1
|
Timofeeva АА, Minina VI, Torgunakova AV, Soboleva ОА, Тitov RА, Zakharova YА, Bakanova ML, Glushkov АN. Polymorphic variants of the hOGG1, APEX1, XPD, SOD2, and CAT genes involved in DNA repair processes and antioxidant defense and their association with breast cancer risk. Vavilovskii Zhurnal Genet Selektsii 2024; 28:424-432. [PMID: 39027127 PMCID: PMC11253018 DOI: 10.18699/vjgb-24-48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/12/2024] [Accepted: 02/26/2024] [Indexed: 07/20/2024] Open
Abstract
Breast cancer is one of the leading causes of mortality among women. The most frequently encountered tumors are luminal tumors. Associations of polymorphisms in the hOGG1 (rs1052133), APEX1 (rs1130409), XPD (rs13181), SOD2 (rs4880), and CAT (rs1001179) genes were studied in 313 nonsmoking postmenopausal patients with luminal B subtype breast cancer. The control group consisted of 233 healthy nonsmoking postmenopausal women. Statistically significant associations of the XPD and APEX1 gene polymorphisms with the risk of developing luminal B Her2-negative subtype of breast cancer were observed in a log-additive inheritance model, while the CAT gene polymorphism showed an association in a dominant inheritance model (OR = 1.41; CI 95 %: 1.08-1.85; Padj.= 0.011; OR = 1.39; CI 95 %: 1.07-1.81; Padj = 0.013 и OR = 1.70; CI 95 %: 1.19-2.43; Padj = 0.004, respectively). In the group of elderly women (aged 60-74 years), an association of the CAT gene polymorphism with the risk of developing luminal B subtype of breast cancer was found in a log-additive inheritance model (OR = 1.87; 95 % CI: 1.22-2.85; Padj = 0.0024). Using MDR analysis, the most optimal statistically significant 3-locus model of gene-gene interactions in the development of luminal B Her2-negative subtype breast cancer was found. MDR analysis also showed a close interaction and mutual enhancement of effects between the APEX1 and SOD2 loci and the independence of the effects of these loci from the CAT locus in the formation of luminal B subtype breast cancer.
Collapse
Affiliation(s)
- А А Timofeeva
- Federal Research Center of Coal and Coal Chemistry of the Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russia
| | - V I Minina
- Federal Research Center of Coal and Coal Chemistry of the Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russia Kemerovo State University, Kemerovo, Russia
| | - A V Torgunakova
- Federal Research Center of Coal and Coal Chemistry of the Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russia Kemerovo State University, Kemerovo, Russia
| | - О А Soboleva
- Federal Research Center of Coal and Coal Chemistry of the Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russia
| | - R А Тitov
- Federal Research Center of Coal and Coal Chemistry of the Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russia Kemerovo State University, Kemerovo, Russia
| | - Ya А Zakharova
- Federal Research Center of Coal and Coal Chemistry of the Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russia Kemerovo State University, Kemerovo, Russia
| | - M L Bakanova
- Federal Research Center of Coal and Coal Chemistry of the Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russia
| | - А N Glushkov
- Federal Research Center of Coal and Coal Chemistry of the Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russia
| |
Collapse
|
2
|
Dai K, Wang Z, Gao B, Li L, Gu F, Tao X, You W, Wang Z. APE1 regulates mitochondrial DNA damage repair after experimental subarachnoid haemorrhage in vivo and in vitro. Stroke Vasc Neurol 2024; 9:230-242. [PMID: 37612054 PMCID: PMC11221324 DOI: 10.1136/svn-2023-002524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Subarachnoid haemorrhage (SAH) can result in a highly unfavourable prognosis. In recent years, the study of SAH has focused on early brain injury (EBI), which is a crucial progress that contributes to adverse prognosis. SAH can lead to various complications, including mitochondrial dysfunction and DNA damage. Apurinic/apyrimidinic endonuclease 1 (APE1) is an essential protein with multifaceted functionality integral to DNA repair and redox signalling. However, the role of APE1 in mitochondrial DNA damage repair after SAH is still unclear. METHODS Our study involved an in vivo endovascular perforation model in rats and an in vitro neuron oxyhaemoglobin intervention. Then, the effects of APE1 on mitochondrial DNA damage repair were analysed by western blot, immunofluorescence, quantitative real-time PCR, mitochondrial bioenergetics measurement and neurobehavioural experiments. RESULTS We found that the level of APE1 decreased while the mitochondria DNA damage and neuronal death increased in a rat model of SAH. Overexpression of APE1 improved short-term and long-term behavioural impairment in rats after SAH. In vitro, after primary neurons exposed to oxyhaemoglobin, APE1 expression significantly decreased along with increased mitochondrial DNA damage, a reduction in the subunit of respiratory chain complex levels and subsequent respiratory chain dysfunction. Overexpression of APE1 relieved energy metabolism disorders in the mitochondrial of neurons and reduced neuronal apoptosis. CONCLUSION In conclusion, APE1 is involved in EBI after SAH by affecting mitochondrial apoptosis via the mitochondrial respiratory chain. APE1 may potentially play a vital role in the EBI stage after SAH, making it a critical target for treatment.
Collapse
Affiliation(s)
- Kun Dai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Bixi Gao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Longyuan Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Feng Gu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Xinyu Tao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Wanchun You
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Manage SAH, Fleming AM, Chen HN, Burrows CJ. Cysteine Oxidation to Sulfenic Acid in APE1 Aids G-Quadruplex Binding While Compromising DNA Repair. ACS Chem Biol 2022; 17:2583-2594. [PMID: 36037088 PMCID: PMC9931449 DOI: 10.1021/acschembio.2c00511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Apurinic/apyrimidinic endonuclease-1 (APE1) is a base excision repair (BER) enzyme that is also engaged in transcriptional regulation. Previous work demonstrated that the enzymatic stalling of APE1 on a promoter G-quadruplex (G4) recruits transcription factors during oxidative stress for gene regulation. Also, during oxidative stress, cysteine (Cys) oxidation is a post-translational modification (PTM) that can change a protein's function. The current study provides a quantitative survey of cysteine oxidation to sulfenic acid in APE1 and how this PTM at specific cysteine residues affects the function of APE1 toward the NEIL3 gene promoter G4 bearing an abasic site. Of the seven cysteine residues in APE1, five (C65, C93, C208, C296, and C310) were prone to carbonate radical anion oxidation to yield sulfenic acids that were identified and quantified by mass spectrometry. Accordingly, five Cys-to-serine (Ser) mutants of APE1 were prepared and found to have attenuated levels of endonuclease activity, depending on the position, while KD values generally decreased for G4 binding, indicating greater affinity. These data support the concept that cysteine oxidation to sulfenic acid can result in modified APE1 that enhances G4 binding at the expense of endonuclease activity during oxidative stress. Cysteine oxidation to sulfenic acid residues should be considered as one of the factors that may trigger a switch from base excision repair activity to transcriptional modulation by APE1.
Collapse
Affiliation(s)
- Shereen A. Howpay Manage
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, UT 84112-0850, United States
| | - Aaron M. Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, UT 84112-0850, United States
| | - Hsiao-Nung Chen
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, UT 84112-0850, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, UT 84112-0850, United States
| |
Collapse
|
4
|
Titov RA, Minina VI, Torgunakova AV, Buslaev VY, Voronina EN, Prosekov AY, Titov VA, Glushkov AN. Studying the Role of DNA Repair Gene Polymorphism in Formation of Predisposition to Lung Cancer Development in Women. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Oliveira TT, Coutinho LG, de Oliveira LOA, Timoteo ARDS, Farias GC, Agnez-Lima LF. APE1/Ref-1 Role in Inflammation and Immune Response. Front Immunol 2022; 13:793096. [PMID: 35296074 PMCID: PMC8918667 DOI: 10.3389/fimmu.2022.793096] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional enzyme that is essential for maintaining cellular homeostasis. APE1 is the major apurinic/apyrimidinic endonuclease in the base excision repair pathway and acts as a redox-dependent regulator of several transcription factors, including NF-κB, AP-1, HIF-1α, and STAT3. These functions render APE1 vital to regulating cell signaling, senescence, and inflammatory pathways. In addition to regulating cytokine and chemokine expression through activation of redox sensitive transcription factors, APE1 participates in other critical processes in the immune response, including production of reactive oxygen species and class switch recombination. Furthermore, through participation in active chromatin demethylation, the repair function of APE1 also regulates transcription of some genes, including cytokines such as TNFα. The multiple functions of APE1 make it an essential regulator of the pathogenesis of several diseases, including cancer and neurological disorders. Therefore, APE1 inhibitors have therapeutic potential. APE1 is highly expressed in the central nervous system (CNS) and participates in tissue homeostasis, and its roles in neurodegenerative and neuroinflammatory diseases have been elucidated. This review discusses known roles of APE1 in innate and adaptive immunity, especially in the CNS, recent evidence of a role in the extracellular environment, and the therapeutic potential of APE1 inhibitors in infectious/immune diseases.
Collapse
Affiliation(s)
- Thais Teixeira Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | - Leonam Gomes Coutinho
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), São Paulo do Potengi, Brazil
| | | | | | - Guilherme Cavalcanti Farias
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | - Lucymara Fassarella Agnez-Lima
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
- *Correspondence: Lucymara Fassarella Agnez-Lima,
| |
Collapse
|
6
|
Minina V, Timofeeva A, Torgunakova A, Soboleva O, Bakanova M, Savchenko Y, Voronina E, Glushkov A, Prosekov A, Fucic A. Polymorphisms in DNA Repair and Xenobiotic Biotransformation Enzyme Genes and Lung Cancer Risk in Coal Mine Workers. Life (Basel) 2022; 12:life12020255. [PMID: 35207542 PMCID: PMC8874498 DOI: 10.3390/life12020255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Currently coal mining employs over 7 million miners globally. This occupational setting is associated with exposure to dust particles, heavy metals, polycyclic aromatic hydrocarbons and radioactive radon, significantly increasing the risk of lung cancer (LC). The susceptibility for LC is modified by genetic variations in xenobiotic detoxification and DNA repair capacity. The aim of this study was to investigate the association between GSTM1 (deletion), APEX1 (rs1130409), XPD (rs13181) and NBS1 (rs1805794) gene polymorphisms and LC risk in patients who worked in coal mines. Methods: The study included 639 residents of the coal region of Western Siberia (Kemerovo region, Russia): 395 underground miners and 244 healthy men who do not work in industrial enterprises. Genotyping was performed using real-time and allele-specific PCR. Results: The results show that polymorphisms of APEX1 (recessive model: ORadj = 1.87; CI 95%: 1.01–3.48) and XPD (log additive model: ORadj = 2.25; CI 95%: 1.59–3.19) genes were associated with increased LC risk. GSTM1 large deletion l was linked with decreased risk of LC formation (ORadj = 0.59, CI 95%: 0.36–0.98). The multifactor dimensionality reduction method for 3-loci model of gene–gene interactions showed that the GSTM1 (large deletion)—APEX1 (rs1130409)—XPD (rs13181) model was related with a risk of LC development. Conclusions: The results of this study highlight an association between gene polymorphism combinations and LC risks in coal mine workers.
