1
|
Merker Breyer G, Malvessi Cattani A, Silveira Schrank I, Maboni Siqueira F. The influence of regulatory elements on Mycoplasma hyopneumoniae 7448 transcriptional response during oxidative stress and heat shock. Mol Biol Rep 2021; 49:139-147. [PMID: 34676505 DOI: 10.1007/s11033-021-06851-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The comprehension of genome organization and gene modulation is essential for understanding pathogens' infection mechanisms. Mycoplasma hyopneumoniae 7448 genome is organized in transcriptional units (TUs), which are flanked by regulatory elements such as putative promoters, terminators and repetitive sequences. Yet the relationship between the presence of these elements and bacterial responses during stress conditions remains unclear. Thus, in this study, in silico and RT-qPCR analyses were associated to determine the effect of regulatory elements in gene expression regulation upon heat shock and oxidative stress conditions. METHODS AND RESULTS Thirteen TU's organizational profiles were found based on promoters and terminators distribution. Differential expression in genes sharing the same TUs was observed, suggesting the activity of internal regulatory elements. Moreover, 88.8% of tested genes were differentially expressed under oxidative stress in comparison to the control condition, being 81.3% of them surrounded by their own regulatory elements. Similarly, under heat shock, 44.4% of the genes showed regulation when compared to control condition, being 75.0% of them surrounded by their own regulatory elements. CONCLUSIONS Altogether, this data suggests the activity of internal regulatory elements in gene modulation of M. hyopneumoniae 7448 transcription.
Collapse
Affiliation(s)
- Gabriela Merker Breyer
- Laboratory of Veterinary Bacteriology, Veterinary Pathology Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda Malvessi Cattani
- Graduate Program in Cell and Molecular Biology, Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Irene Silveira Schrank
- Graduate Program in Cell and Molecular Biology, Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Franciele Maboni Siqueira
- Laboratory of Veterinary Bacteriology, Veterinary Pathology Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Matteau D, Lachance J, Grenier F, Gauthier S, Daubenspeck JM, Dybvig K, Garneau D, Knight TF, Jacques P, Rodrigue S. Integrative characterization of the near-minimal bacterium Mesoplasma florum. Mol Syst Biol 2020; 16:e9844. [PMID: 33331123 PMCID: PMC7745072 DOI: 10.15252/msb.20209844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
The near-minimal bacterium Mesoplasma florum is an interesting model for synthetic genomics and systems biology due to its small genome (~ 800 kb), fast growth rate, and lack of pathogenic potential. However, fundamental aspects of its biology remain largely unexplored. Here, we report a broad yet remarkably detailed characterization of M. florum by combining a wide variety of experimental approaches. We investigated several physical and physiological parameters of this bacterium, including cell size, growth kinetics, and biomass composition of the cell. We also performed the first genome-wide analysis of its transcriptome and proteome, notably revealing a conserved promoter motif, the organization of transcription units, and the transcription and protein expression levels of all protein-coding sequences. We converted gene transcription and expression levels into absolute molecular abundances using biomass quantification results, generating an unprecedented view of the M. florum cellular composition and functions. These characterization efforts provide a strong experimental foundation for the development of a genome-scale model for M. florum and will guide future genome engineering endeavors in this simple organism.
Collapse
Affiliation(s)
- Dominick Matteau
- Département de biologieUniversité de SherbrookeSherbrookeQCCanada
| | | | - Frédéric Grenier
- Département de biologieUniversité de SherbrookeSherbrookeQCCanada
| | - Samuel Gauthier
- Département de biologieUniversité de SherbrookeSherbrookeQCCanada
| | | | - Kevin Dybvig
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamALUSA
| | - Daniel Garneau
- Département de biologieUniversité de SherbrookeSherbrookeQCCanada
| | | | | | | |
Collapse
|
3
|
Kędzierska-Mieszkowska S, Potrykus K, Arent Z, Krajewska J. Identification of σ E-Dependent Promoter Upstream of clpB from the Pathogenic Spirochaete Leptospira interrogans by Applying an E. coli Two-Plasmid System. Int J Mol Sci 2019; 20:ijms20246325. [PMID: 31847479 PMCID: PMC6941012 DOI: 10.3390/ijms20246325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022] Open
Abstract
There is limited information on gene expression in the pathogenic spirochaete Leptospira interrogans and genetic mechanisms controlling its virulence. Transcription is the first step in gene expression that is often determined by environmental effects, including infection-induced stresses. Alterations in the environment result in significant changes in the transcription of many genes, allowing effective adaptation of Leptospira to mammalian hosts. Thus, promoter and transcriptional start site identification are crucial for determining gene expression regulation and for the understanding of genetic regulatory mechanisms existing in Leptospira. Here, we characterized the promoter region of the L. interrogans clpB gene (clpBLi) encoding an AAA+ molecular chaperone ClpB essential for the survival of this spirochaete under thermal and oxidative stresses, and also during infection of the host. Primer extension analysis demonstrated that transcription of clpB in L. interrogans initiates at a cytidine located 41 bp upstream of the ATG initiation codon, and, to a lesser extent, at an adenine located 2 bp downstream of the identified site. Transcription of both transcripts was heat-inducible. Determination of clpBLi transcription start site, combined with promoter transcriptional activity assays using a modified two-plasmid system in E. coli, revealed that clpBLi transcription is controlled by the ECF σE factor. Of the ten L. interrogans ECF σ factors, the factor encoded by LIC_12757 (LA0876) is most likely to be the key regulator of clpB gene expression in Leptospira cells, especially under thermal stress. Furthermore, clpB expression may be mediated by ppGpp in Leptospira.
Collapse
Affiliation(s)
- Sabina Kędzierska-Mieszkowska
- Department of General and Medical Biochemistry, University of Gdańsk, Faculty of Biology, 80-308 Gdańsk, Poland;
- Correspondence: ; Tel./Fax: +48-58-523-6064
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland;
| | - Zbigniew Arent
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, 30-059 Krakow, Poland;
| | - Joanna Krajewska
- Department of General and Medical Biochemistry, University of Gdańsk, Faculty of Biology, 80-308 Gdańsk, Poland;
| |
Collapse
|
4
|
Miravet-Verde S, Ferrar T, Espadas-García G, Mazzolini R, Gharrab A, Sabido E, Serrano L, Lluch-Senar M. Unraveling the hidden universe of small proteins in bacterial genomes. Mol Syst Biol 2019; 15:e8290. [PMID: 30796087 PMCID: PMC6385055 DOI: 10.15252/msb.20188290] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Identification of small open reading frames (smORFs) encoding small proteins (≤ 100 amino acids; SEPs) is a challenge in the fields of genome annotation and protein discovery. Here, by combining a novel bioinformatics tool (RanSEPs) with “‐omics” approaches, we were able to describe 109 bacterial small ORFomes. Predictions were first validated by performing an exhaustive search of SEPs present in Mycoplasma pneumoniae proteome via mass spectrometry, which illustrated the limitations of shotgun approaches. Then, RanSEPs predictions were validated and compared with other tools using proteomic datasets from different bacterial species and SEPs from the literature. We found that up to 16 ± 9% of proteins in an organism could be classified as SEPs. Integration of RanSEPs predictions with transcriptomics data showed that some annotated non‐coding RNAs could in fact encode for SEPs. A functional study of SEPs highlighted an enrichment in the membrane, translation, metabolism, and nucleotide‐binding categories. Additionally, 9.7% of the SEPs included a N‐terminus predicted signal peptide. We envision RanSEPs as a tool to unmask the hidden universe of small bacterial proteins.
Collapse
Affiliation(s)
- Samuel Miravet-Verde
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Tony Ferrar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Guadalupe Espadas-García
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rocco Mazzolini
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anas Gharrab
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduard Sabido
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Maria Lluch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain .,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
5
|
Abstract
This review summarizes our current understanding of translation in prokaryotes, focusing on the mechanistic and structural aspects of each phase of translation: initiation, elongation, termination, and ribosome recycling. The assembly of the initiation complex provides multiple checkpoints for messenger RNA (mRNA) and start-site selection. Correct codon-anticodon interaction during the decoding phase of elongation results in major conformational changes of the small ribosomal subunit and shapes the reaction pathway of guanosine triphosphate (GTP) hydrolysis. The ribosome orchestrates proton transfer during peptide bond formation, but requires the help of elongation factor P (EF-P) when two or more consecutive Pro residues are to be incorporated. Understanding the choreography of transfer RNA (tRNA) and mRNA movements during translocation helps to place the available structures of translocation intermediates onto the time axis of the reaction pathway. The nascent protein begins to fold cotranslationally, in the constrained space of the polypeptide exit tunnel of the ribosome. When a stop codon is reached at the end of the coding sequence, the ribosome, assisted by termination factors, hydrolyzes the ester bond of the peptidyl-tRNA, thereby releasing the nascent protein. Following termination, the ribosome is dissociated into subunits and recycled into another round of initiation. At each step of translation, the ribosome undergoes dynamic fluctuations between different conformation states. The aim of this article is to show the link between ribosome structure, dynamics, and function.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen 37077, Germany
| |
Collapse
|
6
|
Yus E, Yang JS, Sogues A, Serrano L. A reporter system coupled with high-throughput sequencing unveils key bacterial transcription and translation determinants. Nat Commun 2017; 8:368. [PMID: 28848232 PMCID: PMC5573727 DOI: 10.1038/s41467-017-00239-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/09/2017] [Indexed: 12/24/2022] Open
Abstract
Quantitative analysis of the sequence determinants of transcription and translation regulation is relevant for systems and synthetic biology. To identify these determinants, researchers have developed different methods of screening random libraries using fluorescent reporters or antibiotic resistance genes. Here, we have implemented a generic approach called ELM-seq (expression level monitoring by DNA methylation) that overcomes the technical limitations of such classic reporters. ELM-seq uses DamID (Escherichia coli DNA adenine methylase as a reporter coupled with methylation-sensitive restriction enzyme digestion and high-throughput sequencing) to enable in vivo quantitative analyses of upstream regulatory sequences. Using the genome-reduced bacterium Mycoplasma pneumoniae, we show that ELM-seq has a large dynamic range and causes minimal toxicity. We use ELM-seq to determine key sequences (known and putatively novel) of promoter and untranslated regions that influence transcription and translation efficiency. Applying ELM-seq to other organisms will help us to further understand gene expression and guide synthetic biology. Quantitative analysis of how DNA sequence determines transcription and translation regulation is of interest to systems and synthetic biologists. Here the authors present ELM-seq, which uses Dam activity as reporter for high-throughput analysis of promoter and 5’-UTR regions.
