1
|
Massimino M, Martorana F, Stella S, Vitale SR, Tomarchio C, Manzella L, Vigneri P. Single-Cell Analysis in the Omics Era: Technologies and Applications in Cancer. Genes (Basel) 2023; 14:1330. [PMID: 37510235 PMCID: PMC10380065 DOI: 10.3390/genes14071330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer molecular profiling obtained with conventional bulk sequencing describes average alterations obtained from the entire cellular population analyzed. In the era of precision medicine, this approach is unable to track tumor heterogeneity and cannot be exploited to unravel the biological processes behind clonal evolution. In the last few years, functional single-cell omics has improved our understanding of cancer heterogeneity. This approach requires isolation and identification of single cells starting from an entire population. A cell suspension obtained by tumor tissue dissociation or hematological material can be manipulated using different techniques to separate individual cells, employed for single-cell downstream analysis. Single-cell data can then be used to analyze cell-cell diversity, thus mapping evolving cancer biological processes. Despite its unquestionable advantages, single-cell analysis produces massive amounts of data with several potential biases, stemming from cell manipulation and pre-amplification steps. To overcome these limitations, several bioinformatic approaches have been developed and explored. In this work, we provide an overview of this entire process while discussing the most recent advances in the field of functional omics at single-cell resolution.
Collapse
Affiliation(s)
- Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Cristina Tomarchio
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
- Humanitas Istituto Clinico Catanese, University Oncology Department, 95045 Catania, Italy
| |
Collapse
|
2
|
Ordóñez CD, Redrejo-Rodríguez M. DNA Polymerases for Whole Genome Amplification: Considerations and Future Directions. Int J Mol Sci 2023; 24:9331. [PMID: 37298280 PMCID: PMC10253169 DOI: 10.3390/ijms24119331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
In the same way that specialized DNA polymerases (DNAPs) replicate cellular and viral genomes, only a handful of dedicated proteins from various natural origins as well as engineered versions are appropriate for competent exponential amplification of whole genomes and metagenomes (WGA). Different applications have led to the development of diverse protocols, based on various DNAPs. Isothermal WGA is currently widely used due to the high performance of Φ29 DNA polymerase, but PCR-based methods are also available and can provide competent amplification of certain samples. Replication fidelity and processivity must be considered when selecting a suitable enzyme for WGA. However, other properties, such as thermostability, capacity to couple replication, and double helix unwinding, or the ability to maintain DNA replication opposite to damaged bases, are also very relevant for some applications. In this review, we provide an overview of the different properties of DNAPs widely used in WGA and discuss their limitations and future research directions.
Collapse
Affiliation(s)
- Carlos D. Ordóñez
- CIC bioGUNE, Bizkaia Science and Technology Park, Building 800, 48160 Derio, Spain
| | - Modesto Redrejo-Rodríguez
- Department of Biochemistry, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas “Alberto Sols”, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
3
|
Abstract
The increasing interest towards cellular heterogeneity within cell populations has pushed the development of new protocols to isolate and analyze single cells. PCR-based amplification techniques are widely used in this field. However, setting up an experiment and analyzing the results can sometimes be challenging. The aim of this chapter is to provide a general overview on single-cell PCR analysis focusing on the potential pitfalls and on the possible solutions to successfully perform the analysis.
Collapse
|
4
|
Han T, Chang CW, Kwekel JC, Chen Y, Ge Y, Martinez-Murillo F, Roscoe D, Težak Z, Philip R, Bijwaard K, Fuscoe JC. Characterization of whole genome amplified (WGA) DNA for use in genotyping assay development. BMC Genomics 2012; 13:217. [PMID: 22655855 PMCID: PMC3403925 DOI: 10.1186/1471-2164-13-217] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/01/2012] [Indexed: 11/21/2022] Open
Abstract
Background Genotyping assays often require substantial amounts of DNA. To overcome the problem of limiting amounts of available DNA, Whole Genome Amplification (WGA) methods have been developed. The multiple displacement amplification (MDA) method using Φ29 polymerase has become the preferred choice due to its high processivity and low error rate. However, the uniformity and fidelity of the amplification process across the genome has not been extensively characterized. Results To assess amplification uniformity, we used array-based comparative genomic hybridization (aCGH) to evaluate DNA copy number variations (CNVs) in DNAs amplified by two MDA kits: GenomiPhi and REPLI-g. The Agilent Human CGH array containing nearly one million probes was used in this study together with DNAs from a normal subject and 2 cystic fibrosis (CF) patients. Each DNA sample was amplified 4 independent times and compared to its native unamplified DNA. Komogorov distances and Phi correlations showed a high consistency within each sample group. Less than 2% of the probes showed more than 2-fold CNV introduced by the amplification process. The two amplification kits, REPLI-g and GenomiPhi, generate very similar amplified DNA samples despite the differences between the unamplified and amplified DNA samples. The results from aCGH analysis indicated that there were no obvious CNVs in the CFTR gene region due to WGA when compared to unamplified DNA. This was confirmed by quantitative real-time PCR copy number assays at 10 locations within the CFTR gene. DNA sequencing analysis of a 2-kb region within the CFTR gene showed no mutations introduced by WGA. Conclusion The relatively high uniformity and consistency of the WGA process, coupled with the low replication error rate, suggests that WGA DNA may be suitable for accurate genotyping. Regions of the genome that were consistently under-amplified were found to contain higher than average GC content. Because of the consistent differences between the WGA DNA and the native unamplified DNA, characterization of the genomic region of interest, as described here, will be necessary to ensure the reliability of genotyping results from WGA DNA.
