1
|
Gibney A, Kellett A. Gene Editing with Artificial DNA Scissors. Chemistry 2024; 30:e202401621. [PMID: 38984588 DOI: 10.1002/chem.202401621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Artificial metallo-nucleases (AMNs) are small molecule DNA cleavage agents, also known as DNA molecular scissors, and represent an important class of chemotherapeutic with high clinical potential. This review provides a primary level of exploration on the concepts key to this area including an introduction to DNA structure, function, recognition, along with damage and repair mechanisms. Building on this foundation, we describe hybrid molecules where AMNs are covalently attached to directing groups that provide molecular scissors with enhanced or sequence specific DNA damaging capabilities. As this research field continues to evolve, understanding the applications of AMNs along with synthetic conjugation strategies can provide the basis for future innovations, particularly for designing new artificial gene editing systems.
Collapse
Affiliation(s)
- Alex Gibney
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - Andrew Kellett
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| |
Collapse
|
2
|
Choroba K, Machura B, Erfurt K, Casimiro AR, Cordeiro S, Baptista PV, Fernandes AR. Copper(II) Complexes with 2,2':6',2″-Terpyridine Derivatives Displaying Dimeric Dichloro-μ-Bridged Crystal Structure: Biological Activities from 2D and 3D Tumor Spheroids to In Vivo Models. J Med Chem 2024; 67:5813-5836. [PMID: 38518246 PMCID: PMC11017252 DOI: 10.1021/acs.jmedchem.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Eight 2,2':6',2″-terpyridines, substituted at the 4'-position with aromatic groups featuring variations in π-conjugation, ring size, heteroatoms, and methoxy groups, were employed to enhance the antiproliferative potential of [Cu2Cl2(R-terpy)2](PF6)2. Assessing the cytotoxicity in A2780 (ovarian carcinoma), HCT116 (colorectal carcinoma), and HCT116DoxR (colorectal carcinoma resistant to doxorubicin) and normal primary fibroblasts revealed that Cu(II) complexes with 4-quinolinyl, 4-methoxy-1-naphthyl, 2-furanyl, and 2-pyridynyl substituents showed superior therapeutic potential in HCT116DoxR cells with significantly reduced cytotoxicity in normal fibroblasts (42-129× lower). Besides their cytotoxicity, the Cu(II) complexes are able to increase intracellular ROS and interfere with cell cycle progression, leading to cell death by apoptosis and autophagy. Importantly, they demonstrated antimetastatic and antiangiogenic properties without in vivo toxicity. In accordance with their nuclear accumulation, the Cu(II) complexes are able to cleave pDNA and interact with bovine serum albumin, which is a good indication of their ability for internalization and transport toward tumor cells.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Barbara Machura
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Karol Erfurt
- Department
of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Ana Rita Casimiro
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Sandra Cordeiro
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Pedro V. Baptista
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
3
|
Singh O, Singh A, Maji A, Chauhan R, Gupta P, Ghosh K. Crystal structure of a phenoxyl radical complex relevant to the metal site of the galactose oxidase enzyme: A facile one-pot synthesis, evidence for hydrogen atom transfer and DNA cleavage via self-activation. Dalton Trans 2024; 53:986-995. [PMID: 38088032 DOI: 10.1039/d3dt03282e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Copper complexes [Cu(L1H)ClO4] (1) and [Cu(L2)NO3] (2), which are relevant to the metal site of the galactose oxidase enzyme, were synthesized and characterized by different spectroscopic methods. L1H2 and L2H2 [where L1H2 stands for 2,2'-((1E,1'E)(2,2'-(pyridine-2,6-diyl)bis(2-phenylhydrazin-2-yl-1-ylidene))bis(methanylylidene))diphenol and L2H2 stands for 6,6'-((1E,1'E)-(2,2'-(pyridine-2,6-diyl)bis(2-phenylhydrazin-2-yl-1-ylidene))bis(methanylylidene))bis(2,4-di-tert-butylphenol), H stands for dissociable proton] are pentadentate ligands. These ligands provide pyridyl N, two imine N, and two non-innocent phenoxyl and phenolato O donors, forming complex 1 as a non-radical complex, while complex 2 is a phenoxyl radical complex. The molecular structures of complexes 1 and 2 were authenticated by X-ray crystallography. Benzyl alcohol oxidation was investigated, and the conversion of 9,10-dihydroanthracene to anthracene was examined to scrutinize the H-atom abstraction reaction. Nuclease activity with complexes 1 and 2 was investigated by self-activated plasmid DNA (pBR322) cleavage. Non-innocent properties of the ligand-containing phenolato function were investigated by DFT calculations.
Collapse
Affiliation(s)
- Ovender Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Anshu Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Ankur Maji
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Rahul Chauhan
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Puneet Gupta
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
4
|
Alcalde-Ordóñez A, Barreiro-Piñeiro N, McGorman B, Gómez-González J, Bouzada D, Rivadulla F, Vázquez ME, Kellett A, Martínez-Costas J, López MV. A copper(ii) peptide helicate selectively cleaves DNA replication foci in mammalian cells. Chem Sci 2023; 14:14082-14091. [PMID: 38098723 PMCID: PMC10718067 DOI: 10.1039/d3sc03303a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/25/2023] [Indexed: 12/17/2023] Open
Abstract
The use of copper-based artificial nucleases as potential anticancer agents has been hampered by their poor selectivity in the oxidative DNA cleavage process. An alternative strategy to solve this problem is to design systems capable of selectively damaging noncanonical DNA structures that play crucial roles in the cell cycle. We designed an oligocationic CuII peptide helicate that selectively binds and cleaves DNA three-way junctions (3WJs) and induces oxidative DNA damage via a ROS-mediated pathway both in vitro and in cellulo, specifically at DNA replication foci of the cell nucleus, where this DNA structure is transiently generated. To our knowledge, this is the first example of a targeted chemical nuclease that can discriminate with high selectivity 3WJs from other forms of DNA both in vitro and in mammalian cells. Since the DNA replication process is deregulated in cancer cells, this approach may pave the way for the development of a new class of anticancer agents based on copper-based artificial nucleases.