Collapse
Affiliation(s)
- Eva Yus
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jae-Seong Yang
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Adrià Sogues
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institut Pasteur, Unité de Microbiologie Structurale (CNRS) UMR 3528, Université Paris Diderot, 25 rue du Docteur Roux, Paris, 75724, France
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona, 08003, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
7
|
Waites KB, Xiao L, Liu Y, Balish MF, Atkinson TP. Mycoplasma pneumoniae from the Respiratory Tract and Beyond. Clin Microbiol Rev 2017; 30:747-809. [PMID: 28539503 PMCID: PMC5475226 DOI: 10.1128/cmr.00114-16] [Citation(s) in RCA: 414] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mycoplasma pneumoniae is an important cause of respiratory tract infections in children as well as adults that can range in severity from mild to life-threatening. Over the past several years there has been much new information published concerning infections caused by this organism. New molecular-based tests for M. pneumoniae detection are now commercially available in the United States, and advances in molecular typing systems have enhanced understanding of the epidemiology of infections. More strains have had their entire genome sequences published, providing additional insights into pathogenic mechanisms. Clinically significant acquired macrolide resistance has emerged worldwide and is now complicating treatment. In vitro susceptibility testing methods have been standardized, and several new drugs that may be effective against this organism are undergoing development. This review focuses on the many new developments that have occurred over the past several years that enhance our understanding of this microbe, which is among the smallest bacterial pathogens but one of great clinical importance.
Collapse
Affiliation(s)
- Ken B Waites
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Li Xiao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yang Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China, and Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | | | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
8
|
Torres-Puig S, Broto A, Querol E, Piñol J, Pich OQ. A novel sigma factor reveals a unique regulon controlling cell-specific recombination in Mycoplasma genitalium. Nucleic Acids Res 2015; 43:4923-36. [PMID: 25925568 PMCID: PMC4446450 DOI: 10.1093/nar/gkv422] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 04/19/2015] [Indexed: 11/22/2022] Open
Abstract
The Mycoplasma genitalium MG428 protein shows homology to members of the sigma-70 family of sigma factors. Herein, we found that MG428 activates transcription of recA, ruvA and ruvB as well as several genes with unknown function. Deletion of MG_428 or some of the up-regulated unknown genes led to severe recombination defects. Single cell analyses revealed that activation of the MG428-regulon is a rare event under laboratory growth conditions. A conserved sequence with sigma-70 promoter architecture (TTGTCA-N18/19-ATTWAT) was identified in the upstream region of all of the MG428-regulated genes or operons. Primer extension analyses demonstrated that transcription initiates immediately downstream of this sigma70-type promoter in a MG428-dependent manner. Furthermore, mutagenesis of the conserved −10 and −35 elements corroborated the requirement of these regions for promoter function. Therefore, a new mycoplasma promoter directs transcription of a unique recombination regulon. Additionally, MG428 was found to interact with the RNAP core enzyme, reinforcing the predicted role of this protein as an alternative sigma factor. Finally, our results indicate that MG428 contributes to the generation of genetic diversity in this model organism. Since recombination is an important mechanism to generate antigenic variation, MG428 emerges as a novel factor contributing to M. genitalium virulence.
Collapse
Affiliation(s)
- Sergi Torres-Puig
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular. Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Alicia Broto
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular. Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Enrique Querol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular. Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular. Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Oscar Q Pich
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular. Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
9
|
Lloréns-Rico V, Lluch-Senar M, Serrano L. Distinguishing between productive and abortive promoters using a random forest classifier in Mycoplasma pneumoniae. Nucleic Acids Res 2015; 43:3442-53. [PMID: 25779052 PMCID: PMC4402517 DOI: 10.1093/nar/gkv170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/22/2015] [Indexed: 12/01/2022] Open
Abstract
Distinguishing between promoter-like sequences in bacteria that belong to true or abortive promoters, or to those that do not initiate transcription at all, is one of the important challenges in transcriptomics. To address this problem, we have studied the genome-reduced bacterium Mycoplasma pneumoniae, for which the RNAs associated with transcriptional start sites have been recently experimentally identified. We determined the contribution to transcription events of different genomic features: the –10, extended –10 and –35 boxes, the UP element, the bases surrounding the –10 box and the nearest-neighbor free energy of the promoter region. Using a random forest classifier and the aforementioned features transformed into scores, we could distinguish between true, abortive promoters and non-promoters with good –10 box sequences. The methods used in this characterization of promoters can be extended to other bacteria and have important applications for promoter design in bacterial genome engineering.
Collapse
Affiliation(s)
- Verónica Lloréns-Rico
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain
| | - Maria Lluch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
10
|
Burgos R, Totten PA. MG428 is a novel positive regulator of recombination that triggers mgpB and mgpC gene variation in Mycoplasma genitalium. Mol Microbiol 2014; 94:290-306. [PMID: 25138908 DOI: 10.1111/mmi.12760] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2014] [Indexed: 01/01/2023]
Abstract
The human pathogen Mycoplasma genitalium employs homologous recombination to generate antigenic diversity in the immunodominant MgpB and MgpC proteins. Only recently, some of the molecular factors involved in this process have been characterized, but nothing is known about its regulation. Here, we show that M. genitalium expresses N-terminally truncated RecA isoforms via alternative translation initiation, but only the full-length protein is essential for gene variation. We also demonstrate that overexpression of MG428 positively regulates the expression of recombination genes, including recA, ruvA, ruvB and ORF2, a gene of unknown function co-transcribed with ruvAB. The co-ordinated induction of these genes correlated with an increase of mgpBC gene variation. In contrast, cells lacking MG428 were unable to generate variants despite expressing normal levels of RecA. Similarly, deletion analyses of the recA upstream region defined sequences required for gene variation without abolishing RecA expression. The requirement of these sequences is consistent with the presence of promoter elements associated with MG428-dependent recA induction. Sequences upstream of recA also influence the relative abundance of RecA isoforms, possibly through translational regulation. Overall, these results suggest that MG428 is a positive regulator of recombination and that precise control of recA expression is required to initiate mgpBC variation.
Collapse
Affiliation(s)
- Raul Burgos
- Department of Medicine, Division of Infectious Diseases, University of Washington, Seattle, WA, 98104, USA
| | | |
Collapse
|
11
|
Karas BJ, Wise KS, Sun L, Venter JC, Glass JI, Hutchison CA, Smith HO, Suzuki Y. Rescue of mutant fitness defects using in vitro reconstituted designer transposons in Mycoplasma mycoides. Front Microbiol 2014; 5:369. [PMID: 25101070 PMCID: PMC4107850 DOI: 10.3389/fmicb.2014.00369] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 07/02/2014] [Indexed: 11/13/2022] Open
Abstract
With only hundreds of genes contained within their genomes, mycoplasmas have become model organisms for precise understanding of cellular processes, as well as platform organisms for predictable engineering of microbial functions for mission-critical applications. Despite the availability of “whole genome writing” in Mycoplasma mycoides, some traditional methods for genetic engineering are underdeveloped in mycoplasmas. Here we demonstrate two facile transposon-mediated approaches for introducing genes into the synthetic cell based on M. mycoides. The marker-less approach involves preparing a fragment containing only a small genomic region of interest with flanking transposase-binding sites, followed by in vitro transposase loading and introduction into the cells. The marker-driven approach involves cloning an open reading frame (ORF) of interest into a vector containing a marker for mycoplasma transformation, as well as sites for transposase loading and random genomic integration. An innovative feature of this construct is to use a single promoter to express the transformation marker and the introduced ORF. The marker-driven approach can be conveniently applied to any exogenous or synthetic gene without any information on the effect of the gene on the strain, whereas the marker-less approach requires that the fragment has a recognizable effect. Using the marker-less method, we found that a region containing the nusG gene rescues a slow growth phenotype of a strain containing a larger deletion encompassing this gene. Using the marker-driven approach, we better defined this finding, thereby establishing that nusG is required for a normal growth rate in synthetic M. mycoides. These methods are suitable for complementation tests to identify genes responsible for assorted functions lacking in deletion mutants. These approaches are also expected to facilitate rapid testing of various natural and engineered genes or gene clusters from numerous sources in M. mycoides.