Collapse
Affiliation(s)
- Varvara Minina
- The Federal Research Center of Coal and Coal Chemistry of Siberian Branch, Federal State Budget Scientifc Institution, Russian Academy of Sciences, Department of Human Ecology, 650065 Kemerovo, Russia; (V.M.); (A.T.); (O.S.); (M.B.); (Y.S.); (A.G.)
- Department of Genetics and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia; (A.T.); (A.P.)
| | - Anna Timofeeva
- Department of Genetics and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia; (A.T.); (A.P.)
| | - Anastasya Torgunakova
- The Federal Research Center of Coal and Coal Chemistry of Siberian Branch, Federal State Budget Scientifc Institution, Russian Academy of Sciences, Department of Human Ecology, 650065 Kemerovo, Russia; (V.M.); (A.T.); (O.S.); (M.B.); (Y.S.); (A.G.)
- Department of Genetics and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia; (A.T.); (A.P.)
| | - Olga Soboleva
- The Federal Research Center of Coal and Coal Chemistry of Siberian Branch, Federal State Budget Scientifc Institution, Russian Academy of Sciences, Department of Human Ecology, 650065 Kemerovo, Russia; (V.M.); (A.T.); (O.S.); (M.B.); (Y.S.); (A.G.)
| | - Marina Bakanova
- The Federal Research Center of Coal and Coal Chemistry of Siberian Branch, Federal State Budget Scientifc Institution, Russian Academy of Sciences, Department of Human Ecology, 650065 Kemerovo, Russia; (V.M.); (A.T.); (O.S.); (M.B.); (Y.S.); (A.G.)
| | - Yana Savchenko
- The Federal Research Center of Coal and Coal Chemistry of Siberian Branch, Federal State Budget Scientifc Institution, Russian Academy of Sciences, Department of Human Ecology, 650065 Kemerovo, Russia; (V.M.); (A.T.); (O.S.); (M.B.); (Y.S.); (A.G.)
- Department of Genetics and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia; (A.T.); (A.P.)
| | - Elena Voronina
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, Pharmacogenomics Laboratoriey, Lavrentiev Ave 8, 630090 Novosibirsk, Russia;
| | - Andrey Glushkov
- The Federal Research Center of Coal and Coal Chemistry of Siberian Branch, Federal State Budget Scientifc Institution, Russian Academy of Sciences, Department of Human Ecology, 650065 Kemerovo, Russia; (V.M.); (A.T.); (O.S.); (M.B.); (Y.S.); (A.G.)
| | - Alexander Prosekov
- Department of Genetics and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia; (A.T.); (A.P.)
| | - Aleksandra Fucic
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
7
|
Probing altered enzyme activity in the biochemical characterization of cancer. Biosci Rep 2022; 42:230680. [PMID: 35048115 PMCID: PMC8819661 DOI: 10.1042/bsr20212002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Enzymes have evolved to catalyze their precise reactions at the necessary rates, locations, and time to facilitate our development, to respond to a variety of insults and challenges, and to maintain a healthy, balanced state. Enzymes achieve this extraordinary feat through their unique kinetic parameters, myriad regulatory strategies, and their sensitivity to their surroundings, including substrate concentration and pH. The Cancer Genome Atlas (TCGA) highlights the extraordinary number of ways in which the finely tuned activities of enzymes can be disrupted, contributing to cancer development and progression often due to somatic and/or inherited genetic alterations. Rather than being limited to the domain of enzymologists, kinetic constants such as kcat, Km, and kcat/Km are highly informative parameters that can impact a cancer patient in tangible ways—these parameters can be used to sort tumor driver mutations from passenger mutations, to establish the pathways that cancer cells rely on to drive patients’ tumors, to evaluate the selectivity and efficacy of anti-cancer drugs, to identify mechanisms of resistance to treatment, and more. In this review, we will discuss how changes in enzyme activity, primarily through somatic mutation, can lead to altered kinetic parameters, new activities, or changes in conformation and oligomerization. We will also address how changes in the tumor microenvironment can affect enzymatic activity, and briefly describe how enzymology, when combined with additional powerful tools, and can provide us with tremendous insight into the chemical and molecular mechanisms of cancer.
Collapse
|
8
|
Fleming AM, Manage SAH, Burrows CJ. Binding of AP endonuclease-1 to G-quadruplex DNA depends on the N-terminal domain, Mg 2+ and ionic strength. ACS BIO & MED CHEM AU 2021; 1:44-56. [PMID: 35005714 DOI: 10.1021/acsbiomedchemau.1c00031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The base excision repair enzyme apurinic/apyrimidinic endonuclease-1 (APE1) is also engaged in transcriptional regulation. APE1 can function in both pathways when the protein binds to a promoter G-quadruplex (G4) bearing an abasic site (modeled with tetrahydrofuran, F) that leads to enzymatic stalling on the non-canonical fold to recruit activating transcription factors. Biochemical and biophysical studies to address APE1's binding and catalytic activity with the vascular endothelial growth factor (VEGF) promoter G4 are lacking, and the present work provides insight on this topic. Herein, the native APE1 was used for cleavage assays, and the catalytically inactive mutant D210A was used for binding assays with double-stranded DNA (dsDNA) versus the native G4 or the G4 with F at various positions, revealing dependencies of the interaction on the cation concentrations K+ and Mg2+ and the N-terminal domain of the protein. Assays in 0, 1, or 10 mM Mg2+ found that dsDNA and G4 substrates required the cation for both binding and catalysis, in which G4 binding increased with [Mg2+]. Studies with 50 versus physiological 140 mM K+ ions showed that F-containing dsDNA was bound and cleaved by APE1; whereas, the G4s with F were poorly cleaved in low salt and not cleaved at all at higher salt while the binding remained robust. Using Δ33 or Δ61 N-terminal truncated APE1 proteins, the binding and cleavage of dsDNA with F was minimally impacted; in contrast, the G4s required the N-terminus for binding and catalysis is nearly abolished without the N-terminus. With this knowledge, we found APE1 could remodel the F-containing VEGF promoter dsDNA→G4 folds in solution. Lastly, the addition of the G4 ligand pyridostatin inhibited APE1 binding and cleavage of F-containing G4s but not dsDNA. The biological and medicinal chemistry implications of the results are discussed.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, UT 84112-0850, United States
| | - Shereen A Howpay Manage
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, UT 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, UT 84112-0850, United States
| |
Collapse
|
9
|
Ghaderi-Zefrehi H, Rezaei M, Sadeghi F, Heiat M. Genetic polymorphisms in DNA repair genes and hepatocellular carcinoma risk. DNA Repair (Amst) 2021; 107:103196. [PMID: 34416543 DOI: 10.1016/j.dnarep.2021.103196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/23/2021] [Accepted: 07/26/2021] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent types of tumors worldwide. Its occurrence and development have been related to various risk factors, such as chronic infection with hepatitis B or C viruses and alcohol addiction. DNA repair systems play a critical role in maintaining the integrity of the genome. Defects in these systems have been related to increased susceptibility to various types of cancer. Multiple genetic polymorphisms in genes of DNA repair systems have been reported that may affect DNA repair capacity (DRC) and modulate risk to cancer. Several studies have been conducted to assess the role of polymorphisms of DNA repair genes on the HCC risk. Identifying these polymorphisms and their association with HCC risk may help to improve prevention and treatment strategies. In this study, we review investigations that evaluated the association between genetic polymorphisms of DNA repair genes and risk of HCC.
Collapse
Affiliation(s)
- Hossein Ghaderi-Zefrehi
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Rezaei
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farzin Sadeghi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Fleming AM, Burrows CJ. Oxidative stress-mediated epigenetic regulation by G-quadruplexes. NAR Cancer 2021; 3:zcab038. [PMID: 34541539 PMCID: PMC8445369 DOI: 10.1093/narcan/zcab038] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Many cancer-associated genes are regulated by guanine (G)-rich sequences that are capable of refolding from the canonical duplex structure to an intrastrand G-quadruplex. These same sequences are sensitive to oxidative damage that is repaired by the base excision repair glycosylases OGG1 and NEIL1–3. We describe studies indicating that oxidation of a guanosine base in a gene promoter G-quadruplex can lead to up- and downregulation of gene expression that is location dependent and involves the base excision repair pathway in which the first intermediate, an apurinic (AP) site, plays a key role mediated by AP endonuclease 1 (APE1/REF1). The nuclease activity of APE1 is paused at a G-quadruplex, while the REF1 capacity of this protein engages activating transcription factors such as HIF-1α, AP-1 and p53. The mechanism has been probed by in vitro biophysical studies, whole-genome approaches and reporter plasmids in cellulo. Replacement of promoter elements by a G-quadruplex sequence usually led to upregulation, but depending on the strand and precise location, examples of downregulation were also found. The impact of oxidative stress-mediated lesions in the G-rich sequence enhanced the effect, whether it was positive or negative.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA
| |
Collapse
|
11
|
Kim DV, Kulishova LM, Torgasheva NA, Melentyev VS, Dianov GL, Medvedev SP, Zakian SM, Zharkov DO. Mild phenotype of knockouts of the major apurinic/apyrimidinic endonuclease APEX1 in a non-cancer human cell line. PLoS One 2021; 16:e0257473. [PMID: 34529719 PMCID: PMC8445474 DOI: 10.1371/journal.pone.0257473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022] Open
Abstract
The major human apurinic/apyrimidinic (AP) site endonuclease, APEX1, is a central player in the base excision DNA repair (BER) pathway and has a role in the regulation of DNA binding by transcription factors. In vertebrates, APEX1 knockouts are embryonic lethal, and only a handful of knockout cell lines are known. To facilitate studies of multiple functions of this protein in human cells, we have used the CRISPR/Cas9 system to knock out the APEX1 gene in a widely used non-cancer hypotriploid HEK 293FT cell line. Two stable knockout lines were obtained, one carrying two single-base deletion alleles and one single-base insertion allele in exon 3, another homozygous in the single-base insertion allele. Both mutations cause a frameshift that leads to premature translation termination before the start of the protein's catalytic domain. Both cell lines totally lacked the APEX1 protein and AP site-cleaving activity, and showed significantly lower levels of the APEX1 transcript. The APEX1-null cells were unable to support BER on uracil- or AP site-containing substrates. Phenotypically, they showed a moderately increased sensitivity to methyl methanesulfonate (MMS; ~2-fold lower EC50 compared with wild-type cells), and their background level of natural AP sites detected by the aldehyde-reactive probe was elevated ~1.5-2-fold. However, the knockout lines retained a nearly wild-type sensitivity to oxidizing agents hydrogen peroxide and potassium bromate. Interestingly, despite the increased MMS cytotoxicity, we observed no additional increase in AP sites in knockout cells upon MMS treatment, which could indicate their conversion into more toxic products in the absence of repair. Overall, the relatively mild cell phenotype in the absence of APEX1-dependent BER suggests that mammalian cells possess mechanisms of tolerance or alternative repair of AP sites. The knockout derivatives of the extensively characterized HEK 293FT cell line may provide a valuable tool for studies of APEX1 in DNA repair and beyond.