Collapse
Affiliation(s)
- Ana Alcalde-Ordóñez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Natalia Barreiro-Piñeiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica e Bioloxía Molecular, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Bríonna McGorman
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University Glasnevin Dublin 9 Ireland
| | - Jacobo Gómez-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - David Bouzada
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Francisco Rivadulla
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Física, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Andrew Kellett
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University Glasnevin Dublin 9 Ireland
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica e Bioloxía Molecular, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
5
|
Kwon HC, Lee DH, Yoon M, Nayab S, Lee H, Han JH. Novel Cu(II) complexes as DNA-destabilizing agents and their DNA nuclease activity. Dalton Trans 2023; 52:16802-16811. [PMID: 37902974 DOI: 10.1039/d3dt02615a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Here, we report a series of four novel Cu complexes, namely 2-(piperidin-1-ylmethyl)quinoline copper(II) nitrate, [LACu(NO3)2] (Cu1), 4-(quinolin-2-ylmethyl)morpholine copper(II) nitrate, [LBCu(NO3)2] (Cu2), 4-(quinolin-2-ylmethyl)morpholine copper(II) chloride, [LBCuCl2] (Cu3), and 2-(piperidin-1-ylmethyl)pyridine copper(II) chloride, [LCCu(μ-Cl)Cl]2 (Cu4). X-ray diffraction studies revealed that the geometry around the Cu(II) center could be best described as distorted octahedral in Cu1 and Cu2, whereas Cu3 and Cu4 showed distorted tetrahedral and square pyramidal geometries, respectively. DNA binding studies showed that Cu complexes Cu1-3 containing quinoline interacted via minor groove binding, whereas the Cu4 complex containing pyridine interacted via intercalation. All Cu complexes containing quinoline and pyridine caused destabilization of DNA at specific homogeneous G-C regions. The Cu1-3 complexes as groove binders destabilized the DNA structure much more than the Cu4 complex as an intercalator. Regarding groove binders, the Cu2 complex containing quinoline and morpholine caused the highest distortion and destabilization of the DNA structure, leading to high DNA cleavage efficiency.
Collapse
Affiliation(s)
- Hee Chang Kwon
- Department of Chemical and Biological Engineering, Andong National University, 1375 Gyeongdong-ro, Andong, Gyeongbuk, Korea, 36729.
| | - Da Hyun Lee
- Department of Chemical and Biological Engineering, Andong National University, 1375 Gyeongdong-ro, Andong, Gyeongbuk, Korea, 36729.
| | - Minyoung Yoon
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
| | - Saira Nayab
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
- Department of Chemistry, Shaheed Benazir Bhutto University (SBBU), Sheringal Upper Dir (18050), Khyber Pakhtunkhwa, Islamic Republic of Pakistan
| | - Hyosun Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
| | - Ji Hoon Han
- Department of Chemical and Biological Engineering, Andong National University, 1375 Gyeongdong-ro, Andong, Gyeongbuk, Korea, 36729.
| |
Collapse
|
6
|
McGorman B, Fantoni NZ, O'Carroll S, Ziemele A, El-Sagheer AH, Brown T, Kellett A. Enzymatic Synthesis of Chemical Nuclease Triplex-Forming Oligonucleotides with Gene-Silencing Applications. Nucleic Acids Res 2022; 50:5467-5481. [PMID: 35640595 PMCID: PMC9177962 DOI: 10.1093/nar/gkac438] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/10/2022] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) are short, single-stranded oligomers that hybridise to a specific sequence of duplex DNA. TFOs can block transcription and thereby inhibit protein production, making them highly appealing in the field of antigene therapeutics. In this work, a primer extension protocol was developed to enzymatically prepare chemical nuclease TFO hybrid constructs, with gene-silencing applications. Click chemistry was employed to generate novel artificial metallo-nuclease (AMN)-dNTPs, which were selectively incorporated into the TFO strand by a DNA polymerase. This purely enzymatic protocol was then extended to facilitate the construction of 5-methylcytosine (5mC) modified TFOs that displayed increased thermal stability. The utility of the enzymatically synthesised di-(2-picolyl)amine (DPA)-TFOs was assessed and compared to a specifically prepared solid-phase synthesis counterpart through gel electrophoresis, quantitative PCR, and Sanger sequencing, which revealed similar recognition and damage properties to target genes. The specificity was then enhanced through coordinated designer intercalators-DPQ and DPPZ-and high-precision DNA cleavage was achieved. To our knowledge, this is the first example of the enzymatic production of an AMN-TFO hybrid and is the largest base modification incorporated using this method. These results indicate how chemical nuclease-TFOs may overcome limitations associated with non-molecularly targeted metallodrugs and open new avenues for artificial gene-editing technology.