Collapse
Affiliation(s)
- Bogumil J Karas
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute La Jolla, CA, USA
| | - Kim S Wise
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute La Jolla, CA, USA ; Department of Molecular Microbiology and Immunology, University of Missouri Columbia, MO, USA
| | - Lijie Sun
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute La Jolla, CA, USA
| | - J Craig Venter
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute La Jolla, CA, USA ; Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute Rockville, MD, USA
| | - John I Glass
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute La Jolla, CA, USA ; Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute Rockville, MD, USA
| | - Clyde A Hutchison
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute La Jolla, CA, USA
| | - Hamilton O Smith
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute La Jolla, CA, USA
| | - Yo Suzuki
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute La Jolla, CA, USA
| |
Collapse
|
12
|
Genome organization in Mycoplasma hyopneumoniae: identification of promoter-like sequences. Mol Biol Rep 2014; 41:5395-402. [DOI: 10.1007/s11033-014-3411-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 05/11/2014] [Indexed: 11/26/2022]
|
13
|
Characterization of the operon encoding the Holliday junction helicase RuvAB from Mycoplasma genitalium and its role in mgpB and mgpC gene variation. J Bacteriol 2014; 196:1608-18. [PMID: 24532771 DOI: 10.1128/jb.01385-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mycoplasma genitalium is an emerging sexually transmitted pathogen associated with reproductive tract disease in men and women, and it can persist for months to years despite the development of a robust antibody response. Mechanisms that may contribute to persistence in vivo include phase and antigenic variation of the MgpB and MgpC adhesins. These processes occur by segmental recombination between discrete variable regions within mgpB and mgpC and multiple archived donor sequences termed MgPa repeats (MgPars). The molecular factors governing mgpB and mgpC variation are poorly understood and obscured by the paucity of recombination genes conserved in the M. genitalium genome. Recently, we demonstrated the requirement for RecA using a quantitative PCR (qPCR) assay developed to measure recombination between the mgpB and mgpC genes and MgPars. Here, we expand these studies by examining the roles of M. genitalium ruvA and ruvB homologs. Deletion of ruvA and ruvB impaired the ability to generate mgpB and mgpC phase and sequence variants, and these deficiencies could be complemented with wild-type copies, including the ruvA gene from Mycoplasma pneumoniae. In contrast, ruvA and ruvB deletions did not affect the sensitivity to UV irradiation, reinforcing our previous findings that the recombinational repair pathway plays a minor role in M. genitalium. Reverse transcription-PCR (RT-PCR) and primer extension analyses also revealed a complex transcriptional organization of the RuvAB system of M. genitalium, which is cotranscribed with two novel open reading frames (ORFs) (termed ORF1 and ORF2 herein) conserved only in M. pneumoniae. These findings suggest that these novel ORFs may play a role in recombination in these two closely related bacteria.
Collapse
|
14
|
Reconstitution of an active arginine deiminase pathway in Mycoplasma pneumoniae M129. Infect Immun 2013; 81:3742-9. [PMID: 23897620 DOI: 10.1128/iai.00441-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some species of the genus Mycoplasma code for the arginine deiminase pathway (ADI), which enables these bacteria to produce ATP from arginine by the successive reaction of three enzymes: arginine deiminase (ArcA), ornithine carbamoyltransferase (ArcB), and carbamate kinase (ArcC). It so far appears that independently isolated strains of Mycoplasma pneumoniae encode an almost identical truncated version of the ADI pathway in which the proteins ArcA and ArcB have lost their original enzymatic activities due to the deletion of significant regions of these proteins. To study the consequences of a functional ADI pathway, M. pneumoniae M129 was successfully transformed with the cloned functional arcA, arcB, and arcC genes from Mycoplasma fermentans. Enzymatic tests showed that while the M. pneumoniae ArcAB and ArcABC transformants possess functional arginine deiminase, ornithine carbamoyltransferase, and carbamate kinase, they were unable to grow on arginine as the sole energy source. Nevertheless, infection of a lung epithelial cell line, A549, with the M. pneumoniae transformants showed that almost 100% of the infected host cells were nonviable, while most of the lung cells infected with nontransformed M. pneumoniae were viable under the same experimental conditions.
Collapse
|
15
|
Yus E, Güell M, Vivancos AP, Chen WH, Lluch-Senar M, Delgado J, Gavin AC, Bork P, Serrano L. Transcription start site associated RNAs in bacteria. Mol Syst Biol 2012; 8:585. [PMID: 22617959 PMCID: PMC3377991 DOI: 10.1038/msb.2012.16] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 04/24/2012] [Indexed: 01/07/2023] Open
Abstract
A new class of small RNA (~45 bases long) is identified in gram positive and negative bacteria. These tssRNAs are associated with RNA polymerase pausing some 45 bases downstream of the transcription start site and show global changes in expression during the growth cycle. ![]()
A new class of bacterial small RNAs have been identified. They are related to eukaryotic tiRNAs in their localization (transcription start sites, TSS) but not in their biogenesis. tssRNAs are generated at the same positions as long transcripts, as well as at independent positions, but both seem to have promoter-like characteristics (Pribnow box). We provide compelling evidence that tssRNAs are not mRNA degradation products and neither abortive transcripts; rather, they are newly synthesized transcripts and require more factors than the basal transcription machinery (i.e., RNA polymerase subunits) tssRNAs show dynamic behavior dependent on the growth phase. We show that RNA polymerase is halted at tssRNAs positions, both in bona fide genes and in positions where no long transcript is produced. This indicates that tssRNAs could be generated by RNA polymerase pausing to ensure that no spurious long RNA is generated by random appearance of Pribnow sequences in the genome.
Here, we report the genome-wide identification of small RNAs associated with transcription start sites (TSSs), termed tssRNAs, in Mycoplasma pneumoniae. tssRNAs were also found to be present in a different bacterial phyla, Escherichia coli. Similar to the recently identified promoter-associated tiny RNAs (tiRNAs) in eukaryotes, tssRNAs are associated with active promoters. Evidence suggests that these tssRNAs are distinct from previously described abortive transcription RNAs. ssRNAs have an average size of 45 bases and map exactly to the beginning of cognate full-length transcripts and to cryptic TSSs. Expression of bacterial tssRNAs requires factors other than the standard RNA polymerase holoenzyme. We have found that the RNA polymerase is halted at tssRNA positions in vivo, which may indicate that a pausing mechanism exists to prevent transcription in the absence of genes. These results suggest that small RNAs associated with TSSs could be a universal feature of bacterial transcription.
Collapse
Affiliation(s)
- Eva Yus
- Center for Genomic Regulation (CRG), UPF, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Translation initiation is a crucial step of protein synthesis which largely defines how the composition of the cellular transcriptome is converted to the proteome and controls the response and adaptation to environmental stimuli. The efficiency of translation of individual mRNAs, and hence the basal shape of the proteome, is defined by the structures of the mRNA translation initiation regions. Initiation efficiency can be regulated by small molecules, proteins, or antisense RNAs, underscoring its importance in translational control. Although initiation has been studied in bacteria for decades, many aspects remain poorly understood. Recent evidence has suggested an unexpected diversity of pathways by which mRNAs can be recruited to the bacterial ribosome, the importance of structural dynamics of initiation intermediates, and the complexity of checkpoints for mRNA selection. In this review, we discuss how the ribosome shapes the landscape of translation initiation by non-linear kinetic processing of the transcriptome information. We summarize the major pathways by which mRNAs enter the ribosome depending on the structure of their 5' untranslated regions, the assembly and the structure of initiation intermediates, the individual and synergistic roles of initiation factors, and the mechanisms of mRNA and initiator tRNA selection.
Collapse
Affiliation(s)
- Pohl Milón
- Department of Physical Biochemistry, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | | |
Collapse
|
17
|
Weber SDS, Sant'Anna FH, Schrank IS. Unveiling Mycoplasma hyopneumoniae promoters: sequence definition and genomic distribution. DNA Res 2012; 19:103-15. [PMID: 22334569 PMCID: PMC3325076 DOI: 10.1093/dnares/dsr045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several Mycoplasma species have had their genome completely sequenced, including four strains of the swine pathogen Mycoplasma hyopneumoniae. Nevertheless, little is known about the nucleotide sequences that control transcriptional initiation in these microorganisms. Therefore, with the objective of investigating the promoter sequences of M. hyopneumoniae, 23 transcriptional start sites (TSSs) of distinct genes were mapped. A pattern that resembles the σ70 promoter −10 element was found upstream of the TSSs. However, no −35 element was distinguished. Instead, an AT-rich periodic signal was identified. About half of the experimentally defined promoters contained the motif 5′-TRTGn-3′, which was identical to the −16 element usually found in Gram-positive bacteria. The defined promoters were utilized to build position-specific scoring matrices in order to scan putative promoters upstream of all coding sequences (CDSs) in the M. hyopneumoniae genome. Two hundred and one signals were found associated with 169 CDSs. Most of these sequences were located within 100 nucleotides of the start codons. This study has shown that the number of promoter-like sequences in the M. hyopneumoniae genome is more frequent than expected by chance, indicating that most of the sequences detected are probably biologically functional.
Collapse
Affiliation(s)
- Shana de Souto Weber
- Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
18
|
Siqueira FM, Schrank A, Schrank IS. Mycoplasma hyopneumoniae transcription unit organization: genome survey and prediction. DNA Res 2011; 18:413-22. [PMID: 22086999 PMCID: PMC3223074 DOI: 10.1093/dnares/dsr028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mycoplasma hyopneumoniae is associated with swine respiratory diseases. Although gene organization and regulation are well known in many prokaryotic organisms, knowledge on mycoplasma is limited. This study performed a comparative analysis of three strains of M. hyopneumoniae (7448, J and 232), with a focus on genome organization and gene comparison for open read frame (ORF) cluster (OC) identification. An in silico analysis of gene organization demonstrated 117 OCs and 34 single ORFs in M. hyopneumoniae 7448 and J, while 116 OCs and 36 single ORFs were identified in M. hyopneumoniae 232. Genomic comparison revealed high synteny and conservation of gene order between the OCs defined for 7448 and J strains as well as for 7448 and 232 strains. Twenty-one OCs were chosen and experimentally confirmed by reverse transcription–PCR from M. hyopneumoniae 7448 genome, validating our prediction. A subset of the ORFs within an OC could be independently transcribed due to the presence of internal promoters. Our results suggest that transcription occurs in ‘run-on’ from an upstream promoter in M. hyopneumoniae, thus forming large ORF clusters (from 2 to 29 ORFs in the same orientation) and indicating a complex transcriptional organization.