Collapse
Affiliation(s)
- Daria V. Kim
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Liliya M. Kulishova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | | | - Vasily S. Melentyev
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Grigory L. Dianov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Cytology and Genetics, Novosibirsk, Russia
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Suren M. Zakian
- SB RAS Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| |
Collapse
|
12
|
Aloise DDA, Coura-Vital W, Carneiro M, Rodrigues MV, Toscano GADS, da Silva RB, Silva-Portela RDCB, Fontes-Dantas FL, Agnez-Lima LF, Vitor RWA, Andrade-Neto VFD. Association between ocular toxoplasmosis and APEX1 and MYD88 polymorphism. Acta Trop 2021; 221:106006. [PMID: 34118207 DOI: 10.1016/j.actatropica.2021.106006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Ocular toxoplasmosis (OT) is the most common form of posterior uveitis, and in some countries, it is the most frequent cause of visual impairment. Studies demonstrate that the polymorphism in genes involved with the immune response can be related both to the occurrence and to the recurrence of OT. Thus, the present study aimed to analyze the association between OT and the polymorphism of the APEX1 (rs1130409) and MyD88 (rs7744) genes. The studied sample consisted of 48 volunteers with OT and 96 asymptomatic volunteers, but positive for anti - T. gondii IgG (control group). Blood collection was performed for serological analysis (ELISA) and DNA extraction. Genotyping of the polymorphism was performed using real-time PCR. To analyze the association between gene polymorphism and OT, logistic regression was performed. The results showed no association between the MYD88 gene polymorphism and the development of OT. However, a significant association was found between OT and APEX1 gene polymorphism, indicating that individuals expressing polymorphic (GG) or heterozygous (GT) alleles are more likely to develop the disease (P-value = 0.02 and 0.03 respectively). These results suggest that APEX1 (rs1130409) polymorphism is a risk factor for the occurrence of ocular toxoplasmosis in the studied population.
Collapse
|
13
|
Fan Z, Zhao J, Chai X, Li L. A Cooperatively Activatable, DNA‐based Fluorescent Reporter for Imaging of Correlated Enzymatic Activities. Angew Chem Int Ed Engl 2021; 60:14887-14891. [DOI: 10.1002/anie.202104408] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Zetan Fan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Xin Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
14
|
Fan Z, Zhao J, Chai X, Li L. A Cooperatively Activatable, DNA‐based Fluorescent Reporter for Imaging of Correlated Enzymatic Activities. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zetan Fan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Xin Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
15
|
Genetic Polymorphisms in DNA Repair Gene APE1/Ref-1 and the Risk of Neural Tube Defects in a High-Risk Area of China. Reprod Sci 2021; 28:2592-2601. [PMID: 33761125 DOI: 10.1007/s43032-021-00537-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1/redox-factor 1 (APE1/Ref-1) gene encodes a multifunctional protein involved in the DNA base excision repair (BER) pathway, which initiates repair of apurinic/apyrimidinic (AP) sites in DNA by catalyzing hydrolytic incision of the phosphodiester backbone. APE1/Ref-1 polymorphisms are related to the occurrence of neural tube defects (NTDs), but the association between APE1/Ref-1 polymorphisms and NTDs is not reported in Chinese Han population. The aim of the present study was to evaluate the association of APE1/Ref-1 polymorphism and the risk of NTD occurrence for Han population in a high-risk area of China. APE1/Ref-1 genotypes were determined by iPLEX Gold SNP genotyping. AP sites and folate level of brain tissues were measured. The results showed that three polymorphisms (rs3136817, rs77794916, and rs1760944) of APE1/Ref-1 were statistically associated with NTD subtypes. Allele C of rs3136817, allele T of rs77794916, and allele G of rs1760944 were associated with an increased risk for encephalocele (OR = 2.52, 95% CI [1.25-5.07], P < 0.01; OR = 1.80, 95% CI [1.04-3.12], P = 0.04; and OR = 1.96, 95% CI [1.12-3.45], P = 0.02), compared with those harboring the alleles T, C, and T, respectively. The folate level in NTDs was lower than that in controls. DNA AP sites in the encephalocele were significantly higher than the control (P < 0.01). The three polymorphisms of APE1/Ref-1 were significantly related to NTD occurrence, which indicated that APE1/Ref-1 might be a potential genetic risk factor for encephalocele in a high-risk area of NTDs in China.
Collapse
|
16
|
Jagaraj CJ, Parakh S, Atkin JD. Emerging Evidence Highlighting the Importance of Redox Dysregulation in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS). Front Cell Neurosci 2021; 14:581950. [PMID: 33679322 PMCID: PMC7929997 DOI: 10.3389/fncel.2020.581950] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
The cellular redox state, or balance between cellular oxidation and reduction reactions, serves as a vital antioxidant defence system that is linked to all important cellular activities. Redox regulation is therefore a fundamental cellular process for aerobic organisms. Whilst oxidative stress is well described in neurodegenerative disorders including amyotrophic lateral sclerosis (ALS), other aspects of redox dysfunction and their contributions to pathophysiology are only just emerging. ALS is a fatal neurodegenerative disease affecting motor neurons, with few useful treatments. Hence there is an urgent need to develop more effective therapeutics in the future. Here, we discuss the increasing evidence for redox dysregulation as an important and primary contributor to ALS pathogenesis, which is associated with multiple disease mechanisms. Understanding the connection between redox homeostasis, proteins that mediate redox regulation, and disease pathophysiology in ALS, may facilitate a better understanding of disease mechanisms, and lead to the design of better therapeutic strategies.
Collapse
Affiliation(s)
- Cyril Jones Jagaraj
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sonam Parakh
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
17
|
Malfatti MC, Antoniali G, Codrich M, Burra S, Mangiapane G, Dalla E, Tell G. New perspectives in cancer biology from a study of canonical and non-canonical functions of base excision repair proteins with a focus on early steps. Mutagenesis 2021; 35:129-149. [PMID: 31858150 DOI: 10.1093/mutage/gez051] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations of DNA repair enzymes and consequential triggering of aberrant DNA damage response (DDR) pathways are thought to play a pivotal role in genomic instabilities associated with cancer development, and are further thought to be important predictive biomarkers for therapy using the synthetic lethality paradigm. However, novel unpredicted perspectives are emerging from the identification of several non-canonical roles of DNA repair enzymes, particularly in gene expression regulation, by different molecular mechanisms, such as (i) non-coding RNA regulation of tumour suppressors, (ii) epigenetic and transcriptional regulation of genes involved in genotoxic responses and (iii) paracrine effects of secreted DNA repair enzymes triggering the cell senescence phenotype. The base excision repair (BER) pathway, canonically involved in the repair of non-distorting DNA lesions generated by oxidative stress, ionising radiation, alkylation damage and spontaneous or enzymatic deamination of nucleotide bases, represents a paradigm for the multifaceted roles of complex DDR in human cells. This review will focus on what is known about the canonical and non-canonical functions of BER enzymes related to cancer development, highlighting novel opportunities to understand the biology of cancer and representing future perspectives for designing new anticancer strategies. We will specifically focus on APE1 as an example of a pleiotropic and multifunctional BER protein.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marta Codrich
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Silvia Burra
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
18
|
Caffrey PJ, Delaney S. Chromatin and other obstacles to base excision repair: potential roles in carcinogenesis. Mutagenesis 2021; 35:39-50. [PMID: 31612219 DOI: 10.1093/mutage/gez029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/13/2019] [Indexed: 12/29/2022] Open
Abstract
DNA is comprised of chemically reactive nucleobases that exist under a constant barrage from damaging agents. Failure to repair chemical modifications to these nucleobases can result in mutations that can cause various diseases, including cancer. Fortunately, the base excision repair (BER) pathway can repair modified nucleobases and prevent these deleterious mutations. However, this pathway can be hindered through several mechanisms. For instance, mutations to the enzymes in the BER pathway have been identified in cancers. Biochemical characterisation of these mutants has elucidated various mechanisms that inhibit their activity. Furthermore, the packaging of DNA into chromatin poses another obstacle to the ability of BER enzymes to function properly. Investigations of BER in the base unit of chromatin, the nucleosome core particle (NCP), have revealed that the NCP acts as a complex substrate for BER enzymes. The constituent proteins of the NCP, the histones, also have variants that can further impact the structure of the NCP and may modulate access of enzymes to the packaged DNA. These histone variants have also displayed significant clinical effects both in carcinogenesis and patient prognosis. This review focuses on the underlying molecular mechanisms that present obstacles to BER and the relationship of these obstacles to cancer. In addition, several chemotherapeutics induce DNA damage that can be repaired by the BER pathway and understanding obstacles to BER can inform how resistance and/or sensitivity to these therapies may occur. With the understanding of these molecular mechanisms, current chemotherapeutic treatment regiments may be improved, and future therapies developed.
Collapse
Affiliation(s)
- Paul J Caffrey
- Department of Chemistry, Brown University, Providence, RI
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI
| |
Collapse
|
19
|
Caston RA, Gampala S, Armstrong L, Messmann RA, Fishel ML, Kelley MR. The multifunctional APE1 DNA repair-redox signaling protein as a drug target in human disease. Drug Discov Today 2021; 26:218-228. [PMID: 33148489 PMCID: PMC7855940 DOI: 10.1016/j.drudis.2020.10.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/27/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Apurinic/apyrimidinic (AP) endonuclease-reduction/oxidation factor 1 (APE1/Ref-1, also called APE1) is a multifunctional enzyme with crucial roles in DNA repair and reduction/oxidation (redox) signaling. APE1 was originally described as an endonuclease in the Base Excision Repair (BER) pathway. Further study revealed it to be a redox signaling hub regulating critical transcription factors (TFs). Although a significant amount of focus has been on the role of APE1 in cancer, recent findings support APE1 as a target in other indications, including ocular diseases [diabetic retinopathy (DR), diabetic macular edema (DME), and age-related macular degeneration (AMD)], inflammatory bowel disease (IBD) and others, where APE1 regulation of crucial TFs impacts important pathways in these diseases. The central responsibilities of APE1 in DNA repair and redox signaling make it an attractive therapeutic target for cancer and other diseases.