Collapse
Affiliation(s)
- Bríonna McGorman
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Nicolò Zuin Fantoni
- Chemistry Research Laboratory, University of Oxford, South Parks Rd, Oxford, UK
| | - Sinéad O'Carroll
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Anna Ziemele
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Afaf H El-Sagheer
- Chemistry Research Laboratory, University of Oxford, South Parks Rd, Oxford, UK.,Department of Science and Mathematics, Suez University, Faculty of Petroleum and Mining, Engineering, Suez 43721, Egypt
| | - Tom Brown
- Chemistry Research Laboratory, University of Oxford, South Parks Rd, Oxford, UK
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,SSPC, the Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
7
|
Husain A, ACh P, B. A. DNA binding affinities, anti-oxidant, antimicrobial and molecular docking activities of Pd (II) complexes of chromone Schiff bases. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Daravath S, Rambabu A, Ganji N, Ramesh G, Anantha Lakshmi P, Shivaraj. Spectroscopic, quantum chemical calculations, antioxidant, anticancer, antimicrobial, DNA binding and photo physical properties of bioactive Cu(II) complexes obtained from trifluoromethoxy aniline Schiff bases. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Fantoni NZ, Brown T, Kellett A. DNA-Targeted Metallodrugs: An Untapped Source of Artificial Gene Editing Technology. Chembiochem 2021; 22:2184-2205. [PMID: 33570813 DOI: 10.1002/cbic.202000838] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/09/2021] [Indexed: 12/20/2022]
Abstract
DNA binding metal complexes are synonymous with anticancer drug discovery. Given the array of structural and chemical reactivity properties available through careful design, metal complexes have been directed to bind nucleic acid structures through covalent or noncovalent binding modes. Several recognition modes - including crosslinking, intercalation, and oxidation - are central to the clinical success of broad-spectrum anticancer metallodrugs. However, recent progress in nucleic acid click chemistry coupled with advancement in our understanding of metal complex-nucleic acid interactions has opened up new avenues in genetic engineering and targeted therapies. Several of these applications are enabled by the hybridisation of oligonucleotide or polyamine probes to discrete metal complexes, which facilitate site-specific reactivity at the nucleic acid interface under the guidance of the probe. This Review focuses on recent advancements in hybrid design and, by way of an introduction to this topic, we provide a detailed overview of nucleic acid structures and metal complex-nucleic acid interactions. Our aim is to provide readers with an insight on the rational design of metal complexes with DNA recognition properties and an understanding of how the sequence-specific targeting of these interactions can be achieved for gene engineering applications.
Collapse
Affiliation(s)
- Nicolò Zuin Fantoni
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for, Cellular Biotechnology and Nano Research Facility, Dublin City University, Glasnevin, Dublin, 9, Ireland
| |
Collapse
|
10
|
Synthesis, crystal structure, DNA interaction, DFT analysis and molecular docking studies of copper(ii) complexes with 1-methyl-l-tryptophan and phenanthroline units. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Akhtaruzzaman, Mohammad M, Khan S, Dutta B, Maity S, Naaz S, Alam SM, Ghosh P, Islam MM, Mir MH. One-pot crystallization of two 1,4-cyclohexanedicarboxylate-based tetranuclear Cu(ii) compounds and their DNA binding affinities. CrystEngComm 2021. [DOI: 10.1039/d0ce01734e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new tetranuclear Cu(ii) compounds have been synthesized using flexible linker 1,4-cyclohexanedicarboxylic acid in an one-pot crystallization which exhibit dissimilar affinities to DNA binding.
Collapse
Affiliation(s)
- Akhtaruzzaman
- Department of Chemistry
- Aliah University
- Kolkata 700 156
- India
| | - Mukti Mohammad
- Department of Chemistry
- Aliah University
- Kolkata 700 156
- India
| | - Samim Khan
- Department of Chemistry
- Aliah University
- Kolkata 700 156
- India
| | - Basudeb Dutta
- Department of Chemistry
- Aliah University
- Kolkata 700 156
- India
| | - Suvendu Maity
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | - Sanobar Naaz
- Department of Chemistry
- Aliah University
- Kolkata 700 156
- India
| | | | - Prasanta Ghosh
- Department of Chemistry
- R. K. M. Residential College
- Kolkata 700 103
- India
| | | | | |
Collapse
|
12
|
Lauria T, Slator C, McKee V, Müller M, Stazzoni S, Crisp AL, Carell T, Kellett A. A Click Chemistry Approach to Developing Molecularly Targeted DNA Scissors. Chemistry 2020; 26:16782-16792. [PMID: 32706904 DOI: 10.1002/chem.202002860] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/23/2020] [Indexed: 12/21/2022]
Abstract
Nucleic acid click chemistry was used to prepare a family of chemically modified triplex forming oligonucleotides (TFOs) for application as a new gene-targeted technology. Azide-bearing phenanthrene ligands-designed to promote triplex stability and copper binding-were 'clicked' to alkyne-modified parallel TFOs. Using this approach, a library of TFO hybrids was prepared and shown to effectively target purine-rich genetic elements in vitro. Several of the hybrids provide significant stabilisation toward melting in parallel triplexes (>20 °C) and DNA damage can be triggered upon copper binding in the presence of added reductant. Therefore, the TFO and 'clicked' ligands work synergistically to provide sequence-selectivity to the copper cutting unit which, in turn, confers high stabilisation to the DNA triplex. To extend the boundaries of this hybrid system further, a click chemistry-based di-copper binding ligand was developed to accommodate designer ancillary ligands such as DPQ and DPPZ. When this ligand was inserted into a TFO, a dramatic improvement in targeted oxidative cleavage is afforded.