Collapse
Affiliation(s)
- Franciele Maboni Siqueira
- Programa de Pós-Graduação em Biologia Molecular e Celular, Departamento de Biologia Molecular e Biotecnologia, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | |
Collapse
|
19
|
Skapski A, Hygonenq MC, Sagné E, Guiral S, Citti C, Baranowski E. Genome-scale analysis of Mycoplasma agalactiae loci involved in interaction with host cells. PLoS One 2011; 6:e25291. [PMID: 21966487 PMCID: PMC3179502 DOI: 10.1371/journal.pone.0025291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 08/31/2011] [Indexed: 11/19/2022] Open
Abstract
Mycoplasma agalactiae is an important pathogen of small ruminants, in which it causes contagious agalactia. It belongs to a large group of “minimal bacteria” with a small genome and reduced metabolic capacities that are dependent on their host for nutrients. Mycoplasma survival thus relies on intimate contact with host cells, but little is known about the factors involved in these interactions or in the more general infectious process. To address this issue, an assay based on goat epithelial and fibroblastic cells was used to screen a M. agalactiae knockout mutant library. Mutants with reduced growth capacities in cell culture were selected and 62 genomic loci were identified as contributing to this phenotype. As expected for minimal bacteria, “transport and metabolism” was the functional category most commonly implicated in this phenotype, but 50% of the selected mutants were disrupted in coding sequences (CDSs) with unknown functions, with surface lipoproteins being most commonly represented in this category. Since mycoplasmas lack a cell wall, lipoproteins are likely to be important in interactions with the host. A few intergenic regions were also identified that may act as regulatory sequences under co-culture conditions. Interestingly, some mutants mapped to gene clusters that are highly conserved across mycoplasma species but located in different positions. One of these clusters was found in a transcriptionally active region of the M. agalactiae chromosome, downstream of a cryptic promoter. A possible scenario for the evolution of these loci is discussed. Finally, several CDSs identified here are conserved in other important pathogenic mycoplasmas, and some were involved in horizontal gene transfer with phylogenetically distant species. These results provide a basis for further deciphering functions mediating mycoplasma-host interactions.
Collapse
Affiliation(s)
- Agnès Skapski
- INRA, UMR1225, IHAP, Toulouse, France
- Université de Toulouse, INP, ENVT, UMR1225, IHAP, Toulouse, France
| | - Marie-Claude Hygonenq
- INRA, UMR1225, IHAP, Toulouse, France
- Université de Toulouse, INP, ENVT, UMR1225, IHAP, Toulouse, France
| | - Eveline Sagné
- INRA, UMR1225, IHAP, Toulouse, France
- Université de Toulouse, INP, ENVT, UMR1225, IHAP, Toulouse, France
| | - Sébastien Guiral
- INRA, UMR1225, IHAP, Toulouse, France
- Université de Toulouse, INP, ENVT, UMR1225, IHAP, Toulouse, France
| | - Christine Citti
- INRA, UMR1225, IHAP, Toulouse, France
- Université de Toulouse, INP, ENVT, UMR1225, IHAP, Toulouse, France
| | - Eric Baranowski
- INRA, UMR1225, IHAP, Toulouse, France
- Université de Toulouse, INP, ENVT, UMR1225, IHAP, Toulouse, France
- * E-mail:
| |
Collapse
|
20
|
The proteome of Mycoplasma pneumoniae
, a supposedly “simple” cell. Proteomics 2011; 11:3614-32. [DOI: 10.1002/pmic.201100076] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/09/2011] [Accepted: 06/15/2011] [Indexed: 11/07/2022]
|
21
|
Zhang W, Baseman JB. Transcriptional regulation of MG_149, an osmoinducible lipoprotein gene from Mycoplasma genitalium. Mol Microbiol 2011; 81:327-39. [PMID: 21692875 DOI: 10.1111/j.1365-2958.2011.07717.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transcriptional regulation remains poorly understood in Mycoplasma genitalium, the smallest self-replicating cell and the causative agent of a spectrum of urogenital diseases. Previously, we reported that MG_149, a lipoprotein-encoding gene, was highly induced under physiological hyperosmolarity conditions. In this study we further analysed MG_149 transcription with a focus on the identification of promoter elements and regulatory mechanisms. We established MG_149 as a genuine osmoinducible gene that exhibited the highest transcript abundance compared with other lipoprotein genes. Using genetic approaches, we demonstrated that the -10 region of the MG_149 promoter was essential for osmoinduction. Moreover, we showed that MG_149 osmoinduction was regulated by DNA supercoiling, as the presence of novobiocin decreased MG_149 expression in a dose-dependent manner. Taken together, these results indicate that DNA supercoiling participates in controlling MG_149 expression during in vivo-like conditions.
Collapse
Affiliation(s)
- Wenbo Zhang
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
22
|
Zhang W, Baseman JB. Transcriptional response of Mycoplasma genitalium to osmotic stress. MICROBIOLOGY-SGM 2010; 157:548-556. [PMID: 21051489 PMCID: PMC3090130 DOI: 10.1099/mic.0.043984-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mycoplasma genitalium is the causative agent of non-gonococcal, chlamydia-negative urethritis in men and has been linked to reproductive tract disease syndromes in women. As with other mycoplasmas, M. genitalium lacks many regulatory genes because of its streamlined genome and total dependence on a parasitic existence. Therefore, it is important to understand how gene regulation occurs in M. genitalium, particularly in response to environmental signals likely to be encountered in vivo. In this study, we developed an oligonucleotide-based microarray to investigate transcriptional changes in M. genitalium following osmotic shock. Using a physiologically relevant osmolarity condition (0.3 M sodium chloride), we identified 39 upregulated and 72 downregulated genes. Of the upregulated genes, 21 were of unknown function and 15 encoded membrane-associated proteins. The majority of downregulated genes encoded enzymes involved in energy metabolism and components of the protein translation process. These data provide insights into the in vivo response of M. genitalium to hyperosmolarity conditions and identify candidate genes that may contribute to mycoplasma survival in the urogenital tract.
Collapse
Affiliation(s)
- Wenbo Zhang
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Joel B Baseman
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
23
|
Gardner SW, Minion FC. Detection and quantification of intergenic transcription in Mycoplasma hyopneumoniae. MICROBIOLOGY-SGM 2010; 156:2305-2315. [PMID: 20430814 DOI: 10.1099/mic.0.038760-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycoplasmas are thought to control gene expression through simple mechanisms. The switching mechanisms needed to regulate transcription during significant environmental shifts do not seem to be required for these host-adapted organisms. Mycoplasma hyopneumoniae, a swine respiratory pathogen, undergoes differential gene expression, but as for all mycoplasmas, the mechanisms involved are still unknown. Since mycoplasmas contain only a single sigma factor and few regulator-type proteins, it is likely that other mechanisms control gene regulation, possibly involving intergenic (IG) regions. To study this further, we investigated whether IG regions are transcribed in M. hyopneumoniae, and measured transcription levels across five specific regions. Microarrays were constructed with probes covering 343 IG regions of the M. hyopneumoniae genome, and RNA isolated from laboratory-grown cells was used to interrogate the arrays. Transcriptional signals were identified in 321 (93.6 %) of the IG regions. Five large (>500 bp) IG regions were chosen for further analysis by qRT-PCR by designing primer sets whose products reside in flanking ORFs, bridge flanking ORFs and the IG region, or reside solely within the IG region. The results indicate that no single transcriptional start site can account for transcriptional activity within IG regions. Transcription can end abruptly at the end of an ORF, but this does not seem to occur at high frequency. Rather, transcription continues past the end of the ORF, with RNA polymerase gradually releasing the template. Transcription can also be initiated within IG regions in the absence of accepted promoter-like sequences.
Collapse
Affiliation(s)
- Stuart W Gardner
- Department of Statistics, Iowa State University, Ames, IA 50011, USA.,Department of Veterinary Microbiology and Preventive Medicine, Interdepartmental Microbiology Program, Iowa State University, Ames, IA 50011, USA
| | - F Chris Minion
- Department of Veterinary Microbiology and Preventive Medicine, Interdepartmental Microbiology Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
24
|
Kannan TR, Musatovova O, Balasubramanian S, Cagle M, Jordan JL, Krunkosky TM, Davis A, Hardy RD, Baseman JB. Mycoplasma pneumoniae Community Acquired Respiratory Distress Syndrome toxin expression reveals growth phase and infection-dependent regulation. Mol Microbiol 2010; 76:1127-41. [PMID: 20199607 PMCID: PMC2883071 DOI: 10.1111/j.1365-2958.2010.07092.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mycoplasma pneumoniae causes acute and chronic respiratory infections, including tracheobronchitis and community acquired pneumonia, and is linked to asthma and an array of extra-pulmonary disorders. Recently, we identified an ADP-ribosylating and vacuolating toxin of M. pneumoniae, designated Community Acquired Respiratory Distress Syndrome (CARDS) toxin. In this study we analysed CARDS toxin gene (annotated mpn372) transcription and identified its promoter. We also compared CARDS toxin mRNA and protein profiles in M. pneumoniae during distinct in vitro growth phases. CARDS toxin mRNA expression was maximal, but at low levels, during early exponential growth and declined sharply during mid-to-late log growth phases, which was in direct contrast to other mycoplasma genes examined. Between 7% and 10% of CARDS toxin was localized to the mycoplasma membrane at mid-exponential growth, which was reinforced by immunogold electron microscopy. No CARDS toxin was released into the medium. Upon M. pneumoniae infection of mammalian cells, increased expression of CARDS toxin mRNA was observed when compared with SP-4 broth-grown cultures. Further, confocal immunofluorescence microscopy revealed that M. pneumoniae readily expressed CARDS toxin during infection of differentiated normal human bronchial epithelial cells. Analysis of M. pneumoniae-infected mouse lung tissue revealed high expression of CARDS toxin per mycoplasma cell when compared with M. pneumoniae cells grown in SP-4 medium alone. Taken together, these studies indicate that CARDS toxin expression is carefully controlled by environmental cues that influence its transcription and translation. Further, the acceleration of CARDS toxin synthesis and accumulation in vivo is consistent with its role as a bona fide virulence determinant.