Collapse
Affiliation(s)
- Rachel A Caston
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA
| | - Silpa Gampala
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA
| | - Lee Armstrong
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA
| | | | - Melissa L Fishel
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA
| | - Mark R Kelley
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA.
| |
Collapse
|
20
|
Kladova OA, Alekseeva IV, Saparbaev M, Fedorova OS, Kuznetsov NA. Modulation of the Apurinic/Apyrimidinic Endonuclease Activity of Human APE1 and of Its Natural Polymorphic Variants by Base Excision Repair Proteins. Int J Mol Sci 2020; 21:ijms21197147. [PMID: 32998246 PMCID: PMC7583023 DOI: 10.3390/ijms21197147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 11/25/2022] Open
Abstract
Human apurinic/apyrimidinic endonuclease 1 (APE1) is known to be a critical player of the base excision repair (BER) pathway. In general, BER involves consecutive actions of DNA glycosylases, AP endonucleases, DNA polymerases, and DNA ligases. It is known that these proteins interact with APE1 either at upstream or downstream steps of BER. Therefore, we may propose that even a minor disturbance of protein–protein interactions on the DNA template reduces coordination and repair efficiency. Here, the ability of various human DNA repair enzymes (such as DNA glycosylases OGG1, UNG2, and AAG; DNA polymerase Polβ; or accessory proteins XRCC1 and PCNA) to influence the activity of wild-type (WT) APE1 and its seven natural polymorphic variants (R221C, N222H, R237A, G241R, M270T, R274Q, and P311S) was tested. Förster resonance energy transfer–based kinetic analysis of abasic site cleavage in a model DNA substrate was conducted to detect the effects of interacting proteins on the activity of WT APE1 and its single-nucleotide polymorphism (SNP) variants. The results revealed that WT APE1 activity was stimulated by almost all tested DNA repair proteins. For the SNP variants, the matters were more complicated. Analysis of two SNP variants, R237A and G241R, suggested that a positive charge in this area of the APE1 surface impairs the protein–protein interactions. In contrast, variant R221C (where the affected residue is located near the DNA-binding site) showed permanently lower activation relative to WT APE1, whereas neighboring SNP N222H did not cause a noticeable difference as compared to WT APE1. Buried substitution P311S had an inconsistent effect, whereas each substitution at the DNA-binding site, M270T and R274Q, resulted in the lowest stimulation by BER proteins. Protein–protein molecular docking was performed between repair proteins to identify amino acid residues involved in their interactions. The data uncovered differences in the effects of BER proteins on APE1, indicating an important role of protein–protein interactions in the coordination of the repair pathway.
Collapse
Affiliation(s)
- Olga A. Kladova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (O.A.K.); (I.V.A.)
| | - Irina V. Alekseeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (O.A.K.); (I.V.A.)
| | - Murat Saparbaev
- Groupe «Mechanisms of DNA Repair and Carcinogenesis», Equipe Labellisée LIGUE 2016, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, CEDEX, F-94805 Villejuif, France;
| | - Olga S. Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (O.A.K.); (I.V.A.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
- Correspondence: (O.S.F.); (N.A.K.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (O.A.K.); (I.V.A.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
- Correspondence: (O.S.F.); (N.A.K.)
| |
Collapse
|
21
|
Polymorphisms in DNA repair genes in lung cancer patients living in a coal-mining region. Eur J Cancer Prev 2020; 28:522-528. [PMID: 31584889 DOI: 10.1097/cej.0000000000000504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Air pollutants and ionizing radiation are well-known carcinogens involved in the pathogenesis of lung cancer, and residents of coal-mining regions are exposed routinely to these agents. Polymorphisms in DNA repair genes may be associated with an increased risk of malignant transformation. We investigated associations between the risk of lung cancer in residents of the coal-mining region and polymorphisms in the genes APEX1 (rs1130409), hOGG1 (rs1052133), XRCC1 (rs25489, rs25487), XRCC2 (rs3218536), XRCC3 (rs861539), ADPRT/PARP1 (rs1136410), XPD/ERCC2 (rs13181), XPG/ERCC5 (rs17655), XPC (rs2228001), ATM (rs1801516), and NBS1 (rs1805794). Three hundred and forty residents of the Kemerovo Region (a coal-mining region of western Siberia) were lung cancer patients exposed to air pollutants and ionizing radiation (case) and 335 were healthy donors (control). Genotyping was performed by real-time PCR and allele-specific PCR. We discovered that polymorphisms in the XPD gene in men [log-additive model: odds ratio (OR) = 1.64, 95% confidence interval (CI): 1.17-2.31], the ATM gene in women and nonsmokers (codominant model: OR = 0.11, 95% CI: 0.02-0.49 and OR = 0.25, 95% CI: 0.08-0.72, respectively), the APEX1 gene for smokers (recessive model: OR = 2.55, 95% CI: 1.34-4.85), and the NBS1 gene for those who work in the coal industry (overdominant model: OR = 0.40, 95% CI: 0.21-0.75) are associated with an increased risk of lung cancer. Using the multifactor dimensionality reduction method, we found a model of gene-gene interactions associated with the risk of lung cancer: NBS1 (rs1805794)-XRCC1 (rs25487)-hOGG1 (rs1052133)-XPG (rs17655). These results indicate an association between combinations of polymorphisms in the studied genes and the risk of lung cancer in residents of a coal-mining region.
Collapse
|
22
|
A Dual Face of APE1 in the Maintenance of Genetic Stability in Monocytes: An Overview of the Current Status and Future Perspectives. Genes (Basel) 2020; 11:genes11060643. [PMID: 32545201 PMCID: PMC7349382 DOI: 10.3390/genes11060643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
Monocytes, which play a crucial role in the immune system, are characterized by an enormous sensitivity to oxidative stress. As they lack four key proteins responsible for DNA damage response (DDR) pathways, they are especially prone to reactive oxygen species (ROS) exposure leading to oxidative DNA lesions and, consequently, ROS-driven apoptosis. Although such a phenomenon is of important biological significance in the regulation of monocyte/macrophage/dendritic cells’ balance, it also a challenge for monocytic mechanisms that have to provide and maintain genetic stability of its own DNA. Interestingly, apurinic/apyrimidinic endonuclease 1 (APE1), which is one of the key proteins in two DDR mechanisms, base excision repair (BER) and non-homologous end joining (NHEJ) pathways, operates in monocytic cells, although both BER and NHEJ are impaired in these cells. Thus, on the one hand, APE1 endonucleolytic activity leads to enhanced levels of both single- and double-strand DNA breaks (SSDs and DSBs, respectively) in monocytic DNA that remain unrepaired because of the impaired BER and NHEJ. On the other hand, there is some experimental evidence suggesting that APE1 is a crucial player in monocytic genome maintenance and stability through different molecular mechanisms, including induction of cytoprotective and antioxidant genes. Here, the dual face of APE1 is discussed.
Collapse
|
23
|
Stratigopoulou M, van Dam TP, Guikema JEJ. Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences. Front Immunol 2020; 11:1084. [PMID: 32547565 PMCID: PMC7272602 DOI: 10.3389/fimmu.2020.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000–30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Maria Stratigopoulou
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tijmen P van Dam
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
24
|
Whitaker AM, Stark WJ, Flynn TS, Freudenthal BD. Molecular and structural characterization of disease-associated APE1 polymorphisms. DNA Repair (Amst) 2020; 91-92:102867. [PMID: 32454397 DOI: 10.1016/j.dnarep.2020.102867] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
Under conditions of oxidative stress, reactive oxygen species (ROS) continuously assault the structure of DNA resulting in oxidation and fragmentation of the nucleobases. When the nucleobase structure is altered, its base-pairing properties may also be altered, promoting mutations. Consequently, oxidative DNA damage is a major source of the mutation load that gives rise to numerous human maladies, including cancer. Base excision repair (BER) is the primary pathway tasked with removing and replacing mutagenic DNA base damage. Apurinic/apyrimidinic endonuclease 1 (APE1) is a central enzyme with AP-endonuclease and 3' to 5' exonuclease functions during BER, and therefore is key to maintenance of genome stability. Polymorphisms, or SNPs, in the gene encoding APE1 (APEX1) have been identified among specific human populations and result in variants of APE1 with modified function. These defects in APE1 potentially result in impaired DNA repair capabilities and consequently an increased risk of disease for individuals within these populations. In the present study, we determined the X-ray crystal structures of three prevalent disease-associated APE1 SNPs (D148E, L104R, and R237C). Each APE1 SNP results in unique localized changes in protein structure, including protein dynamics and DNA binding contacts. Combined with comprehensive biochemical characterization, including pre-steady-state kinetic and DNA binding analyses, variant APE1:DNA complex structures with both AP-endonuclease and exonuclease substrates were analyzed to elucidate how these SNPs might perturb the two major repair functions employed by APE1 during BER.
Collapse
Affiliation(s)
- Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS,66160, USA
| | - Wesley J Stark
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS,66160, USA
| | - Tony S Flynn
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS,66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS,66160, USA.
| |
Collapse
|
25
|
López DJ, de Blas A, Hurtado M, García-Alija M, Mentxaka J, de la Arada I, Urbaneja MA, Alonso-Mariño M, Bañuelos S. Nucleophosmin interaction with APE1: Insights into DNA repair regulation. DNA Repair (Amst) 2020; 88:102809. [PMID: 32092641 DOI: 10.1016/j.dnarep.2020.102809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/17/2022]
Abstract
Nucleophosmin (NPM1), an abundant, nucleolar protein with multiple functions affecting cell homeostasis, has also been recently involved in DNA damage repair. The roles of NPM1 in different repair pathways remain however to be elucidated. NPM1 has been described to interact with APE1 (apurinic apyrimidinic endonuclease 1), a key enzyme of the base excision repair (BER) pathway, which could reflect a direct participation of NPM1 in this route. To gain insight into the possible role(s) of NPM1 in BER, we have explored the interplay between the subnuclear localization of both APE1 and NPM1, the in vitro interaction they establish, the effect of binding to abasic DNA on APE1 conformation, and the modulation by NPM1 of APE1 binding and catalysis on DNA. We have found that, upon oxidative damage, NPM1 is released from nucleoli and locates on patches throughout the chromatin, perhaps co-localizing with APE1, and that this traffic could be mediated by phosphorylation of NPM1 on T199. NPM1 and APE1 form a complex in vitro, involving, apart from the core domain, at least part of the linker region of NPM1, whereas the C-terminal domain is dispensable for binding, which explains that an AML leukemia-related NPM1 mutant with an unfolded C-terminal domain can bind APE1. APE1 interaction with abasic DNA stabilizes APE1 structure, as based on thermal unfolding. Moreover, our data suggest that NPM1, maybe by keeping APE1 in an "open" conformation, favours specific recognition of abasic sites on DNA, competing with off-target associations. Therefore, NPM1 might participate in BER favouring APE1 target selection as well as turnover from incised abasic DNA.