Collapse
Affiliation(s)
- Teresa Lauria
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - Creina Slator
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - Vickie McKee
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland.,Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Markus Müller
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Samuele Stazzoni
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Antony L Crisp
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland.,CÚRAM, Centre for Research in Medical Devices, Dublin City University, Glasnevin, Dublin, 9, Ireland
| |
Collapse
|
13
|
Akhtaruzzaman, Khan S, Alothman AA, Dutta B, Mohammad Wabaidur S, Mafiz Alam S, Maidul Islam M, Hedayetullah Mir M. Synthesis, crystal structure and DNA binding of a new Ni(II) coordination compound based on 4-(1-naphthylvinyl)pyridine ligand. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Silva MP, Saibert C, Bortolotto T, Bortoluzzi AJ, Schenk G, Peralta RA, Terenzi H, Neves A. Dinuclear copper(II) complexes with derivative triazine ligands as biomimetic models for catechol oxidases and nucleases. J Inorg Biochem 2020; 213:111249. [PMID: 33011624 DOI: 10.1016/j.jinorgbio.2020.111249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 11/28/2022]
Abstract
The research reported herein focuses on the synthesis of two new Cu(II) complexes {[Cu2(2-X-4,6-bis(di-2-picolylamino)-1,3,5-triazine], with X = butane-1,4-diamine (2) or N-methylpyrenylbutane-1,4-diamine (3)}, the latter with a pyrene group as a possible DNA intercalating agent. The structure of complex (3) was determined by X-ray crystallography and shows the dinuclear {CuII(μ-OCH3)2CuII} unit in which the CuII···CuII distance of 3.040 Å is similar to that of 2.97 Å previously found for 1, which contains a {CuII(μ-OH)2CuII} structural unit. Complexes (2) and (3) were also characterized in spectroscopic and electrochemical studies, and catecholase-like activity were performed for both complexes. The kinetic parameters obtained for the oxidation of the model substrate 3,5-di-tert-butylcatechol revealed that the insertion of the spacer butane-1,4-diamine and the pyrene group strongly contributes to increasing the catalytic efficiency of these systems. In fact, Kass becomes significantly higher, indicating that these groups influence the interaction between the complex and the substrate. These complexes also show DNA cleavage under mild conditions with moderate reaction times. The rate of cleavage (kcat) indicated that the presence of butane-1,4-diamine and pyrene increased the activity of both complexes. The reaction mechanism seems to have oxidative and hydrolytic features and the effect of DNA groove binding compounds and circular dichroism indicate that all complexes interact with plasmid DNA through the minor groove. High-resolution DNA cleavage assays provide information on the interaction mechanism and for complex (2) a specificity for the unpaired hairpin region containing thymine bases was observed, in contrast to (3).
Collapse
Affiliation(s)
- Marcos P Silva
- Laboratório de Bioinorgânica e Cristalografia - LABINC, Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Cristine Saibert
- Centro de Biologia Molecular Estrutural - CEBIME, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Tiago Bortolotto
- Centro de Biologia Molecular Estrutural - CEBIME, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Adailton J Bortoluzzi
- Laboratório de Bioinorgânica e Cristalografia - LABINC, Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Gerhard Schenk
- School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Rosely A Peralta
- Laboratório de Bioinorgânica e Cristalografia - LABINC, Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil.
| | - Hernán Terenzi
- Centro de Biologia Molecular Estrutural - CEBIME, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil.
| | - Ademir Neves
- Laboratório de Bioinorgânica e Cristalografia - LABINC, Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
15
|
Zuin Fantoni N, McGorman B, Molphy Z, Singleton D, Walsh S, El-Sagheer AH, McKee V, Brown T, Kellett A. Development of Gene-Targeted Polypyridyl Triplex-Forming Oligonucleotide Hybrids. Chembiochem 2020; 21:3563-3574. [PMID: 32755000 DOI: 10.1002/cbic.202000408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/30/2020] [Indexed: 02/02/2023]
Abstract
In the field of nucleic acid therapy there is major interest in the development of libraries of DNA-reactive small molecules which are tethered to vectors that recognize and bind specific genes. This approach mimics enzymatic gene editors, such as ZFNs, TALENs and CRISPR-Cas, but overcomes the limitations imposed by the delivery of a large protein endonuclease which is required for DNA cleavage. Here, we introduce a chemistry-based DNA-cleavage system comprising an artificial metallo-nuclease (AMN) that oxidatively cuts DNA, and a triplex-forming oligonucleotide (TFO) that sequence-specifically recognises duplex DNA. The AMN-TFO hybrids coordinate CuII ions to form chimeric catalytic complexes that are programmable - based on the TFO sequence employed - to bind and cut specific DNA sequences. Use of the alkyne-azide cycloaddition click reaction allows scalable and high-throughput generation of hybrid libraries that can be tuned for specific reactivity and gene-of-interest knockout. As a first approach, we demonstrate targeted cleavage of purine-rich sequences, optimisation of the hybrid system to enhance stability, and discrimination between target and off-target sequences. Our results highlight the potential of this approach where the cutting unit, which mimics the endonuclease cleavage machinery, is directly bound to a TFO guide by click chemistry.
Collapse
Affiliation(s)
- Nicolò Zuin Fantoni
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,Present address: Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Bríonna McGorman
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Zara Molphy
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Daniel Singleton
- ATDBio Ltd., School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Sarah Walsh
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.,ATDBio Ltd., Magdalen Centre, Oxford Science Park, Oxford, OX4 4GA, UK
| | - Afaf H El-Sagheer
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.,Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez, 43721, Egypt
| | - Vickie McKee
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Tom Brown
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
16
|
Liang Y, Miao S, Mao J, DeSantis C, Bong D. Context-Sensitive Cleavage of Folded DNAs by Loop-Targeting bPNAs. Biochemistry 2020; 59:2410-2418. [PMID: 32519542 DOI: 10.1021/acs.biochem.0c00362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, we demonstrate context-dependent molecular recognition of DNA by synthetic bPNA iron and copper complexes, using oxidative backbone cleavage as a chemical readout for binding. Oligoethylenimine bPNAs displaying iron·EDTA or copper·phenanthroline sites were found to be efficient chemical nucleases for designed and native structured DNAs with T-rich single-stranded domains. Cleavage reactivity depends strongly on structural context, as strikingly demonstrated with DNA substrates of the form (GGGTTA)n. This repeat sequence from the human telomere is known to switch between parallel and antiparallel G-quadruplex (G4) topologies with a change from potassium to sodium buffer: notably, bPNA-copper complexes efficiently cleave long repeat sequences into ∼22-nucleotide portions in sodium, but not potassium, buffer. We hypothesize preferential cleavage of the antiparallel topology (Na+) over the parallel topology (K+) due to the greater accessibility of the TTA loop to bPNA in the antiparallel (Na+) form. Similar ion-sensitive telomere shortening upon treatment with bPNA nucleases can be observed in both isolated and intracellular DNA from PC3 cells by quantitative polymerase chain reaction. Live cell treatment was accompanied by accelerated cellular senescence, as expected for significant telomere shortening. Taken together, the loop-targeting approach of bPNA chemical nucleases complements prior intercalation strategies targeting duplex and quadruplex DNA. Structurally sensitive loop targeting enables discrimination between similar target sequences, thus expanding bPNA targeting beyond simple oligo-T sequences. In addition, bPNA nucleases are cell membrane permeable and therefore may be used to target native intracellular substrates. In addition, these data indicate that bPNA scaffolds can be a platform for new synthetic binders to particular nucleic acid structural motifs.
