanced, maintained, or abolished transaldolase promoter activity, respectively, in HepG2 and HeLa cells, suggesting that ZNF143 initiates transcription from the transaldolase core promoter. ZNF143 overexpression also increased transaldolase enzyme activity. ZNF143 and transaldolase expression correlated in 21 different human tissues and were coordinately upregulated 14- and 34-fold, respectively, in lactating mammary glands compared with nonlactating ones. Chromatin immunoprecipitation studies confirm that ZNF143/73 associates with the transaldolase promoter in vivo. Thus, ZNF143 plays a key role in basal and tissue-specific expression of transaldolase and regulation of the metabolic network controlling cell survival and differentiation.
Collapse
Affiliation(s)
- Craig E Grossman
- Department of Medicine, State University of New York, Upstate Medical University, College of Medicine, 750 East Adams Street, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|