Collapse
Affiliation(s)
- Tao Han
- Division of Systems Biology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Moghaddaszadeh-Ahrabi S, Farajnia S, Rahimi-Mianji G, Nejati-Javaremi A. A short and simple improved-primer extension preamplification (I-PEP) procedure for whole genome amplification (WGA) of bovine cells. Anim Biotechnol 2012; 23:24-42. [PMID: 22292699 DOI: 10.1080/10495398.2011.630907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Embryo transfer is a reproductive technique that has a major impact on the dissemination of economically important genes and the rate of genetic gain in breeding schemes. In recent years, there has been increasing interest in the use of sexed and genotyped embryos in commercial embryo transfer programs. Marker/gene assisted selection (MAS/GAS) projects can be performed in the pre-implantation stage through mass production of characterized embryos. Biopsy of a few cells in the morulla stage is essential for pre-implantation genetic diagnosis (PGD), in which sex determination, evaluation of disease genes, and genotyping for candidate genes are performed. Limited quantity of cells and low amount of DNA restrict the use of multiple molecular analyses in PGD programs. Recently, whole genome amplification (WGA) techniques promise to overcome this problem by providing sufficient input DNA for analysis. Among several techniques proposed for WGA, the primer extension pre-amplification (PEP) and the improved-primer extension pre-amplification (I-PEP) methods are the most commonly used. However, these methods are time-consuming and need more than 12 h amplification cycles. Since the time is a critical parameter in the successful characterized embryo transfer, the shortening of diagnosis time is highly desirable. In this study, we developed a short and simple I-PEP procedure (~3 h) and evaluated its performance for the amplification of bovine genomic DNA. We assessed short WGA procedure by polymerase chain reaction (PCR) amplification of 7 specific loci. The results indicated that the short procedure possesses enough sensitivity for the molecular genetic analysis of 1 input cell. Although the efficiency of the method was 100%, there was an inconsistency between genomic DNA (gDNA) and whole genome amplification product (wgaDNA) genotypes for kappa-casein locus; that is, however, most likely due to allele drop-out (ADO) or false homozigocity. The results of this study indicate that with the application of reliable methods, WGA-amplified bovine DNA will be a useful source for sexing and genotyping bovine embryos in several quantitative trait locus (QTL) markers.
Collapse
Affiliation(s)
- S Moghaddaszadeh-Ahrabi
- Department of Animal Science, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran.
| | | | | | | |
Collapse
|
6
|
Deborggraeve S, Claes F, Laurent T, Mertens P, Leclipteux T, Dujardin JC, Herdewijn P, Büscher P. Molecular dipstick test for diagnosis of sleeping sickness. J Clin Microbiol 2006; 44:2884-9. [PMID: 16891507 PMCID: PMC1594664 DOI: 10.1128/jcm.02594-05] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human African trypanosomiasis (HAT) or sleeping sickness is a neglected disease that affects poor rural populations across sub-Saharan Africa. Confirmation of diagnosis is based on detection of parasites in either blood or lymph by microscopy. Here we present the development and the first-phase evaluation of a simple and rapid test (HAT-PCR-OC [human African trypanosomiasis-PCR-oligochromatography]) for detection of amplified Trypanosoma brucei DNA. PCR products are visualized on a dipstick through hybridization with a gold-conjugated probe (oligochromatography). Visualization is straightforward and takes only 5 min. Controls both for the PCR and for DNA migration are incorporated into the assay. The lower detection limit of the test is 5 fg of pure T. brucei DNA. One parasite in 180 microl of blood is still detectable. Sensitivity and specificity for T. brucei were calculated at 100% when tested on blood samples from 26 confirmed sleeping sickness patients, 18 negative controls (nonendemic region), and 50 negative control blood samples from an endemic region. HAT-PCR-OC is a promising new tool for diagnosis of sleeping sickness in laboratory settings, and the diagnostic format described here may have wider application for other infectious diseases.