Collapse
Affiliation(s)
- David J López
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ander de Blas
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mikel Hurtado
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mikel García-Alija
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jon Mentxaka
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Igor de la Arada
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - María A Urbaneja
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Marián Alonso-Mariño
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sonia Bañuelos
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
26
|
Yu CC, Bau DT, Liao CH, Chang WS, Liao JM, Wu HC, Shen TC, Yang JS, Tsai FJ, Tsai CW. The role of genotype/phenotype at apurinic/apyrimidinic endonuclease Rs1130409 in renal cell carcinoma. CHINESE J PHYSIOL 2020; 63:43-49. [DOI: 10.4103/cjp.cjp_72_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Analysis of Polymorphisms Associated with Base Excision Repair in Patients Susceptible and Resistant to Noise-Induced Hearing Loss. DISEASE MARKERS 2019; 2019:9327106. [PMID: 31827649 PMCID: PMC6885169 DOI: 10.1155/2019/9327106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 11/21/2022]
Abstract
Objective Noise-induced hearing loss (NIHL) is one of the most common occupational health risks in both developed and industrialized countries. It occurs as a result of interactions between genetic and environmental factors. Nevertheless, inherited genetic factors contributing to NIHL are not well understood. Therefore, we aim to investigate whether genetic mutations in three important base excision repair genes (OGG1, APEX1, and XRCC1) may influence susceptibility to NIHL. Methods Three SNPs in OGG1, APEX1, and XRCC1 were genotyped from 1170 noise-exposed workers and were classified into 117 most susceptible and 117 most resistant individuals. Results Results showed that the rs1799782 TT genotype located in the XRCC1 coding region and rs1130409 GG/GT in the APEX1 coding region were associated with increased risk for NIHL in a Chinese population. Compared to the rs1799782 C allele frequency, the T allele frequency was increased in the sensitive group (adjusted OR = 1.51, 95%CI = 1.01 to 2.26, P = 0.043). The rs1130409 G allele frequency was also increased in the sensitive group compared to the resistant group (adjusted OR = 1.59, 95%CI = 1.10 to 2.31, P = 0.015). Moreover, rs1130409 and drinking had a statistically significant interaction (P = 0.0002), while rs1799782, rs1130409, and smoking also had a statistically significant interaction (P < 0.0001). Conclusions XRCC1 rs1799782 and APEX1 rs1130409 may have potential as biomarkers for the screening of susceptibility to NIHL in workers exposed severe noise.
Collapse
|
28
|
Petri net-based model of the human DNA base excision repair pathway. PLoS One 2019; 14:e0217913. [PMID: 31518347 PMCID: PMC6743755 DOI: 10.1371/journal.pone.0217913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 05/21/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular DNA is daily exposed to several damaging agents causing a plethora of DNA lesions. As a first aid to restore DNA integrity, several enzymes got specialized in damage recognition and lesion removal during the process called base excision repair (BER). A large number of DNA damage types and several different readers of nucleic acids lesions during BER pathway as well as two sub-pathways were considered in the definition of a model using the Petri net framework. The intuitive graphical representation in combination with precise mathematical analysis methods are the strong advantages of the Petri net-based representation of biological processes and make Petri nets a promising approach for modeling and analysis of human BER. The reported results provide new information that will aid efforts to characterize in silico knockouts as well as help to predict the sensitivity of the cell with inactivated repair proteins to different types of DNA damage. The results can also help in identifying the by-passing pathways that may lead to lack of pronounced phenotypes associated with mutations in some of the proteins. This knowledge is very useful when DNA damage-inducing drugs are introduced for cancer therapy, and lack of DNA repair is desirable for tumor cell death.
Collapse
|
29
|
Alekseeva IV, Davletgildeeva AT, Arkova OV, Kuznetsov NA, Fedorova OS. The impact of single-nucleotide polymorphisms of human apurinic/apyrimidinic endonuclease 1 on specific DNA binding and catalysis. Biochimie 2019; 163:73-83. [PMID: 31150756 DOI: 10.1016/j.biochi.2019.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
Abstract
Human apurinic/apyrimidinic (AP) endonuclease APE1 is a crucial enzyme of the base excision repair (BER) pathway, which is in charge of recognition and initiation of removal of AP-sites in DNA. It is known that some single-nucleotide polymorphism (SNP) variants of APE1 have a reduced activity as compared to wild-type APE1. It has been hypothesized that genetic variation in APE1 might be responsible for an increased risk of some types of cancer. In the present work, analysis of SNPs of the APE1 gene was performed to select the set of variants having substitutions of amino acid residues on the surface of the enzyme globule and in the DNA-binding site, thereby affecting protein-protein interactions or the catalytic reaction, respectively. For seven APE1 variants (R221C, N222H, R237A, G241R, M270T, R274Q, and P311S), conformational dynamics and catalytic activities were examined. The conformational changes in the molecules of APE1 variants and in a DNA substrate were recorded as fluorescence changes of Trp and 2-aminopurine residues, respectively, using the stopped-flow technique. The results made it possible to determine the kinetic mechanism underlying the interactions of the APE1 variants with DNA substrates, to calculate the rate constants of the elementary stages, and to identify the stages of the process affected by mutation.
Collapse
Affiliation(s)
- Irina V Alekseeva
- Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk, 630090, Russia
| | - Anastasiia T Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk, 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Olga V Arkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave., Novosibirsk, 630090, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk, 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia.
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk, 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia.
| |
Collapse
|
30
|
Pons BJ, Bezine E, Hanique M, Guillet V, Mourey L, Chicher J, Frisan T, Vignard J, Mirey G. Cell transfection of purified cytolethal distending toxin B subunits allows comparing their nuclease activity while plasmid degradation assay does not. PLoS One 2019; 14:e0214313. [PMID: 30921382 PMCID: PMC6438463 DOI: 10.1371/journal.pone.0214313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/11/2019] [Indexed: 12/30/2022] Open
Abstract
The Cytolethal Distending Toxin (CDT) is produced by many pathogenic bacteria. CDT is known to induce genomic DNA damage to host eukaryotic cells through its catalytic subunit, CdtB. CdtB is structurally homologous to DNase I and has a nuclease activity, dependent on several key residues. Yet some differences between various CdtB subunit activities, and discrepancies between biochemical and cellular data, have been observed. To better characterise the role of CdtB in the induction of DNA damage, we affinity-purified wild-type and mutants of CdtB, issued from E. coli and H. ducreyi, under native and denaturing conditions. We then compared their nuclease activity by a classic in vitro assay using plasmid DNA, and two different eukaryotic assays–the first assay where host cells were transfected with a plasmid encoding CdtB, the second assay where host cells were directly transfected with purified CdtB. We show here that in vitro nuclease activities are difficult to quantify, whereas CdtB activities in host cells can be easily interpreted and confirmed the loss of function of the catalytic mutant. Our results highlight the importance of performing multiple assays while studying the effects of bacterial genotoxins, and indicate that the classic in vitro assay should be complemented with cellular assays.
Collapse
Affiliation(s)
- Benoît J. Pons
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
| | - Elisabeth Bezine
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- Institut National Polytechnique de Toulouse, Toulouse, France
| | - Mélissa Hanique
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - Valérie Guillet
- Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
| | - Lionel Mourey
- Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
- Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade, Institut de Biologie Moléculaire et Cellulaire (IBMC), FRC1589 Strasbourg, France
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Julien Vignard
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- * E-mail: (GM); (JV)
| | - Gladys Mirey
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
- Université Toulouse III–Paul Sabatier (UPS), Toulouse, France
- * E-mail: (GM); (JV)
| |
Collapse
|
31
|
Daniel V, Delamain MT, Murbach BDA, de Souza CA, Lima CSP, Lourenço GJ. Role for DNA base-excision repair gene variants in the prognosis of Hodgkin lymphoma. Br J Haematol 2019; 186:171-175. [PMID: 30706454 DOI: 10.1111/bjh.15779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vanessa Daniel
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Marcia T Delamain
- Hematology and Hemotherapy Center, University of Campinas, Campinas, São Paulo, Brazil
| | - Bruna de A Murbach
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Carmino A de Souza
- Hematology and Hemotherapy Center, University of Campinas, Campinas, São Paulo, Brazil
| | - Carmen S P Lima
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Gustavo J Lourenço
- Laboratory of Cancer Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
32
|
Michita RT, Kaminski VDL, Chies JAB. Genetic Variants in Preeclampsia: Lessons From Studies in Latin-American Populations. Front Physiol 2018; 9:1771. [PMID: 30618791 PMCID: PMC6302048 DOI: 10.3389/fphys.2018.01771] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
Placental vascularization is a tightly regulated physiological process in which the maternal immune system plays a fundamental role. Vascularization of the maternal-placental interface involves a wide range of mechanisms primarily orchestrated by the fetal extravillous trophoblast and maternal immune cells. In a healthy pregnancy, an immune cross-talk between the mother and fetal cells results in the secretion of immunomodulatory mediators, apoptosis of specific cells, cellular differentiation/proliferation, angiogenesis, and vasculogenesis, altogether favoring a suitable microenvironment for the developing embryo. In the context of vasculopathy underlying common pregnancy disorders, it is believed that inefficient invasion of extravillous trophoblast cells in the endometrium leads to a poor placental blood supply, which, in turn, leads to decreased secretion of angiogenic factors, hypoxia, and inflammation commonly associated with preterm delivery, intrauterine growth restriction, and preeclampsia. In this review, we will focus on studies published by Latin American research groups, providing an extensive review of the role of genetic variants from candidate genes involved in a broad spectrum of biological processes underlying the pathophysiology of preeclampsia. In addition, we will discuss how these studies contribute to fill gaps in the current understanding of preeclampsia. Finally, we discuss some trending topics from important fields associated with pregnancy vascular disorders (e.g., epigenetics, transplantation biology, and non-coding RNAs) and underscore their possible implications in the pathophysiology of preeclampsia. As a result, these efforts are expected to give an overview of the extent of scientific research produced in Latin America and encourage multicentric collaborations by highlighted regional research groups involved in preeclampsia investigation.