Collapse
Affiliation(s)
- T R Kannan
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Güell M, van Noort V, Yus E, Chen WH, Leigh-Bell J, Michalodimitrakis K, Yamada T, Arumugam M, Doerks T, Kühner S, Rode M, Suyama M, Schmidt S, Gavin AC, Bork P, Serrano L. Transcriptome complexity in a genome-reduced bacterium. Science 2009; 326:1268-71. [PMID: 19965477 DOI: 10.1126/science.1176951] [Citation(s) in RCA: 331] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To study basic principles of transcriptome organization in bacteria, we analyzed one of the smallest self-replicating organisms, Mycoplasma pneumoniae. We combined strand-specific tiling arrays, complemented by transcriptome sequencing, with more than 252 spotted arrays. We detected 117 previously undescribed, mostly noncoding transcripts, 89 of them in antisense configuration to known genes. We identified 341 operons, of which 139 are polycistronic; almost half of the latter show decaying expression in a staircase-like manner. Under various conditions, operons could be divided into 447 smaller transcriptional units, resulting in many alternative transcripts. Frequent antisense transcripts, alternative transcripts, and multiple regulators per gene imply a highly dynamic transcriptome, more similar to that of eukaryotes than previously thought.
Collapse
Affiliation(s)
- Marc Güell
- Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ishii Y, Kakizawa S, Hoshi A, Maejima K, Kagiwada S, Yamaji Y, Oshima K, Namba S. In the non-insect-transmissible line of onion yellows phytoplasma (OY-NIM), the plasmid-encoded transmembrane protein ORF3 lacks the major promoter region. Microbiology (Reading) 2009; 155:2058-2067. [DOI: 10.1099/mic.0.027409-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
‘Candidatus Phytoplasma asteris’, onion yellows strain (OY), a mildly pathogenic line (OY-M), is a phytopathogenic bacterium transmitted by Macrosteles striifrons leafhoppers. OY-M contains two types of plasmids (EcOYM and pOYM), each of which possesses a gene encoding the putative transmembrane protein, ORF3. A non-insect-transmissible line of this phytoplasma (OY-NIM) has the corresponding plasmids (EcOYNIM and pOYNIM), but pOYNIM lacks orf3. Here we show that in OY-M, orf3 is transcribed from two putative promoters and that on EcOYNIM, one of the promoter sequences is mutated and the other deleted. We also show by immunohistochemical analysis that ORF3 is not expressed in OY-NIM-infected plants. Moreover, ORF3 protein seems to be preferentially expressed in OY-M-infected insects rather than in plants. We speculate that ORF3 may play a role in the interactions of OY with its insect host.
Collapse
Affiliation(s)
- Yoshiko Ishii
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigeyuki Kakizawa
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ayaka Hoshi
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kensaku Maejima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kagiwada
- Department of Clinical Plant Science, Faculty of Bioscience and Applied Chemistry, Hosei University, 3-7-2 Kajinocho, Koganei, Tokyo 184-8584, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kenro Oshima
- Laboratory of Clinical Plant Science, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigetou Namba
- Laboratory of Clinical Plant Science, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
27
|
Boonmee A, Ruppert T, Herrmann R. The gene mpn310 (hmw2) from Mycoplasma pneumoniae encodes two proteins, HMW2 and HMW2-s, which differ in size but use the same reading frame. FEMS Microbiol Lett 2008; 290:174-81. [DOI: 10.1111/j.1574-6968.2008.01422.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Characterization of a unique ClpB protein of Mycoplasma pneumoniae and its impact on growth. Infect Immun 2008; 76:5082-92. [PMID: 18779336 DOI: 10.1128/iai.00698-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma pneumoniae accounts for 20 to 30% of all community-acquired pneumonia and has been associated with other airway pathologies, including asthma, and a range of extrapulmonary manifestations. Although the entire genomic sequence of M. pneumoniae has been completed, the functions of many of these genes in mycoplasma physiology are unknown. In this study, we focused on clpB, a well-known heat shock gene in other bacteria, to examine its role in mycoplasma growth. Transcriptional and translational analyses of heat shock in M. pneumoniae indicated that clpB is significantly upregulated, reinforcing its status as a critical responder to heat stress. Interestingly, M. pneumoniae ClpB does not use dual translational start points for ClpB synthesis, like other ClpB-characterized bacteria. Biochemical characterization of purified M. pneumoniae recombinant ClpB revealed casein- and lysine-independent ATPase activity and DnaK-DnaJ-GrpE-dependent chaperone activity. An M. pneumoniae mini-Tn4001-integrated, clpB-null mutant was impaired in its ability to replicate under permissive growth conditions, demonstrating the growth-promoting status of ClpB.
Collapse
|
29
|
Hallamaa KM, Tang SL, Ficorilli N, Browning GF. Differential expression of lipoprotein genes in Mycoplasma pneumoniae after contact with human lung epithelial cells, and under oxidative and acidic stress. BMC Microbiol 2008; 8:124. [PMID: 18647421 PMCID: PMC2515320 DOI: 10.1186/1471-2180-8-124] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 07/23/2008] [Indexed: 11/16/2022] Open
Abstract
Background Mycoplasma pneumoniae is a human pathogen that is a common cause of community-acquired pneumonia. It harbours a large number of lipoprotein genes, most of which are of unknown function. Because of their location on the cell surface, these proteins are likely to be involved in the bacterial response to environmental changes, or in the initial stages of infection. The aim of this study was to determine if genes encoding surface lipoproteins are differentially expressed after contact with a human cell line, or after exposure to oxidative or acidic stress. Results Using qRT-PCR assays, we observed that the expression of a number of lipoprotein genes was up-regulated when M. pneumoniae was placed in contact with human cells. In contrast, lipoprotein expression was generally down-regulated or unchanged when exposed to either hydrogen peroxide or low pH (5.5). When exposed to low pH, the mRNA levels of four polycistronically transcribed genes in Lipoprotein Multigene Family 6 formed a gradient of decreasing quantity with increasing distance from a predicted promoter. Conclusion The demonstrated transcriptional changes provide evidence for the functionality of these mostly unassigned genes and indicate that they are regulated in response to changes in environmental conditions. In addition we have shown that the members of Lipoprotein Gene Family 6 may be expressed polycistronically.
Collapse
Affiliation(s)
- Katri M Hallamaa
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
30
|
Dekhtyar M, Morin A, Sakanyan V. Triad pattern algorithm for predicting strong promoter candidates in bacterial genomes. BMC Bioinformatics 2008; 9:233. [PMID: 18471287 PMCID: PMC2412878 DOI: 10.1186/1471-2105-9-233] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 05/09/2008] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Bacterial promoters, which increase the efficiency of gene expression, differ from other promoters by several characteristics. This difference, not yet widely exploited in bioinformatics, looks promising for the development of relevant computational tools to search for strong promoters in bacterial genomes. RESULTS We describe a new triad pattern algorithm that predicts strong promoter candidates in annotated bacterial genomes by matching specific patterns for the group I sigma70 factors of Escherichia coli RNA polymerase. It detects promoter-specific motifs by consecutively matching three patterns, consisting of an UP-element, required for interaction with the alpha subunit, and then optimally-separated patterns of -35 and -10 boxes, required for interaction with the sigma70 subunit of RNA polymerase. Analysis of 43 bacterial genomes revealed that the frequency of candidate sequences depends on the A+T content of the DNA under examination. The accuracy of in silico prediction was experimentally validated for the genome of a hyperthermophilic bacterium, Thermotoga maritima, by applying a cell-free expression assay using the predicted strong promoters. In this organism, the strong promoters govern genes for translation, energy metabolism, transport, cell movement, and other as-yet unidentified functions. CONCLUSION The triad pattern algorithm developed for predicting strong bacterial promoters is well suited for analyzing bacterial genomes with an A+T content of less than 62%. This computational tool opens new prospects for investigating global gene expression, and individual strong promoters in bacteria of medical and/or economic significance.
Collapse
Affiliation(s)
| | - Amelie Morin
- Laboratoire de Biotechnologie, UMR CNRS 6204, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
| | - Vehary Sakanyan
- Laboratoire de Biotechnologie, UMR CNRS 6204, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
- ProtNeteomix, 2 rue de la Houssinière, 44322 Nantes, France
| |
Collapse
|
31
|
Genomic analysis reveals Mycoplasma pneumoniae repetitive element 1-mediated recombination in a clinical isolate. Infect Immun 2008; 76:1639-48. [PMID: 18212079 DOI: 10.1128/iai.01621-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasmas are cell wall-less bacteria that evolved by drastic reduction of the genome size. Complete genome analysis of Mycoplasma pneumoniae revealed the presence of numerous copies of four distinct large M. pneumoniae repetitive elements (RepMPs). One copy each of RepMP2/3, RepMP4, and RepMP5 are localized within the P1 operon (MPN140 to MPN142 loci), and their involvement in sequence variation in adhesin P1 and adherence-related protein B/C has been documented. Here we analyzed a clinical strain of M. pneumoniae designated S1 isolated from a 1993 outbreak of respiratory infections in San Antonio, TX. Based on the type of RepMPs within the P1 operon, we classified clinical isolate S1 as type 2 with unique minor sequence variations. Hybridization with oligonucleotide arrays revealed sequence divergence in two previously unsuspected hypothetical genes (MPN137 and MPN138 loci). Closer inspection of this region revealed that the MPN137 and MPN138 loci harbored previously unrecognized unique RepMP1 sequences found only in M. pneumoniae. PCR and sequence analyses revealed a recombination event involving three RepMP1-containing genes that resulted in fusion of MPN137 and MPN138 reading frames and loss of all but a short fragment of another RepMP1-containing locus, MPN130. The multiple copies of unique RepMP1 elements spread throughout the chromosome could allow vast numbers of sequence variations in clinical strains. Comparisons of amino acid sequences showed the presence of leucine zipper motifs in MPN130 and MPN138 proteins in reference strain M129 and the absence of these motifs in the fused protein of S1. The presence of tandem leucine and other repeats points to possible regulatory functions of proteins encoded by RepMP1-containing genes.