Collapse
Affiliation(s)
- Yufeng Liang
- Department of Chemistry & Biochemistry and Center for RNA Biology, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Shiqin Miao
- Department of Chemistry & Biochemistry and Center for RNA Biology, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jie Mao
- Department of Chemistry & Biochemistry and Center for RNA Biology, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Chris DeSantis
- Department of Chemistry & Biochemistry and Center for RNA Biology, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Dennis Bong
- Department of Chemistry & Biochemistry and Center for RNA Biology, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
17
|
Panattoni A, El-Sagheer AH, Brown T, Kellett A, Hocek M. Oxidative DNA Cleavage with Clip-Phenanthroline Triplex-Forming Oligonucleotide Hybrids. Chembiochem 2019; 21:991-1000. [PMID: 31680391 DOI: 10.1002/cbic.201900670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 12/13/2022]
Abstract
A systematic study of several new types of hybrids of Cu-chelated clamped phenanthroline artificial metallonuclease (AMN) with triplex-forming oligonucleotides (TFO) for sequence-specific cleavage of double-stranded DNA (dsDNA) is reported. The synthesis of these AMN-TFO hybrids is based on application of the alkyne-azide cycloaddition click reaction as the key step. The AMN was attached through different linkers at either the 5'- or 3'-ends or in the middle of the TFO stretch. The diverse hybrids efficiently formed triplexes with the target purine-rich sequence and their copper complexes were studied for their ability to cleave dsDNA in the presence of ascorbate as a reductant. In all cases, the influence of the nature and length of the AMN-TFO, time, conditions and amounts of ascorbate were studied, and optimum conjugates and a procedure that gave reasonably efficient (up to 34 %) cleavage of the target sequence, while rendering an off-target dsDNA intact, were found. The footprint of cleavage on PAGE was identified only in one case, with low conversion; this means that cleavage does not proceed with single nucleotide precision. On the other hand, these AMN-TFO hybrids are useful for the selective degradation of target dsDNA sequences. Future improvements to this design may provide higher resolution and selectivity.
Collapse
Affiliation(s)
- Alessandro Panattoni
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Centre, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Afaf H El-Sagheer
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Tom Brown
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Andrew Kellett
- School of Chemical Sciences, National Institute for Cellular Biotechnology and Nano Research Facility, Dublin City University, Glasnevin, Dublin, 9, Ireland.,Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Centre, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| |
Collapse
|
18
|
Copper bis-Dipyridoquinoxaline Is a Potent DNA Intercalator that Induces Superoxide-Mediated Cleavage via the Minor Groove. Molecules 2019; 24:molecules24234301. [PMID: 31779066 PMCID: PMC6930674 DOI: 10.3390/molecules24234301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/25/2023] Open
Abstract
Herein, we report the synthesis, characterisation, X-ray crystallography, and oxidative DNA binding interactions of the copper artificial metallo-nuclease [Cu(DPQ)2(NO3)](NO3), where DPQ = dipyrido[3,2-f:2',3'-h]quinoxaline. The cation [Cu(DPQ)2]2+ (Cu-DPQ), is a high-affinity binder of duplex DNA and presents an intercalative profile in topoisomerase unwinding and viscosity experiments. Artificial metallo-nuclease activity occurs in the absence of exogenous reductant but is greatly enhanced by the presence of the reductant Na-L-ascorbate. Mechanistically, oxidative DNA damage occurs in the minor groove, is mediated aerobically by the Cu(I) complex and is dependent on both superoxide and hydroxyl radical generation. To corroborate cleavage at the minor groove, DNA oxidation of a cytosine-guanine (5'-CCGG-3')-rich oligomer was examined in tandem with a 5-methylcytosine (5'-C5mCGG-3') derivative where 5mC served to sterically block the major groove and direct damage to the minor groove. Overall, both the DNA binding affinity and cleavage mechanism of Cu-DPQ depart from Sigman's reagent [Cu(1,10-phenanthroline)2]2+; however, both complexes are potent oxidants of the minor groove.