Collapse
Affiliation(s)
- S Deborggraeve
- Department of Parasitology, Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerpen, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Lovmar L, Syvänen AC. Multiple displacement amplification to create a long-lasting source of DNA for genetic studies. Hum Mutat 2006; 27:603-14. [PMID: 16786504 DOI: 10.1002/humu.20341] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In many situations there may not be sufficient DNA collected from patient or population cohorts to meet the requirements of genome-wide analysis of SNPs, genomic copy number polymorphisms, or acquired copy number alternations. When the amount of available DNA for genotype analysis is limited, high performance whole-genome amplification (WGA) represents a new development in genetic analysis. It is especially useful for analysis of DNA extracted from stored histology slides, tissue samples, buccal swabs, or blood stains collected on filter paper. The multiple displacement amplification (MDA) method, which relies on isothermal amplification using the DNA polymerase of the bacteriophage phi29, is a recently developed technique for high performance WGA. This review addresses new trends in the technical performance of MDA and its applications to genetic analyses. The main challenge of WGA methods is to obtain balanced and faithful replication of all chromosomal regions without the loss of or preferential amplification of any genomic loci or allele. In multiple comparisons to other WGA methods, MDA appears to be most reliable for genotyping, with the most favorable call rates, best genomic coverage, and lowest amplification bias.
Collapse
Affiliation(s)
- Lovisa Lovmar
- Molecular Medicine, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
8
|
Abstract
One of the remaining obstacles to large-scale genetic mapping is the lack of an efficient way to genotype hundreds of thousands of genetic markers. Recently Jordan et al. reported that the 'random' sequences amplified by degenerate oligonucleotide primer (DOP)-PCR can be precisely mapped onto the human genome sequence and that it is possible to predict which DNA sequences will be amplified by a particular degenerate primer.
Collapse
Affiliation(s)
- Pui-Yan Kwok
- University of California, San Francisco, 505 Parnassus Ave., Long 1332A, Box 0130, San Francisco, CA 94118, USA.
| |
Collapse
|
9
|
Schalkwyk LC, Cusack B, Dunkel I, Hopp M, Kramer M, Palczewski S, Piefke J, Scheel S, Weiher M, Wenske G, Lehrach H, Himmelbauer H. Advanced integrated mouse YAC map including BAC framework. Genome Res 2001; 11:2142-50. [PMID: 11731506 PMCID: PMC311217 DOI: 10.1101/gr.176201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Functional characterization of the mouse genome requires the availability of a comprehensive physical map to obtain molecular access to chromosomal regions of interest. Positional cloning remains a crucial way of linking phenotype with particular genes. A key step and frequent stumbling block in positional cloning is making a contig of a genetically defined candidate region. The most efficient first step is isolating YAC (Yeast Artificial Chromosome) clones. A robust, detailed YAC contig map is thus an important tool. Employing Interspersed Repetitive Sequence (IRS)-PCR genomics, we have generated an advanced second-generation YAC contig map of the mouse genome that doubles both the depth of clones and the density of markers available. In addition to the primarily YAC-based map, we located 1942 BAC (Bacterial Artificial Chromosome) clones. This allows us to present for the first time a dense framework of BACs spanning the genome of the mouse, which, for instance, can serve as a nucleus for genomic sequencing. Four large-insert mouse YAC libraries from three different strains are included in our data, and our analysis incorporates the data of Hunter et al. and Nusbaum et al. There is a total of 20,205 markers on the final map, 12,033 from our own data, and a total of 56,093 YACs, of which 44,401 are positive for more than one marker.
Collapse
Affiliation(s)
- L C Schalkwyk
- Max-Planck-Institute of Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gösele C, Hong L, Kreitler T, Rossmann M, Hieke B, Gross U, Kramer M, Himmelbauer H, Bihoreau MT, Kwitek-Black AE, Twigger S, Tonellato PJ, Jacob HJ, Schalkwyk LC, Lindpaintner K, Ganten D, Lehrach H, Knoblauch M. High-throughput scanning of the rat genome using interspersed repetitive sequence-PCR markers. Genomics 2000; 69:287-94. [PMID: 11056046 DOI: 10.1006/geno.2000.6352] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the establishment of a hybridization-based marker system for the rat genome based on the PCR amplification of interspersed repetitive sequences (IRS). Overall, 351 IRS markers were mapped within the rat genome. The IRS marker panel consists of 210 nonpolymorphic and 141 polymorphic markers that were screened for presence/absence polymorphism patterns in 38 different rat strains and substrains that are commonly used in biomedical research. The IRS marker panel was demonstrated to be useful for rapid genome screening in experimental rat crosses and high-throughput characterization of large-insert genomic library clones. Information on corresponding YAC clones is made available for this IRS marker set distributed over the whole rat genome. The two existing rat radiation hybrid maps were integrated by placing the IRS markers in both maps. The genetic and physical mapping data presented provide substantial information for ongoing positional cloning projects in the rat.
Collapse
Affiliation(s)
- C Gösele
- Max-Planck Institute of Molecular Genetics, Ihnestrasse 73, Berlin-Dahlem, D-14195, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|