Collapse
Affiliation(s)
- Rafael Tomoya Michita
- Immunogenetics Laboratory, Department of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Valéria de Lima Kaminski
- Immunogenetics Laboratory, Department of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - José Artur Bogo Chies
- Immunogenetics Laboratory, Department of Genetics, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
33
|
Li J, Svilar D, McClellan S, Kim JH, Ahn EYE, Vens C, Wilson DM, Sobol RW. DNA Repair Molecular Beacon assay: a platform for real-time functional analysis of cellular DNA repair capacity. Oncotarget 2018; 9:31719-31743. [PMID: 30167090 PMCID: PMC6114979 DOI: 10.18632/oncotarget.25859] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022] Open
Abstract
Numerous studies have shown that select DNA repair enzyme activities impact response and/or toxicity of genotoxins, suggesting a requirement for enzyme functional analyses to bolster precision medicine or prevention. To address this need, we developed a DNA Repair Molecular Beacon (DRMB) platform that rapidly measures DNA repair enzyme activity in real-time. The DRMB assay is applicable for discovery of DNA repair enzyme inhibitors, for the quantification of enzyme rates and is sufficiently sensitive to differentiate cellular enzymatic activity that stems from variation in expression or effects of amino acid substitutions. We show activity measures of several different base excision repair (BER) enzymes, including proteins with tumor-identified point mutations, revealing lesion-, lesion-context- and cell-type-specific repair dependence; suggesting application for DNA repair capacity analysis of tumors. DRMB measurements using lysates from isogenic control and APE1-deficient human cells suggests the major mechanism of base lesion removal by most DNA glycosylases may be mono-functional base hydrolysis. In addition, development of a microbead-conjugated DRMB assay amenable to flow cytometric analysis further advances its application. Our studies establish an analytical platform capable of evaluating the enzyme activity of select DNA repair proteins in an effort to design and guide inhibitor development and precision cancer therapy options.
Collapse
Affiliation(s)
- Jianfeng Li
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - David Svilar
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steven McClellan
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - Jung-Hyun Kim
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | | | - Conchita Vens
- The Netherlands Cancer Institute, Division of Cell Biology, Amsterdam, The Netherlands
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, IRP, NIH Baltimore, MD, USA
| | - Robert W Sobol
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA.,Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
34
|
Usategui-Martín R, Gutiérrez-Cerrajero C, Jiménez-Vázquez S, Calero-Paniagua I, García-Aparicio J, Corral-Gudino L, Del Pino-Montes J, González-Sarmiento R. Polymorphisms in genes implicated in base excision repair (BER) pathway are associated with susceptibility to Paget's disease of bone. Bone 2018; 112:19-23. [PMID: 29630930 DOI: 10.1016/j.bone.2018.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/22/2018] [Accepted: 04/05/2018] [Indexed: 01/28/2023]
Abstract
Paget's disease of bone (PDB) is a chronic bone metabolic disorder. Currently, PDB is the second most frequent bone disorder. PDB is a focal disorder affecting the skeleton segmentally but the cause of which is unknown. It has been hypothesised that somatic mutations could be responsible for the mosaicism described in PDB patients. Therefore, our hypothesis is that defective response to DNA damage may lead to somatic mutations favouring an increased risk of PDB. So that we have analysed polymorphisms in DNA repair genes involved in the BER, NER and DSBR pathways in order to evaluate the role of these variants in modulating PDB risk. We found statistically significant differences in genotypic and allelic distribution for polymorphisms in genes implicated in the BER pathway. Our results showed that carrying the allele T of XRCC1 rs1799782 polymorphism and the allele G of APEX rs1130409 polymorphism increased the risk of developing PDB. These polymorphisms could cause a lower DNA repair efficiency and this might lead to local somatic mutations favouring bone metabolic alterations characteristic of PDB. This is the first report showing an association between polymorphism in genes implicated in the BER pathway with PDB.
Collapse
Affiliation(s)
- Ricardo Usategui-Martín
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| | - Carlos Gutiérrez-Cerrajero
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| | - Sonia Jiménez-Vázquez
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain.
| | | | - Judit García-Aparicio
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca, Spain.
| | | | - Javier Del Pino-Montes
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Servicio de Reumatología, Hospital Universitario de Salamanca, Salamanca, Spain.
| | - Rogelio González-Sarmiento
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Salamanca, Spain.
| |
Collapse
|
35
|
Mattar MAM, Zekri ARN, Hussein N, Morsy H, Esmat G, Amin MA. Polymorphisms of base-excision repair genes and the hepatocarcinogenesis. Gene 2018; 675:62-68. [PMID: 29935355 DOI: 10.1016/j.gene.2018.06.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/06/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023]
Abstract
AIM To determine the possible association between polymorphisms of DNA repair genes, including XRCC1 Arg194Tryp, Arg280His, and Arg399Glu, APE1 Asp148Glu, and NEIL2 Arg257Leu, and the risk of developing hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC). METHODS A total of 264 subjects were recruited in this retrospective case-control study and were categorized into four groups: 88 control subjects (CR), 53 chronic hepatitis C patients (CHC), 36 liver cirrhotic patients (LC), and 87 HCC patients. The XRCC1 Arg194Tryp, Arg280His, and Arg399Glu polymorphisms were detected using PCR-RFLP, while real-time PCR was used to genotype APE1 Asp148Glu and NEIL2 Arg257Leu. RESULTS Our data revealed that, compared with the healthy controls, for those subjects with the XRCC1 Arg194Trp genotype, the risk of developing CHC, LC, and HCC was increased by 6.66- (odds ratio (OR) = 6.667; 95% confidence interval (CI) = 3.244-13.701; P > 0.01), 3.85- (OR = 3.852; 95% CI = 1.797-8.256; P > 0.01), and 2.14-fold (OR = 2.14; 95% CI = 1.13-4.06; P > 0.05), respectively. There was no association between the risk of HCC development and the XRCC1 Arg280His or XRCC1 Arg399Gln genotypes. Moreover, the analysis showed a lack of association between APE1 Asp148Glu and the risk of HCC development. The analysis of clinicopathological parameters showed that the HCC patients with the XRCC1 Arg280His polymorphism were 2.9 fold more likely to have hepatic lesions in both hepatic lobes (OR: 2.9; 95% CI: 1.15-7.29). Notably, in the HCC patients, the prevalence of the APE1 polymorphism in the males was four times higher than that in the females (OR = 4; 95% CI = 1.129-14.175; P > 0.05). CONCLUSION Our results indicate that the XRCC1 Arg194Trp polymorphism could be a risk factor for HCV-related HCC development in Egypt.
Collapse
Affiliation(s)
| | - Abdel-Rahman N Zekri
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Nehal Hussein
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Heba Morsy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Gamal Esmat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Magdy A Amin
- Department of Endemic Medicine and Hepatology, Faculty of Medicine, Cairo University.
| |
Collapse
|
36
|
Das S, Purkayastha S, Roy H, Sinha A, Choudhury Y. Polymorphisms in DNA repair genes increase the risk for type 2 diabetes mellitus and hypertension. Biomol Concepts 2018; 9:80-93. [DOI: 10.1515/bmc-2018-0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/09/2018] [Indexed: 12/30/2022] Open
Abstract
AbstractWe investigated the effect of polymorphisms in four DNA repair genes, viz. RAD18 Arg302Gln (G>A) (rs373572), XPD Asp312Asn (G>A) (rs1799793), APE1 Asp148Glu (T>G) (rs3136820), and OGG1 Ser326Cys (C>G) (rs1052133) on the risk for type 2 diabetes mellitus (T2DM) and hypertension (HT) in association with smoking, tobacco chewing, and alcohol consumption in a population from Northeast India. The study subjects were comprised of 70 patients suffering from both T2DM and HT and 83 healthy controls. Genotyping was performed using ARMS-PCR for XPD Asp312Asn (G>A) and PCR-CTPP for RAD18 Arg302Gln (G>A), APE1 Asp148Glu (T>G) and OGG1 Ser326Cys (C>G). The RAD18 Gln/Gln genotype was found to significantly increase the risk for T2DM and HT by 30 fold. Significant high risk was observed for individuals with XPD Asn/Asn-RAD18 Arg/Gln genotypes. Smoking was found to be the single most important independent risk factor for T2DM and HT. This study concludes that RAD18 Arg302Gln and XPD Asp312Asn polymorphisms might increase the risk for T2DM and HT in association with smoking, tobacco chewing, and/or alcohol consumption, while APE1 Asp148Glu (T>G) and OGG1 Ser326Cys (C>G) polymorphisms do not contribute to such risk.
Collapse
Affiliation(s)
- Sambuddha Das
- Department of Biotechnology, Assam University, Silchar-788011, Assam, India
| | | | - Hirakjyoti Roy
- Department of Biotechnology, Assam University, Silchar-788011, Assam, India
| | - Anima Sinha
- Department of Biotechnology, Assam University, Silchar-788011, Assam, India
| | - Yashmin Choudhury
- Department of Biotechnology, Assam University, Silchar-788011, Assam, India
| |
Collapse
|
37
|
Kaur K, Kaur R. Absence of APE1 (Asp148Glu) gene polymorphism in North-West Indian population: A comparison with world population. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
38
|
Savchenko YA, Minina VI, Bakanova ML, Ryzhkova AV, Soboleva OA, Kulemin YE, Voronina EN, Glushkov AN, Vafin IA. Role of Gene-Gene Interactions in the Chromosomal Instability in Workers at Coal Thermal Power Plants. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418010106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
39
|
APE1 polymorphic variants cause persistent genomic stress and affect cancer cell proliferation. Oncotarget 2018; 7:26293-306. [PMID: 27050370 PMCID: PMC5041981 DOI: 10.18632/oncotarget.8477] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 03/12/2016] [Indexed: 01/15/2023] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is the main mammalian AP-endonuclease responsible for the repair of endogenous DNA damage through the base excision repair (BER) pathway. Molecular epidemiological studies have identified several genetic variants associated with human diseases, but a well-defined functional connection between mutations in APE1 and disease development is lacking. In order to understand the biological consequences of APE1 genetic mutations, we examined the molecular and cellular consequences of the selective expression of four non-synonymous APE1 variants (L104R, R237C, D148E and D283G) in human cells. We found that D283G, L104R and R237C variants have reduced endonuclease activity and impaired ability to associate with XRCC1 and DNA polymerase β, which are enzymes acting downstream of APE1 in the BER pathway. Complementation experiments performed in cells, where endogenous APE1 had been silenced by shRNA, showed that the expression of these variants resulted in increased phosphorylation of histone H2Ax and augmented levels of poly(ADP-ribosyl)ated (PAR) proteins. Persistent activation of DNA damage response markers was accompanied by growth defects likely due to combined apoptotic and autophagic processes. These phenotypes were observed in the absence of exogenous stressors, suggesting that chronic replication stress elicited by the BER defect may lead to a chronic activation of the DNA damage response. Hence, our data reinforce the concept that non-synonymous APE1 variants present in the human population may act as cancer susceptibility alleles.