Collapse
|
19
|
Bhunia A, Mistri S, Manne RK, Santra MK, Manna SC. Synthesis, crystal structure, cytotoxicity study, DNA/protein binding and molecular docking of dinuclear copper(II) complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Zarei L, Asadi Z, Dusek M, Eigner V. Homodinuclear Ni (II) and Cu (II) Schiff base complexes derived from O-vanillin with a pyrazole bridge: Preparation, crystal structures, DNA and protein (BSA) binding, DNA cleavage, molecular docking and cytotoxicity study. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Monien BH, Sachse B, Meinl W, Abraham K, Lampen A, Glatt H. Hemoglobin adducts of furfuryl alcohol in genetically modified mouse models: Role of endogenous sulfotransferases 1a1 and 1d1 and transgenic human sulfotransferases 1A1/1A2. Toxicol Lett 2018; 295:173-178. [DOI: 10.1016/j.toxlet.2018.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 11/28/2022]
|
22
|
Sundaravadivel E, Reddy GR, Manoj D, Rajendran S, Kandaswamy M, Janakiraman M. DNA binding and cleavage studies of copper(II) complex containing N2O2 Schiff base ligand. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Silva MA, Romo AI, Abreu DS, Carepo MS, Lemus L, Jafelicci M, Paulo TF, Nascimento OR, Vargas E, Denardin JC, Diógenes IC. Magnetic nanoparticles as a support for a copper (II) complex with nuclease activity. J Inorg Biochem 2018; 186:294-300. [DOI: 10.1016/j.jinorgbio.2018.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/17/2018] [Accepted: 06/24/2018] [Indexed: 11/16/2022]
|
24
|
Hebenbrock M, González-Abradelo D, Strassert CA, Müller J. DNA Groove-binding Ability of Luminescent Platinum(II) Complexes based on a Family of Tridentate N^N^C Ligands Bearing Differently Substituted Alkyl Tethers. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marian Hebenbrock
- Institut für Anorganische und Analytische Chemie; Westfälische Wilhelms-Universität Münster; Corrensstraße 30 48149 Münster Germany
| | - Darío González-Abradelo
- CeNTech and Physikalisches Institut; Westfälische Wilhelms-Universität Münster; Heisenbergstraße 11 48149 Münster Germany
| | - Cristian A. Strassert
- CeNTech and Physikalisches Institut; Westfälische Wilhelms-Universität Münster; Heisenbergstraße 11 48149 Münster Germany
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie; Westfälische Wilhelms-Universität Münster; Corrensstraße 30 48149 Münster Germany
| |
Collapse
|
25
|
|
26
|
Kawamoto Y, Bando T, Sugiyama H. Sequence-specific DNA binding Pyrrole-imidazole polyamides and their applications. Bioorg Med Chem 2018; 26:1393-1411. [PMID: 29439914 DOI: 10.1016/j.bmc.2018.01.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 12/25/2022]
Abstract
Pyrrole-imidazole polyamides (Py-Im polyamides) are cell-permeable compounds that bind to the minor groove of double-stranded DNA in a sequence-specific manner without causing denaturation of the DNA. These compounds can be used to control gene expression and to stain specific sequences in cells. Here, we review the history, structural variations, and functional investigations of Py-Im polyamides.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
27
|
Sadhu MH, Kumar SB, Saini JK, Purani SS, Khanna TR. Mononuclear copper(II) and binuclear cobalt(II) complexes with halides and tetradentate nitrogen coordinate ligand: Synthesis, structures and bioactivities. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Sommerfeld NS, Gülzow J, Roller A, Cseh K, Jakupec MA, Grohmann A, Galanski M, Keppler BK. Antiproliferative Copper(II) and Platinum(II) Complexes with Bidentate N,N-Donor Ligands. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700416] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nadine S. Sommerfeld
- Institute of Inorganic Chemistry; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
| | - Jana Gülzow
- Institute of Chemistry; Berlin University of Technology; Strasse des 17. Juni 135 10623 Berlin Germany
| | - Alexander Roller
- Institute of Inorganic Chemistry; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
| | - Klaudia Cseh
- Institute of Inorganic Chemistry; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
| | - Michael A. Jakupec
- Institute of Inorganic Chemistry; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
- Research Cluster “Translational Cancer Therapy Research”; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
| | - Andreas Grohmann
- Institute of Chemistry; Berlin University of Technology; Strasse des 17. Juni 135 10623 Berlin Germany
| | - Markus Galanski
- Institute of Inorganic Chemistry; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
- Research Cluster “Translational Cancer Therapy Research”; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
| |
Collapse
|
29
|
Saha M, Malviya N, Das M, Choudhuri I, Mobin SM, Pathak B, Mukhopadhyay S. Effect on catecholase activity and interaction with biomolecules of metal complexes containing differently tuned 5-substituted ancillary tetrazolato ligands. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
DNA/protein binding, cytotoxicity and catecholase activity studies of a piperazinyl moiety ligand based nickel(II) complex. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
31
|
Khan RA, de Almeida A, Al-Farhan K, Alsalme A, Casini A, Ghazzali M, Reedijk J. Transition-metal norharmane compounds as possible cytotoxic agents: New insights based on a coordination chemistry perspective. J Inorg Biochem 2016; 165:128-135. [PMID: 27453532 DOI: 10.1016/j.jinorgbio.2016.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/25/2016] [Accepted: 07/07/2016] [Indexed: 11/16/2022]
Abstract
New first-row transition-metal compounds with the ligand norharmane (9H-Pyrido[3,4-b]indole; Hnor) are reported. The compounds have the general formula [M(LL)(Hnor)(NO3)2](MeOH)0-1 (M=Co, Ni, Cu, Zn; LL=2,2'-bipyridyl (bpy), 1,10-phenanthroline (phen)) and have been characterized by physical and analytical methods. X-ray structural analysis revealed that the compound of formula [Cu(phen)(Hnor)(NO3)2], (1) has a distorted 6-coordinated octahedrally-based geometry, with a planar-based [CuN3O] core, where Cu-L varies between 1.99 and 2.04Å and two weak axial CuO contacts (2.209 and 2.644Å) from two different nitrates. Based on spectroscopic similarities, the other compounds appear to have the same or very similar coordination geometries. The compounds showed clear cell growth inhibitory effects in two different cancer cell lines in vitro, with the copper and zinc complexes being the most toxic and in fact almost comparable to cisplatin. Flow-cytometry analysis confirmed induction of apoptosis in cancer cells treated with the compounds. Interestingly, co-incubation of the cells with metal complexes and CuCl2 induced an increase in the cytotoxic effects, most likely due to the conversion of the metal compounds in the corresponding, and most active, copper analogues.