Collapse
|
32
|
Lysnyansky I, Yogev D, Levisohn S. Molecular characterization of the Mycoplasma bovis p68 gene, encoding a basic membrane protein with homology to P48 of Mycoplasma agalactiae. FEMS Microbiol Lett 2008; 279:234-42. [PMID: 18194339 DOI: 10.1111/j.1574-6968.2007.01040.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mycoplasmal lipoproteins are considered to be potential virulence determinants, which may carry out numerous important functions in pathogenesis including adhesion and immunomodulation. The prototype mycoplasmal immunomodulin is the macrophage-activating lipoprotein (MALP) of Mycoplasma fermentans. In this study, a homolog of the malp gene, designated p68, was identified and characterized in Mycoplasma bovis strain PG45 clonal variant #6. P68 belongs to the family of basic membrane proteins, which have been identified in diverse prokaryotes, including mycoplasmas. P68 revealed significant similarity and shared conserved selective lipoprotein-associated motifs with the highly immunogenic MALP-related lipoproteins P48 of M. bovis and P48 of Mycoplasma agalactiae. Determination of the genomic distribution of both M. bovis malp-homologs showed that p48 was present in all M. bovis strains tested, whereas the p68 gene was missing in some. Sequence comparison of the p68 genomic region in strains with and without this gene revealed that the region is very dynamic, with multiple genetic changes. Reverse-transcription PCR and primer extension analysis indicated that both p68 and p48 are transcribed in M. bovis under in vitro growth conditions. Mycoplasma bovis is the first mycoplasma species in which two malp-related genes have been identified.
Collapse
Affiliation(s)
- Inna Lysnyansky
- Division of Avian and Fish Diseases, Kimron Veterinary Institute, Bet Dagan, Israel.
| | | | | |
Collapse
|
33
|
Lluch-Senar M, Vallmitjana M, Querol E, Piñol J. A new promoterless reporter vector reveals antisense transcription in Mycoplasma genitalium. MICROBIOLOGY-SGM 2007; 153:2743-2752. [PMID: 17660438 DOI: 10.1099/mic.0.2006/007559-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanisms that promote and regulate transcription in mycoplasmas are poorly understood. Here, a promoter-probe vector based on the pMTnTetM438 minitransposon and containing a promoterless lacZ reporter gene was constructed to analyse Mycoplasma genitalium transcription in vivo. Recovered transposon insertions were in monocopy, with 16 % expressing enough beta-galactosidase (beta-Gal) to yield colonies exhibiting a detectable blue colour. A sample of 52 blue colonies was propagated and selected for further analyses. The beta-Gal activity of the corresponding cultures was measured to quantify, in a reproducible way, the transcription levels of the interrupted ORFs. Several insertions were found in sense with the interrupted ORF, but surprisingly there was also a number of insertions in non-coding regions, many of them in repetitive DNA regions known as MgPa islands. Moreover, 30 % of the analysed transposon insertions had the lacZ gene in the opposite orientation to the coding frame, suggesting the existence of antisense transcripts that may be involved in the control of gene expression in M. genitalium.
Collapse
Affiliation(s)
- Maria Lluch-Senar
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Miquel Vallmitjana
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Enrique Querol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
34
|
Schoep TD, Gregg K. Isolation and characterization of putative Pseudobutyrivibrio ruminis promoters. MICROBIOLOGY-SGM 2007; 153:3071-3080. [PMID: 17768250 DOI: 10.1099/mic.0.2007/006502-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Novel plasmids were constructed for the analysis of DNA fragments from the rumen bacterium Pseudobutyrivibrio ruminis. Five previously unidentified promoters were characterized using a novel primer extension method to identify transcription start sites. The genes downstream of these promoters were not identified, and their activity in expression of genomic traits in wild-type P. ruminis remains putative. Comparison with promoters from this and closely related species revealed a consensus sequence resembling the binding motif for the RNA polymerase sigma(70)-like factor complex. Consensus -35 and -10 sequences within these elements were TTGACA and ATAATATA respectively, interspaced by 15-16 bp. The consensus for the -10 element was extended by one nucleotide upstream and downstream of the standard hexamer (indicated in bold). Promoter strengths were measured by reverse transcription quantitative PCR and beta-glucuronidase assays. No correlation was found between the composition and context of elements within P. ruminis promoters, and promoter strength. However, a mutation within the -35 element of one promoter revealed that transcriptional strength and choice of transcription start site were sensitive to this single nucleotide change.
Collapse
Affiliation(s)
- Tobias D Schoep
- Murdoch University, Western Australian State Agricultural Biotechnology Centre (SABC), School of Biological Sciences and Biotechnology, South St, Murdoch, 6150 Perth, Australia
| | - Keith Gregg
- Curtin University, Biomedical Sciences, Kent Street, Bentley, 6845 Perth, Australia
| |
Collapse
|
35
|
Froula JL, Francino MP. Selection against spurious promoter motifs correlates with translational efficiency across bacteria. PLoS One 2007; 2:e745. [PMID: 17710145 PMCID: PMC1939733 DOI: 10.1371/journal.pone.0000745] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 07/13/2007] [Indexed: 11/19/2022] Open
Abstract
Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the −10 promoter motifs that bind the σ70 subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of −10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, −10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also confirms previous results indicating that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria.
Collapse
Affiliation(s)
- Jeffrey L. Froula
- Evolutionary Genomics Program, DOE Joint Genome Institute, Walnut Creek, California, United States of America
| | - M. Pilar Francino
- Evolutionary Genomics Program, DOE Joint Genome Institute, Walnut Creek, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Halbedel S, Eilers H, Jonas B, Busse J, Hecker M, Engelmann S, Stülke J. Transcription in Mycoplasma pneumoniae: analysis of the promoters of the ackA and ldh genes. J Mol Biol 2007; 371:596-607. [PMID: 17586527 DOI: 10.1016/j.jmb.2007.05.098] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Revised: 05/30/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
The nucleotide sequences that control transcription initiation and regulation in Mycoplasma pneumoniae are poorly understood. Moreover, only few regulatory events have been reported for M. pneumoniae. We have studied changes in the global protein synthesis pattern in M. pneumoniae in response to the presence of glycerol. The ackA and ldh genes, encoding acetate kinase and lactate dehydrogenase, respectively, were controlled in a carbon source-dependent manner. While the ackA gene was strongly expressed in the presence of glucose, transcription of ldh was induced by glycerol. The promoters of both genes were mapped by primer extension analysis. Molecular analysis of transcription regulatory mechanisms in M. pneumoniae has so far not been possible due to the lack of appropriate reporter systems that can be used to study the activity of promoter fragments and their mutant derivatives in vivo. Recently, a reporter system has been developed which allows cloning of promoter fragments in front of a promoterless lacZ gene and inserting this construct into the genome of M. pneumoniae. To study the requirements of M. pneumoniae RNA polymerase for promoter recognition, a series of fusions of deletion and mutant variants of the ldh promoter was constructed and analyzed in vivo. While mutations affecting the -10 region strongly interfered with gene expression, the -35 region seems to be of minor importance in M. pneumoniae.
Collapse
Affiliation(s)
- Sven Halbedel
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Into T, Dohkan JI, Inomata M, Nakashima M, Shibata KI, Matsushita K. Synthesis and characterization of a dipalmitoylated lipopeptide derived from paralogous lipoproteins of Mycoplasma pneumoniae. Infect Immun 2007; 75:2253-9. [PMID: 17325056 PMCID: PMC1865785 DOI: 10.1128/iai.00141-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Genomic analysis of Mycoplasma pneumoniae revealed the existence of a large number of putative lipoprotein genes compared with the numbers in other bacteria. However, the pathogenic roles of M. pneumoniae lipoproteins are still obscure. In this study, we synthesized a lipopeptide (designated M. pneumoniae paralogous lipoprotein 1 [MPPL-1]) in which an S-dipalmitoylglyceryl cysteine was coupled to a peptide with a consensus sequence of a putative paralogous lipoprotein group characteristic of M. pneumoniae. The cytokine-inducing activity of MPPL-1 in human monocytic cells was much weaker (approximately 700-fold weaker) than that of the known mycoplasmal S-dipalmitoylated lipopeptide FSL-1 or MALP-2. MPPL-1 required Toll-like receptor (TLR2) to activate NF-kappaB-dependent gene transcription in HEK293 cells, although a 1,000-fold-larger amount of MPPL-1 was needed to exert activity similar to that of FSL-1 in the cells. TLR2-mediated recognition of MPPL-1 was synergistically upregulated by TLR6 but not by TLR1 or TLR10, although the activity was still weak. In addition, MPPL-1 did not antagonize FSL-1 recognition in human monocytic cells and TLR2/TLR6-expressing HEK293 cells. Thus, these results suggest that there is preferential selective recognition of diacylated lipopeptides due to the magnitude of an affinity with TLR2 and TLR6 and the roles of increased paralogous lipoprotein genes of M. pneumoniae in evasion of TLR2 recognition.