Collapse
|
40
|
Jiang Y, Liu Y, Hu H. Studies on DNA Damage Repair and Precision Radiotherapy for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:105-123. [PMID: 29282681 DOI: 10.1007/978-981-10-6020-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Radiotherapy acts as an important component of breast cancer management, which significantly decreases local recurrence in patients treated with conservative surgery or with radical mastectomy. On the foundation of technological innovation of radiotherapy setting, precision radiotherapy of cancer has been widely applied in recent years. DNA damage and its repair mechanism are the vital factors which lead to the formation of tumor. Moreover, the status of DNA damage repair in cancer cells has been shown to influence patient response to the therapy, including radiotherapy. Some genes can affect the radiosensitivity of tumor cell by regulating the DNA damage repair pathway. This chapter will describe the potential application of DNA damage repair in precision radiotherapy of breast cancer.
Collapse
Affiliation(s)
- Yanhui Jiang
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yimin Liu
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Hai Hu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
41
|
Lu Z, Li S, Ning S, Yao M, Zhou X, Wu Y, Zhong C, Yan K, Wei Z, Xie Y. Association of the rs1760944 polymorphism in the APEX1 base excision repair gene with risk of nasopharyngeal carcinoma in a population from an endemic area in South China. J Clin Lab Anal 2017; 32. [PMID: 28464393 DOI: 10.1002/jcla.22238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 03/23/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Apurinic/apyrimidinic endonuclease 1 (APEX1) plays a central role in the repair of oxidative DNA lesions via base excision repair, and polymorphism in the APEX1 gene may affect susceptibility to carcinogenesis. METHODS Here, we assessed possible relationships between single-nucleotide polymorphism at APEX1 rs1760944 and risk of nasopharyngeal carcinoma (NPC) in 477 NPC patients and 558 healthy controls from Guangxi province, which is the second largest NPC endemic area in South China. RESULTS Genotype frequencies in controls were in Hardy-Weinberg equilibrium. Logistic regression analysis identified the genotypes GT or GG as associated with significantly lower risk than the genotype TT (adjusted odds ratio [OR] 0.745, 95% confidence interval [CI] 0.573-0.970). This apparent protective effect of GT/GG was even greater among those with no smoking history (adjusted OR 0.679, 95%CI 0.494-0.934). CONCLUSION Our results suggest that APEX1 rs1760944 polymorphism may correlate with NPC susceptibility in a population from an endemic area in South China.
Collapse
Affiliation(s)
- Zhifang Lu
- Graduate School of Guangxi Medical University, Nanning, China
| | - Sisi Li
- Graduate School of Guangxi Medical University, Nanning, China
| | - Sisi Ning
- Graduate School of Guangxi Medical University, Nanning, China
| | - Mengwei Yao
- Graduate School of Guangxi Medical University, Nanning, China
| | - Xunzhao Zhou
- Graduate School of Guangxi Medical University, Nanning, China
| | - Yuan Wu
- Graduate School of Guangxi Medical University, Nanning, China
| | - Changtao Zhong
- Graduate School of Guangxi Medical University, Nanning, China
| | - Kui Yan
- Graduate School of Guangxi Medical University, Nanning, China
| | - Zhengbo Wei
- Department of Head and Neck Tumor Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Ying Xie
- Guangxi Key Laboratory for High-Incidence Tumor Prevention and Treatment, Experimental Center of Medical Science of Guangxi Medical University, Nanning, China
| |
Collapse
|
42
|
Mitochondrial transcription factor A (TFAM) rs1937 and AP endonuclease 1 (APE1) rs1130409 alleles are associated with reduced cognitive performance. Neurosci Lett 2017; 645:46-52. [DOI: 10.1016/j.neulet.2017.02.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/15/2017] [Accepted: 02/22/2017] [Indexed: 12/13/2022]
|
43
|
Whitaker AM, Schaich MA, Smith MR, Flynn TS, Freudenthal BD. Base excision repair of oxidative DNA damage: from mechanism to disease. Front Biosci (Landmark Ed) 2017; 22:1493-1522. [PMID: 28199214 DOI: 10.2741/4555] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species continuously assault the structure of DNA resulting in oxidation and fragmentation of the nucleobases. Both oxidative DNA damage itself and its repair mediate the progression of many prevalent human maladies. The major pathway tasked with removal of oxidative DNA damage, and hence maintaining genomic integrity, is base excision repair (BER). The aphorism that structure often dictates function has proven true, as numerous recent structural biology studies have aided in clarifying the molecular mechanisms used by key BER enzymes during the repair of damaged DNA. This review focuses on the mechanistic details of the individual BER enzymes and the association of these enzymes during the development and progression of human diseases, including cancer and neurological diseases. Expanding on these structural and biochemical studies to further clarify still elusive BER mechanisms, and focusing our efforts toward gaining an improved appreciation of how these enzymes form co-complexes to facilitate DNA repair is a crucial next step toward understanding how BER contributes to human maladies and how it can be manipulated to alter patient outcomes.
Collapse
Affiliation(s)
- Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Matthew A Schaich
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Mallory R Smith
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Tony S Flynn
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160,
| |
Collapse
|
44
|
Starostenko LV, Maltseva EA, Lebedeva NA, Pestryakov PE, Lavrik OI, Rechkunova NI. Interaction of Nucleotide Excision Repair Protein XPC-RAD23B with DNA Containing Benzo[a]pyrene-Derived Adduct and Apurinic/Apyrimidinic Site within a Cluster. BIOCHEMISTRY (MOSCOW) 2017; 81:233-41. [PMID: 27262192 DOI: 10.1134/s0006297916030056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The combined action of reactive metabolites of benzo[a]pyrene (B[a]P) and oxidative stress can lead to cluster-type DNA damage that includes both a bulky lesion and an apurinic/apyrimidinic (AP) site, which are repaired by the nucleotide and base excision repair mechanisms - NER and BER, respectively. Interaction of NER protein XPC-RAD23B providing primary damage recognition with DNA duplexes containing a B[a]P-derived residue linked to the exocyclic amino group of a guanine (BPDE-N(2)-dG) in the central position of one strand and AP site in different positions of the other strand was analyzed. It was found that XPC-RAD23B crosslinks to DNA containing (+)-trans-BPDE-N(2)-dG more effectively than to DNA containing cis-isomer, independently of the AP site position in the opposite strand; protein affinity to DNA containing one of the BPDE-N(2)-dG isomers depends on the AP site position in the opposite strand. The influence of XPC-RAD23B on hydrolysis of an AP site clustered with BPDE-N(2)-dG catalyzed by the apurinic/apyrimidinic endonuclease 1 (APE1) was examined. XPC-RAD23B was shown to stimulate the endonuclease and inhibit the 3'-5' exonuclease activity of APE1. These data demonstrate the possibility of cooperation of two proteins belonging to different DNA repair systems in the repair of cluster-type DNA damage.
Collapse
Affiliation(s)
- L V Starostenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | | | | | | | | | | |
Collapse
|
45
|
Gulbay G, Yesilada E, Celik O, Yologlu S. The Investigation of Polymorphisms in DNA Repair Genes (XRCC1, APE1 and XPD) in Women with Polycystic Ovary Syndrome. Asian Pac J Cancer Prev 2017; 18:1219-1223. [PMID: 28610405 PMCID: PMC5555526 DOI: 10.22034/apjcp.2017.18.5.1219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: PCOS was reported to arise from the interaction of genetic and environmental factors. Some studies
reported that women with PCOS have DNA damage and chromosome breakage. Such studies bring to mind the genes
that are involved in DNA repairing. At present, several DNA repair genes and, as products of these genes, certain
polymorphisms that alter the activity of proteins are known in the literature. The aim of this dissertation is to study the
genomic instability that have been reported in PCOS cases along with the relationship between XRCC1 Arg194Trp,
XRCC1 Arg399Gln, APE1 Asp148Glu, and XPD Lys751Gln polymorphisms in order to contribute to the pathogenesis of
PCOS. Methods: Polymorphisms in DNA repair genes have been associated with the increased risk of various diseases
and could also be related to the etiology of PCOS. Therefore, we conducted a study including 114 women with PCOS
and 91 controls. These polymorphisms were determined by quantitative real time PCR and melting curve analysis using
LightCycler. Results: Comparing the control groups at the end of the study, the results have not shown any statistically
significant difference as far as XRCC1 Arg194Trp, XRCC1 Arg399Gln, and XPD Lys751Gln polymorphisms are
concerned. However, there were notable differences between the groups in terms of APE1 Asp148Glu polymorphism.
Associated with this condition, it has been noted that both mutant allele (Glu) frequency (37.72 % in the study group;
19.23% in the control group, p=0.0001) and homozygous mutant genotype (Glu/Glu) frequency (%12.28 in the study
group; %6.60 in the control group, p=0.015) have been higher in the study group.
Collapse
Affiliation(s)
- Gonca Gulbay
- Department of Medical Biology and Genetics, Faculty of Medicine, Inonu University, Turkey,For Correspondence:
| | - Elif Yesilada
- Department of Medical Biology and Genetics, Faculty of Medicine, Inonu University, Turkey
| | - Onder Celik
- Department of Obstetrics and Gynecology, Private Clinic, Turkey
| | - Saim Yologlu
- Department of Medical Biology and Genetics, Faculty of Medicine, Inonu University, Turkey
| |
Collapse
|
46
|
DNA damage repair in breast cancer and its therapeutic implications. Pathology 2016; 49:156-165. [PMID: 28034453 DOI: 10.1016/j.pathol.2016.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/06/2016] [Accepted: 11/02/2016] [Indexed: 11/23/2022]
Abstract
The DNA damage response (DDR) involves the activation of numerous cellular activities that repair DNA lesions and maintain genomic integrity, and is critical in preventing tumorigenesis. Inherited or acquired mutations in specific genes involved in the DNA damage response, for example the breast cancer susceptibility genes 1/2 (BRCA1/2), phosphatase and tensin homolog (PTEN) and P53 are associated with various subtypes of breast cancer. Such changes can render breast cancer cells particularly sensitive to specific DNA damage response inhibitors, for example BRCA1/2 germline mutated cells are sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors. The aims of this review are to discuss specific DNA damage response defects in breast cancer and to present the current stage of development of various DDR inhibitors (namely PARP, ATM/ATR, DNA-PK, PARG, RECQL5, FEN1 and APE1) for breast cancer mono- and combination therapy.