Collapse
Affiliation(s)
- Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Andreia de Almeida
- Department of Pharmacokinetics, Toxicology and Targeting, Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Khalid Al-Farhan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Angela Casini
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Cardiff School of Chemistry, Cardiff University, Main Building, Park place, Cardiff CF10 3A, United Kingdom.
| | - Mohamed Ghazzali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jan Reedijk
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
32
|
Kavitha P, Laxma Reddy K. Synthesis, spectral characterisation, morphology, biological activity and DNA cleavage studies of metal complexes with chromone Schiff base. ARAB J CHEM 2016. [DOI: 10.1016/j.arabjc.2012.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
33
|
Guhathakurta B, Basu P, Kumar GS, Lu L, Zhu M, Bandyopadhyay N, Naskar JP. Synthetic, structural, electrochemical and DNA-binding aspects of a novel oximato bridged copper(II) dimer. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Abstract
Synthesis of oligonucleotide ending with an aldehyde functional group at their 5'-end (5'-AON) is possible for both DNA (5'-AODN) and RNA (5'-AORN) series irrespectively of the nature of the last nucleobase. The 5'-alcohol of on-support ODN is mildly oxidized under Moffat conditions. Transient protection of the resulting aldehyde by N,N'-diphenylethylenediamine derivatives allows cleavage, deprotection, and RP-HPLC purification of the protected 5'-AON. Finally, 5'-AON is deprotected by usual acetic acid treatment. In the aggregates, 5'-AON can be now synthesized and purified as routinely as non-modified ODNs, following procedures similar to the well-known "DMT-On" strategy.
Collapse
Affiliation(s)
- Rémy Lartia
- Département de Chimie Moléculaire, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
35
|
Wirth-Hamdoune D, Ullrich S, Scheffer U, Radanović T, Dürner G, Göbel MW. A Bis(guanidinium)alcohol Attached to a Hairpin Polyamide: Synthesis, DNA Binding, and Plasmid Cleavage. Chembiochem 2016; 17:506-14. [DOI: 10.1002/cbic.201500566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Daniela Wirth-Hamdoune
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Stefan Ullrich
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Ute Scheffer
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Toni Radanović
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Gerd Dürner
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Michael W. Göbel
- Institut für Organische Chemie und Chemische Biologie; Johann Wolfgang Goethe-Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| |
Collapse
|
36
|
Greenberg MM. Reactivity of Nucleic Acid Radicals. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2016; 50:119-202. [PMID: 28529390 DOI: 10.1016/bs.apoc.2016.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nucleic acid oxidation plays a vital role in the etiology and treatment of diseases, as well as aging. Reagents that oxidize nucleic acids are also useful probes of the biopolymers' structure and folding. Radiation scientists have contributed greatly to our understanding of nucleic acid oxidation using a variety of techniques. During the past two decades organic chemists have applied the tools of synthetic and mechanistic chemistry to independently generate and study the reactive intermediates produced by ionizing radiation and other nucleic acid damaging agents. This approach has facilitated resolving mechanistic controversies and lead to the discovery of new reactive processes.
Collapse
|
37
|
Lartia R, Constant JF. Synthetic access to the chemical diversity of DNA and RNA 5′-aldehyde lesions. J Org Chem 2015; 80:705-10. [PMID: 25372153 DOI: 10.1021/jo502170e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogen atom abstraction from the C5′-position of nucleotides in DNA results in direct strand scission by generating alkali-labile fragments from the oxidized nucleotide. The major damage consists in a terminus containing a 5′-aldehyde as part of an otherwise undamaged nucleotide. Moreover it is considered as a polymorphic DNA strand break lesion since it can be borne by any of the four nucleosides encountered in DNA. Here we propose an expeditious synthesis of oligonucleotides (ON) ending with this 5′-aldehyde group (5′-AODN). This straightforward and cheap strategy relies on Pfitzner–Moffatt oxidation performed on solid support followed by a transient protection of the resulting aldehyde function. This method is irrespective of the 5′-terminal nucleobase and most interestingly can be directly extended to RNA to produce the corresponding 5′-AORN. We also report preliminary results on recognition of 5′-AODN by base excision repair (BER) enzymes.
Collapse
|
38
|
Brissos RF, Caubet A, Gamez P. Possible DNA-Interacting Pathways for Metal-Based Compounds Exemplified with Copper Coordination Compounds. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Han C, Guo YC, Wang DD, Dai XJ, Wu FJ, Liu HF, Dai GF, Tao JC. Novel pyrazole fused heterocyclic ligands: Synthesis, characterization, DNA binding/cleavage activity and anti-BVDV activity. CHINESE CHEM LETT 2015; 26:534-538. [DOI: 10.1016/j.cclet.2015.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
40
|
Synthesis, DNA-cleaving activities and cytotoxicities of the copper(II) complexes of pyrrole-polyamide dimers tethered with carboxylate-containing linkers. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.01.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Pages BJ, Ang DL, Wright EP, Aldrich-Wright JR. Metal complex interactions with DNA. Dalton Trans 2015; 44:3505-26. [DOI: 10.1039/c4dt02700k] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Increasing numbers of DNA structures are being revealed using a diverse range of transition metal complexes and biophysical spectroscopic techniques. Here we present a review of metal complex-DNA interactions in which several binding modes and DNA structural forms are explored.