Collapse
Affiliation(s)
- Takeshi Into
- Department of Oral Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Obu, Aichi 474-8522, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Madeira HMF, Gabriel JE. Regulation of gene expression in Mycoplasmas: contribution from Mycoplasma hyopneumoniae and Mycoplasma synoviae genome sequences. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000200016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
39
|
Jacques PÉ, Rodrigue S, Gaudreau L, Goulet J, Brzezinski R. Detection of prokaryotic promoters from the genomic distribution of hexanucleotide pairs. BMC Bioinformatics 2006; 7:423. [PMID: 17014715 PMCID: PMC1615881 DOI: 10.1186/1471-2105-7-423] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 10/02/2006] [Indexed: 12/03/2022] Open
Abstract
Background In bacteria, sigma factors and other transcriptional regulatory proteins recognize DNA patterns upstream of their target genes and interact with RNA polymerase to control transcription. As a consequence of evolution, DNA sequences recognized by transcription factors are thought to be enriched in intergenic regions (IRs) and depleted from coding regions of prokaryotic genomes. Results In this work, we report that genomic distribution of transcription factors binding sites is biased towards IRs, and that this bias is conserved amongst bacterial species. We further take advantage of this observation to develop an algorithm that can efficiently identify promoter boxes by a distribution-dependent approach rather than a direct sequence comparison approach. This strategy, which can easily be combined with other methodologies, allowed the identification of promoter sequences in ten species and can be used with any annotated bacterial genome, with results that rival with current methodologies. Experimental validations of predicted promoters also support our approach. Conclusion Considering that complete genomic sequences of over 1000 bacteria will soon be available and that little transcriptional information is available for most of them, our algorithm constitutes a promising tool for the prediction of promoter sequences. Importantly, our methodology could also be adapted to identify DNA sequences recognized by other regulatory proteins.
Collapse
Affiliation(s)
- Pierre-Étienne Jacques
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Département d'informatique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sébastien Rodrigue
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Luc Gaudreau
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean Goulet
- Département d'informatique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ryszard Brzezinski
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre d'étude et de valorisation de la diversité microbienne, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
40
|
Hasselbring BM, Page CA, Sheppard ES, Krause DC. Transposon mutagenesis identifies genes associated with Mycoplasma pneumoniae gliding motility. J Bacteriol 2006; 188:6335-45. [PMID: 16923901 PMCID: PMC1595379 DOI: 10.1128/jb.00698-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 06/13/2006] [Indexed: 11/20/2022] Open
Abstract
The wall-less prokaryote Mycoplasma pneumoniae, a common cause of chronic respiratory tract infections in humans, is considered to be among the smallest and simplest known cells capable of self-replication, yet it has a complex architecture with a novel cytoskeleton and a differentiated terminal organelle that function in adherence, cell division, and gliding motility. Recent findings have begun to elucidate the hierarchy of protein interactions required for terminal organelle assembly, but the engineering of its gliding machinery is largely unknown. In the current study, we assessed gliding in cytadherence mutants lacking terminal organelle proteins B, C, P1, and HMW1. Furthermore, we screened over 3,500 M. pneumoniae transposon mutants individually to identify genes associated with gliding but dispensable for cytadherence. Forty-seven transformants having motility defects were characterized further, with transposon insertions mapping to 32 different open reading frames widely distributed throughout the M. pneumoniae genome; 30 of these were dispensable for cytadherence. We confirmed the clonality of selected transformants by Southern blot hybridization and PCR analysis and characterized satellite growth and gliding by microcinematography. For some mutants, satellite growth was absent or developed more slowly than that of the wild type. Others produced lawn-like growth largely devoid of typical microcolonies, while still others had a dull, asymmetrical leading edge or a filamentous appearance of colony spreading. All mutants exhibited substantially reduced gliding velocities and/or frequencies. These findings significantly expand our understanding of the complexity of M. pneumoniae gliding and the identity of possible elements of the gliding machinery, providing a foundation for a detailed analysis of the engineering and regulation of motility in this unusual prokaryote.
Collapse
Affiliation(s)
- Benjamin M Hasselbring
- Department of Microbiology, University of Georgia, Athens, 523 Biological Sciences Building, GA 30602, USA
| | | | | | | |
Collapse
|
41
|
Hallamaa KM, Browning GF, Tang SL. Lipoprotein multigene families in Mycoplasma pneumoniae. J Bacteriol 2006; 188:5393-9. [PMID: 16855228 PMCID: PMC1540031 DOI: 10.1128/jb.01819-05] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, reverse transcriptase PCR was employed to construct a transcriptional profile of Mycoplasma pneumoniae lipoprotein genes contained in six multigene families. Most genes were found to be expressed. Many truncated lipoprotein genes were expressed, often polycistronically with other truncated genes, indicating that these genes may still be functional.
Collapse
Affiliation(s)
- K M Hallamaa
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
42
|
Pich OQ, Burgos R, Planell R, Querol E, Piñol J. Comparative analysis of antibiotic resistance gene markers in Mycoplasma genitalium: application to studies of the minimal gene complement. MICROBIOLOGY-SGM 2006; 152:519-527. [PMID: 16436439 DOI: 10.1099/mic.0.28287-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycoplasma genitalium has been proposed as a suitable model for an in-depth understanding of the biology of a free-living organism. This paper reports that the expression of the aminoglycoside resistance gene aac(6')-aph(2''), the only selectable marker hitherto available for M. genitalium genetic studies, correlates with a growth impairment of the resistant strains. In light of this finding, a tetM438 construction based on the tetracycline resistance gene tetM was developed; it can be used efficiently in M. genitalium and confers multiple advantages when compared to aac(6')-aph(2''). The use of tetM438 significantly improves transformation efficiency and generates visible colonies faster. Finally, the improvements in the pMTnTetM438 construction made it possible to obtain insertions in genes which have not been previously considered to be dispensable under laboratory growth conditions.
Collapse
Affiliation(s)
- Oscar Q Pich
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Raul Burgos
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Raquel Planell
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Enrique Querol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
43
|
Halbedel S, Stülke J. Probing in vivo promoter activities in Mycoplasma pneumoniae: a system for generation of single-copy reporter constructs. Appl Environ Microbiol 2006; 72:1696-9. [PMID: 16461731 PMCID: PMC1392949 DOI: 10.1128/aem.72.2.1696-1699.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleotide sequences that control transcription initiation and regulation in Mycoplasma pneumoniae are poorly understood. In this work, we developed a lacZ-based reporter plasmid that can be used to integrate fusions of promoter fragments to a promoterless lacZ gene into the chromosome of M. pneumoniae.
Collapse
Affiliation(s)
- Sven Halbedel
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | | |
Collapse
|
44
|
Musatovova O, Dhandayuthapani S, Baseman JB. Transcriptional heat shock response in the smallest known self-replicating cell, Mycoplasma genitalium. J Bacteriol 2006; 188:2845-55. [PMID: 16585746 PMCID: PMC1447023 DOI: 10.1128/jb.188.8.2845-2855.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 02/08/2006] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma genitalium is a human bacterial pathogen linked to urethritis and other sexually transmitted diseases as well as respiratory and joint pathologies. Though its complete genome sequence is available, little is understood about the regulation of gene expression in this smallest known, self-replicating cell, as its genome lacks orthologues for most of the conventional bacterial regulators. Still, the transcriptional repressor HrcA (heat regulation at CIRCE [controlling inverted repeat of chaperone expression]) is predicted in the M. genitalium genome as well as three copies of its corresponding regulatory sequence CIRCE. We investigated the transcriptional response of M. genitalium to elevated temperatures and detected the differential induction of four hsp genes. Three of the up-regulated genes, which encode DnaK, ClpB, and Lon, possess CIRCE within their promoter regions, suggesting that the HrcA-CIRCE regulatory mechanism is functional. Additionally, one of three DnaJ-encoding genes was up-regulated, even though no known regulatory sequences were found in the promoter region. Transcript levels returned to control values after 1 h of incubation at 37 degrees C, reinforcing the transient nature of the heat shock transcriptional response. Interestingly, neither of the groESL operon genes, which encode the GroEL chaperone and its cochaperone GroES, responded to heat shock. These data suggest that M. genitalium selectively regulates a limited number of genes in response to heat shock.
Collapse
Affiliation(s)
- Oxana Musatovova
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, mail code 7758, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
45
|
Chang B, Halgamuge S, Tang SL. Analysis of SD sequences in completed microbial genomes: non-SD-led genes are as common as SD-led genes. Gene 2006; 373:90-9. [PMID: 16574344 DOI: 10.1016/j.gene.2006.01.033] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 01/13/2006] [Accepted: 01/16/2006] [Indexed: 11/26/2022]
Abstract
Shine-Dalgarno (SD) sequence has been considered as one of the common features of 5' end untranslated region (5'UTR) of prokaryotic transcripts. However, more leaderless bacteria and archaea mRNAs are being increasingly reported in recent years. To understand the distribution of SD-led genes and non-SD-led genes, we have analyzed 162 completed prokaryotic genomes leading to various new conclusions and validations of previous smaller scale studies. The fact that the number of the SD-led genes among those genomes varies from 11.6% to 90.8% implies that the populations of non-SD-led genes as well as leaderless genes are significant. We found that there is a strong SD conserved region in genomes with high proportion of SD-led genes. Following a t-test we showed that SD sequence content (SDSC) has no correlation with GC content. We observed that the closely related phylogenetic microbes mostly possess a similar SDSC value, and archaeal nonleading genes possess higher SDSC. This study shows that the 5'UTR of prokaryotic genes are highly diverse, particularly when genomes of distantly related organisms are compared, suggesting that more flexible mechanisms are used for translation initiation process in various prokaryotes.