Collapse
|
47
|
Czarny P, Kwiatkowski D, Toma M, Gałecki P, Orzechowska A, Bobińska K, Bielecka-Kowalska A, Szemraj J, Berk M, Anderson G, Śliwiński T. Single-Nucleotide Polymorphisms of Genes Involved in Repair of Oxidative DNA Damage and the Risk of Recurrent Depressive Disorder. Med Sci Monit 2016; 22:4455-4474. [PMID: 27866211 PMCID: PMC5119689 DOI: 10.12659/msm.898091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Depressive disorder, including recurrent type (rDD), is accompanied by increased oxidative stress and activation of inflammatory pathways, which may induce DNA damage. This thesis is supported by the presence of increased levels of DNA damage in depressed patients. Such DNA damage is repaired by the base excision repair (BER) pathway. BER efficiency may be influenced by polymorphisms in BER-related genes. Therefore, we genotyped nine single-nucleotide polymorphisms (SNPs) in six genes encoding BER proteins. Material/Methods Using TaqMan, we selected and genotyped the following SNPs: c.-441G>A (rs174538) of FEN1, c.2285T>C (rs1136410) of PARP1, c.580C>T (rs1799782) and c.1196A>G (rs25487) of XRCC1, c.*83A>C (rs4796030) and c.*50C>T (rs1052536) of LIG3, c.-7C>T (rs20579) of LIG1, and c.-468T>G (rs1760944) and c.444T>G (rs1130409) of APEX1 in 599 samples (288 rDD patients and 311 controls). Results We found a strong correlation between rDD and both SNPs of LIG3, their haplotypes, as well as a weaker association with the c.-468T>G of APEXI which diminished after Nyholt correction. Polymorphisms of LIG3 were also associated with early onset versus late onset depression, whereas the c.-468T>G polymorphism showed the opposite association. Conclusions The SNPs of genes involved in the repair of oxidative DNA damage may modulate rDD risk. Since this is an exploratory study, the results should to be treated with caution and further work needs to be done to elucidate the exact involvement of DNA damage and repair mechanisms in the development of this disease.
Collapse
Affiliation(s)
- Piotr Czarny
- Department of Molecular Genetics, University of Łódź, Łódź, Poland
| | | | - Monika Toma
- Department of Molecular Genetics, University of Łódź, Łódź, Poland
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| | - Agata Orzechowska
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| | - Kinga Bobińska
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| | | | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Łódź, Łódź, Poland
| | - Michael Berk
- IMPACT Research Center, Deakin University, Geelong, Australia
| | - George Anderson
- Clinical Research Communications Centre, CRC Scotland & London, London, United Kingdom
| | - Tomasz Śliwiński
- Department of Molecular Genetics, University of Łódź, Łódź, Poland
| |
Collapse
|
48
|
Dreussi E, Cecchin E, Polesel J, Canzonieri V, Agostini M, Boso C, Belluco C, Buonadonna A, Lonardi S, Bergamo F, Gagno S, De Mattia E, Pucciarelli S, De Paoli A, Toffoli G. Pharmacogenetics Biomarkers and Their Specific Role in Neoadjuvant Chemoradiotherapy Treatments: An Exploratory Study on Rectal Cancer Patients. Int J Mol Sci 2016; 17:ijms17091482. [PMID: 27608007 PMCID: PMC5037760 DOI: 10.3390/ijms17091482] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/11/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022] Open
Abstract
Background: Pathological complete response (pCR) to neoadjuvant chemoradiotherapy (CRT) in locally advanced rectal cancer (LARC) is still ascribed to a minority of patients. A pathway based-approach could highlight the predictive role of germline single nucleotide polymorphisms (SNPs). The primary aim of this study was to define new predictive biomarkers considering treatment specificities. Secondary aim was to determine new potential predictive biomarkers independent from radiotherapy (RT) dosage and cotreatment with oxaliplatin. Methods: Thirty germ-line SNPs in twenty-one genes were selected according to a pathway-based approach. Genetic analyses were performed on 280 LARC patients who underwent fluoropyrimidine-based CRT. The potential predictive role of these SNPs in determining pathological tumor response was tested in Group 1 (94 patients undergoing also oxaliplatin), Group 2 (73 patients treated with high RT dosage), Group 3 (113 patients treated with standard RT dosage), and in the pooled population (280 patients). Results: Nine new predictive biomarkers were identified in the three groups. The most promising one was rs3136228-MSH6 (p = 0.004) arising from Group 3. In the pooled population, rs1801133-MTHFR showed only a trend (p = 0.073). Conclusion: This exploratory study highlighted new potential predictive biomarkers of neoadjuvant CRT and underlined the importance to strictly define treatment peculiarities in pharmacogenetic analyses.
Collapse
Affiliation(s)
- Eva Dreussi
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano 33081, Italy.
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano 33081, Italy.
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano 33081, Italy.
| | - Vincenzo Canzonieri
- Pathology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano 33081, Italy.
| | - Marco Agostini
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padova 35128, Italy.
- Nano-Inspired Biomedicine Laboratory, Institute of Pediatric Research-Città della Speranza, Corso Stati Uniti 4, Padova 35127, Italy.
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA.
| | - Caterina Boso
- Radiation Oncology, Istituto Oncologico Veneto-IRCCS, Padova 35128, Italy.
| | - Claudio Belluco
- Surgical Oncology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano 33081, Italy.
| | - Angela Buonadonna
- Medical Oncology B, Centro di Riferimento Oncologico, National Cancer Institute, Aviano 33801, Italy.
| | - Sara Lonardi
- Medical Oncology 1, Istituto Oncologico Veneto-IRCCS, Padova 35128, Italy.
| | - Francesca Bergamo
- Medical Oncology 1, Istituto Oncologico Veneto-IRCCS, Padova 35128, Italy.
| | - Sara Gagno
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano 33081, Italy.
| | - Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano 33081, Italy.
| | - Salvatore Pucciarelli
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padova 35128, Italy.
| | - Antonino De Paoli
- Radiation Oncology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano 33081, Italy.
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano 33081, Italy.
| |
Collapse
|
49
|
Hsieh WC, Lin C, Chen DR, Yu WF, Chen GJ, Hu SW, Liu CC, Ge MH, Ruan CS, Chen CY, Lin CH, Lin PH. Genetic polymorphisms in APE1 Asp148Glu(rs3136820) as a modifier of the background levels of abasic sites in human leukocytes derived from breast cancer patients and controls. Breast Cancer 2016; 24:420-426. [PMID: 27539671 DOI: 10.1007/s12282-016-0719-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Apurinic/apyrimidinic (abasic/AP) sites are among the most common endogenous DNA lesions. AP sites, if not repaired, could result in genomic instability as well as chromosome aberrations. Information regarding the direct assay of the number of abasic sites in human leukocytes and its association with risk of breast cancer has not been reported. METHODS In this study, we investigated the association between certain risk factors for breast cancer and the background levels of AP sites in leukocytes derived from 148 Taiwanese women with breast cancer and 140 cancer-free controls. The risk factors studied include age, body mass index (BMI), and polymorphisms of apurinic/apyrimidinic endonuclease (APE1) [APE1 Asp148Glu(rs3136820)]. RESULTS Mean levels of AP sites were estimated to be 23.3 and 50.3 per 106 nucleotides in controls and breast cancer patients, respectively (~twofold, p < 0.001). In subjects with age <50 or BMI < 27 (kg/m2), the levels of AP sites in breast cancer patients were ~2-3-fold greater than those of controls (p < 0.05). Additionally, results from the AP site 3'-cleavage assay indicated that the AP sites detected in both controls and patients were likely to be oxidant-mediated 5'-cleaved AP sites (~61-64 %). The number of AP sites in breast cancer patients was ~twofold greater in subjects with Asp/Glu + Glu/Glugenotypes than those with Asp/Asp genotype (p < 0.001). CONCLUSIONS We confirmed that cumulative body burden of AP sites is a significant predictor of the risk of developing breast cancer and that genetic predisposition and environment factors may modulate the induction of oxidative DNA lesions in breast cancer patients.
Collapse
Affiliation(s)
- Wei-Chung Hsieh
- Department of Laboratory Medicine, Da-Chien General Hospital, Miaoli, Taiwan
| | - Che Lin
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Dar-Ren Chen
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Wen-Fa Yu
- Department of Laboratory Medicine, Da-Chien General Hospital, Miaoli, Taiwan
| | - Guan-Jie Chen
- Department of Environmental Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Suh-Woan Hu
- College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chin-Chen Liu
- Department of Environmental Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Mao-Huei Ge
- Department of Environmental Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chang-Sin Ruan
- Department of Environmental Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Cheng-You Chen
- Department of Environmental Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan
| | - Po-Hsiung Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
50
|
Tong Z, Shen H, Yang D, Zhang F, Bai Y, Li Q, Shi J, Zhang H, Zhu B. Genetic Variations in the Promoter of the APE1 Gene Are Associated with DMF-Induced Abnormal Liver Function: A Case-Control Study in a Chinese Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13080752. [PMID: 27463724 PMCID: PMC4997438 DOI: 10.3390/ijerph13080752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/29/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022]
Abstract
Acute or long-term exposure to N,N-dimethylformamide (DMF) can induce abnormal liver function. It is well known that DMF is mainly metabolized in the liver and thereby produces reactive oxygen species (ROS). The base excision repair (BER) pathway is regarded as a very important pathway involved in repairing ROS-induced DNA damage. Several studies have explored the associations between GSTM1, GSTT1, CYP2E1 polymorphisms and DMF-induced abnormal liver function; however, little is known about how common hOGG1, XRCC1 and APE1 polymorphisms and DMF induce abnormal liver function. The purpose of this study was to investigate whether the polymorphisms in the hOGG1 (rs159153 and rs2072668), XRCC1 (rs25487, rs25489, and rs1799782), APE1 (rs1130409 and 1760944) genes in the human BER pathway were associated with the susceptibility to DMF-induced abnormal liver function in a Chinese population. These polymorphisms were genotyped in 123 workers with DMF-induced abnormal liver function and 123 workers with normal liver function. We found that workers with the APE1 rs1760944 TG/GG genotypes had a reduced risk of abnormal liver function, which was more pronounced in the subgroups that were exposed to DMF for <10 years, exposed to ≥10 mg/m3 DMF, never smoked and never drank. In summary, our study supported the hypothesis that the APE1 rs1760944 T > G polymorphism may be associated with DMF-induced abnormal liver function in the Chinese Han population.
Collapse
Affiliation(s)
- Zhimin Tong
- Kunshan Municipal Center for Disease Prevention and Control, Kunshan 215301, China.
| | - Huanxi Shen
- Kunshan Municipal Center for Disease Prevention and Control, Kunshan 215301, China.
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing 211166, China.
| | - Dandan Yang
- Department of Integrated Management & Emergency Preparedness and Response, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China.
| | - Feng Zhang
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, No.172 Jiangsu Road, Nanjing 210009, China.
| | - Ying Bai
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, No.172 Jiangsu Road, Nanjing 210009, China.
| | - Qian Li
- The First People's Hospital of Kunshan, Kunshan 215300, China.
| | - Jian Shi
- Kunshan Municipal Center for Disease Prevention and Control, Kunshan 215301, China.
| | - Hengdong Zhang
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, No.172 Jiangsu Road, Nanjing 210009, China.
| | - Baoli Zhu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing 211166, China.
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, No.172 Jiangsu Road, Nanjing 210009, China.
| |
Collapse
|