Collapse
Affiliation(s)
- Bill Chang
- Bioengineering Group, DoMME, Faculty of Engineering, University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | |
Collapse
|
46
|
Zimmerman CU, Herrmann R. Synthesis of a small, cysteine-rich, 29 amino acids long peptide in Mycoplasma pneumoniae. FEMS Microbiol Lett 2005; 253:315-21. [PMID: 16260096 DOI: 10.1016/j.femsle.2005.09.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 09/22/2005] [Accepted: 09/30/2005] [Indexed: 10/25/2022] Open
Abstract
A 205-210 bases long, small RNA (MP200RNA) of Mycoplasma pneumoniae encodes an open reading frame (ORF pmp200) that has the potential to be translated into a 29 amino acids long peptide with nine cysteines. The expression of this peptide in M. pneumoniae was proven indirectly by constructing a gene fusion between the ORF pmp200 and mrfp1, the gene encoding the monomeric red fluorescent protein. The fusion construct was translated in M. pneumoniae. The corresponding fusion protein, with a molecular mass of approximately 35,000 Da, was isolated and the correct sequence was proven by Edman degradation and by mass spectrometry.
Collapse
Affiliation(s)
- C-U Zimmerman
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
47
|
Abstract
Most of the phenotypic diversity that we perceive in the natural world is directly attributable to the peculiar structure of the eukaryotic gene, which harbors numerous embellishments relative to the situation in prokaryotes. The most profound changes include introns that must be spliced out of precursor mRNAs, transcribed but untranslated leader and trailer sequences (untranslated regions), modular regulatory elements that drive patterns of gene expression, and expansive intergenic regions that harbor additional diffuse control mechanisms. Explaining the origins of these features is difficult because they each impose an intrinsic disadvantage by increasing the genic mutation rate to defective alleles. To address these issues, a general hypothesis for the emergence of eukaryotic gene structure is provided here. Extensive information on absolute population sizes, recombination rates, and mutation rates strongly supports the view that eukaryotes have reduced genetic effective population sizes relative to prokaryotes, with especially extreme reductions being the rule in multicellular lineages. The resultant increase in the power of random genetic drift appears to be sufficient to overwhelm the weak mutational disadvantages associated with most novel aspects of the eukaryotic gene, supporting the idea that most such changes are simple outcomes of semi-neutral processes rather than direct products of natural selection. However, by establishing an essentially permanent change in the population-genetic environment permissive to the genome-wide repatterning of gene structure, the eukaryotic condition also promoted a reliable resource from which natural selection could secondarily build novel forms of organismal complexity. Under this hypothesis, arguments based on molecular, cellular, and/or physiological constraints are insufficient to explain the disparities in gene, genomic, and phenotypic complexity between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Michael Lynch
- Department of Biology, Indiana University, Bloomington, USA.
| |
Collapse
|
48
|
Benders GA, Powell BC, Hutchison CA. Transcriptional analysis of the conserved ftsZ gene cluster in Mycoplasma genitalium and Mycoplasma pneumoniae. J Bacteriol 2005; 187:4542-51. [PMID: 15968065 PMCID: PMC1151755 DOI: 10.1128/jb.187.13.4542-4551.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several experimental approaches were used to construct a detailed transcriptional profile of the phylogenetically conserved ftsZ cell division gene cluster in both Mycoplasma genitalium and its closest relative, Mycoplasma pneumoniae. We determined initiation and termination points for the cluster, as well as an absolute steady-state RNA level for each gene. Transcription of this cluster in both these organisms was shown to be highly strand specific. While the four genes in this cluster are cotranscribed, their transcription unit also includes two genes of close proximity yet disparate function. A transcription initiation point immediately upstream of these two genes was detected in M. genitalium but not M. pneumoniae. In M. pneumoniae, transcription of the six genes terminates at a poly(U)-tailed hairpin. In M. genitalium, this transcription terminates at two closely spaced points by an unknown mechanism. Real-time reverse transcription-PCR analysis of this cluster in M. pneumoniae shows that mRNA levels for all six genes vary at most fivefold and form a gradient of decreasing quantity with increasing distance from the promoter at the beginning of the cluster. mRNA from coding regions was approximately 20- to 100-fold more abundant than that from intergenic regions. We estimated the most abundant mRNA we detected at 0.6 copy per cell. We conclude that groups of functionally related genes in M. genitalium and M. pneumoniae are often preceded by promoters but rarely followed by terminators. This causes functionally unrelated genes to be commonly cotranscribed in these organisms.
Collapse
Affiliation(s)
- Gwynedd A Benders
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
49
|
Vasconcelos ATR, Ferreira HB, Bizarro CV, Bonatto SL, Carvalho MO, Pinto PM, Almeida DF, Almeida LGP, Almeida R, Alves-Filho L, Assunção EN, Azevedo VAC, Bogo MR, Brigido MM, Brocchi M, Burity HA, Camargo AA, Camargo SS, Carepo MS, Carraro DM, de Mattos Cascardo JC, Castro LA, Cavalcanti G, Chemale G, Collevatti RG, Cunha CW, Dallagiovanna B, Dambrós BP, Dellagostin OA, Falcão C, Fantinatti-Garboggini F, Felipe MSS, Fiorentin L, Franco GR, Freitas NSA, Frías D, Grangeiro TB, Grisard EC, Guimarães CT, Hungria M, Jardim SN, Krieger MA, Laurino JP, Lima LFA, Lopes MI, Loreto ELS, Madeira HMF, Manfio GP, Maranhão AQ, Martinkovics CT, Medeiros SRB, Moreira MAM, Neiva M, Ramalho-Neto CE, Nicolás MF, Oliveira SC, Paixão RFC, Pedrosa FO, Pena SDJ, Pereira M, Pereira-Ferrari L, Piffer I, Pinto LS, Potrich DP, Salim ACM, Santos FR, Schmitt R, Schneider MPC, Schrank A, Schrank IS, Schuck AF, Seuanez HN, Silva DW, Silva R, Silva SC, Soares CMA, Souza KRL, Souza RC, Staats CC, Steffens MBR, Teixeira SMR, Urmenyi TP, Vainstein MH, Zuccherato LW, Simpson AJG, Zaha A. Swine and poultry pathogens: the complete genome sequences of two strains of Mycoplasma hyopneumoniae and a strain of Mycoplasma synoviae. J Bacteriol 2005; 187:5568-77. [PMID: 16077101 PMCID: PMC1196056 DOI: 10.1128/jb.187.16.5568-5577.2005] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 05/19/2005] [Indexed: 11/20/2022] Open
Abstract
This work reports the results of analyses of three complete mycoplasma genomes, a pathogenic (7448) and a nonpathogenic (J) strain of the swine pathogen Mycoplasma hyopneumoniae and a strain of the avian pathogen Mycoplasma synoviae; the genome sizes of the three strains were 920,079 bp, 897,405 bp, and 799,476 bp, respectively. These genomes were compared with other sequenced mycoplasma genomes reported in the literature to examine several aspects of mycoplasma evolution. Strain-specific regions, including integrative and conjugal elements, and genome rearrangements and alterations in adhesin sequences were observed in the M. hyopneumoniae strains, and all of these were potentially related to pathogenicity. Genomic comparisons revealed that reduction in genome size implied loss of redundant metabolic pathways, with maintenance of alternative routes in different species. Horizontal gene transfer was consistently observed between M. synoviae and Mycoplasma gallisepticum. Our analyses indicated a likely transfer event of hemagglutinin-coding DNA sequences from M. gallisepticum to M. synoviae.
Collapse
Affiliation(s)
- Ana Tereza R Vasconcelos
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, Prédio 43421, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Davis RE, Dally EL, Jomantiene R, Zhao Y, Roe B, Lin S, Shao J. Cryptic plasmid pSKU146 from the wall-less plant pathogen Spiroplasma kunkelii encodes an adhesin and components of a type IV translocation-related conjugation system. Plasmid 2005; 53:179-90. [PMID: 15737404 DOI: 10.1016/j.plasmid.2004.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 06/21/2004] [Indexed: 10/26/2022]
Abstract
A cryptic plasmid of the wall-less plant pathogenic mollicute, Spiroplasma kunkelii CR2-3X, was cloned and its sequence analyzed. The 14,615 bp plasmid, designated pSKU146, has a nucleotide content of 28 mol% G + C, and contains 18 potential protein-coding regions (open reading frames, ORFs), of which six encode proteins that exhibit similarity to virulence-associated proteins involved in cell-to-cell adhesion or conjugal DNA transfer. One ORF encodes a 96 kDa protein, SkARP1, that is highly similar to SARP1 adhesin involved in attachment of Spiroplasma citri to insect vector gut membrane. Five ORFs encode proteins similar to TraE and Mob in walled bacteria, and to ORFs found in the integrative, conjugative element (ICEF) of Mycoplasma fermentans, respectively. Presence of domains similar to proteins of the Type IV secretion system in pathogenic bacteria suggests that spiroplasma possesses a related translocation system. Plasmid pSKU146 also contains two identical oriT regions each containing a nick sequence characteristic of the IncP conjugative plasmid family, as well as a 58 bp palindromic sequence, palSK1. Features in pSKU146 suggest that the plasmid functions as a mobile genetic element in conjugative transmission of spiroplasma pathogenicity-related genes.
Collapse
Affiliation(s)
- Robert E Davis
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA.
| | | | | | | | | | | | | |
Collapse
|