Collapse
Affiliation(s)
- Benjamin J. Pages
- Nanoscale Organisation and Dynamics Group
- School of Science and Health
- University of Western Sydney
- Locked Bag 1797 Penrith South DC
- Australia
| | - Dale L. Ang
- Nanoscale Organisation and Dynamics Group
- School of Science and Health
- University of Western Sydney
- Locked Bag 1797 Penrith South DC
- Australia
| | - Elisé P. Wright
- School of Medicine
- University of Western Sydney
- Locked Bag 1797 Penrith South DC
- Australia
| | - Janice R. Aldrich-Wright
- Nanoscale Organisation and Dynamics Group
- School of Science and Health
- University of Western Sydney
- Locked Bag 1797 Penrith South DC
- Australia
| |
Collapse
|
42
|
Raman N, Pravin N. DNA fastening and ripping actions of novel Knoevenagel condensed dicarboxylic acid complexes in antitumor journey. Eur J Med Chem 2014; 80:57-70. [DOI: 10.1016/j.ejmech.2014.04.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/18/2014] [Accepted: 04/08/2014] [Indexed: 11/30/2022]
|
43
|
Haque RA, Asekunowo PO, Razali MR, Mohamad F. NHC-Silver(I) Complexes as Chemical Nucleases; Synthesis, Crystal Structures, and Antibacterial Studies. HETEROATOM CHEMISTRY 2014. [DOI: 10.1002/hc.21160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rosenani A. Haque
- The School of Chemical Sciences; Universiti Sains Malaysia; 11800 USM Penang Malaysia
| | - Patrick O. Asekunowo
- The School of Chemical Sciences; Universiti Sains Malaysia; 11800 USM Penang Malaysia
| | - Mohd. R. Razali
- The School of Chemical Sciences; Universiti Sains Malaysia; 11800 USM Penang Malaysia
| | - Faisal Mohamad
- The School of Biological Sciences; Universiti Sains Malaysia; 11800 USM Penang Malaysia
| |
Collapse
|
44
|
Molphy Z, Prisecaru A, Slator C, Barron N, McCann M, Colleran J, Chandran D, Gathergood N, Kellett A. Copper Phenanthrene Oxidative Chemical Nucleases. Inorg Chem 2014; 53:5392-404. [DOI: 10.1021/ic500914j] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zara Molphy
- School of Chemical Sciences and National
Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Andreea Prisecaru
- School of Chemical Sciences and National
Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Creina Slator
- School of Chemical Sciences and National
Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Niall Barron
- School of Chemical Sciences and National
Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Malachy McCann
- Department
of Chemistry, National University of Ireland, Maynooth, Kildare, Ireland
| | - John Colleran
- School of Chemistry, Dublin Institute of Technology, Kevin Street, Dublin 2, Ireland
| | - Deepak Chandran
- School of Chemical Sciences and National
Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Nicholas Gathergood
- School of Chemical Sciences and National
Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Andrew Kellett
- School of Chemical Sciences and National
Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
45
|
Prisecaru A, McKee V, Howe O, Rochford G, McCann M, Colleran J, Pour M, Barron N, Gathergood N, Kellett A. Regulating Bioactivity of Cu2+ Bis-1,10-phenanthroline Artificial Metallonucleases with Sterically Functionalized Pendant Carboxylates. J Med Chem 2013; 56:8599-615. [DOI: 10.1021/jm401465m] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Andreea Prisecaru
- School
of Chemical Sciences and the National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Vickie McKee
- Chemistry
Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K
| | - Orla Howe
- School of Biological Sciences & Focas Research Institute, Dublin Institute of Technology, Camden Row, Dublin 8, Ireland
| | - Garret Rochford
- School of Biological Sciences & Focas Research Institute, Dublin Institute of Technology, Camden Row, Dublin 8, Ireland
| | - Malachy McCann
- Department
of Chemistry, National University of Ireland Maynooth Maynooth, Co. Kildare, Ireland
| | - John Colleran
- School
of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - Milan Pour
- Department
of Biological and Medical Sciences, Faculty of Pharmacy, Charles University, 400 05 Hradec Králové, Czech Republic
| | - Niall Barron
- School
of Chemical Sciences and the National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Nicholas Gathergood
- School
of Chemical Sciences and the National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Andrew Kellett
- School
of Chemical Sciences and the National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
46
|
Synthesis, crystal structure and nuclease activity of a Cu(II) complex having two different co-ordination geometries in the same unit cell. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.04.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Synthesis, DNA-cleaving activities and cytotoxicities of C2-symmetrical dipyrrole-polyamide dimer-based Cu(II) complexes: A comparative study. Eur J Med Chem 2013; 66:508-15. [DOI: 10.1016/j.ejmech.2013.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 12/19/2022]
|
48
|
Reddy PR, Shilpa A. 2-Hydroxynaphthalene-1-carbaldehyde- and 2-(aminomethyl)pyridine-based Schiff base Cu(II) complexes for DNA binding and cleavage. Chem Biodivers 2013; 9:2262-81. [PMID: 23081926 DOI: 10.1002/cbdv.201200049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Three mononuclear Cu(II) complexes, [CuCl(naph-pa)] (1), [Cu(bipy)(naph-pa)]Cl (2), and [Cu(naph-pa)(phen)]Cl (3) ((naph-pa)=Schiff base derived from the condensation of 2-hydroxynaphthalene-1-carbaldehyde and 2-picolylamine (=2-(aminomethyl)pyridine), bipy=2,2'-bypiridine, and phen=1,10-phenanthroline) were synthesized and characterized. Complex 1 exhibits square-planar geometry, and 2 and 3 exhibit square pyramidal geometry, where Schiff base and bipy/phen act as NNO and as NN donor ligands, respectively. CT (Calf thymus)-DNA-binding studies revealed that the complexes bind through intercalative mode and show good binding propensity (intrinsic binding constant K(b): 0.98×10(5), 2.22×10(5), and 2.67×10(5) M(-1) for 1-3, resp.). The oxidative and hydrolytic DNA-cleavage activity of these complexes has been studied by gel electrophoresis: all the complexes displayed chemical nuclease activity in the presence and absence of H(2)O(2). From the kinetic experiments, hydrolytic DNA cleavage rate constants were determined as 2.48, 3.32, and 4.10 h(-1) for 1-3, respectively. It amounts to (0.68-1.14)×10(8)-fold rate enhancement compared to non-catalyzed DNA cleavage, which is impressive. The complexes display binding and cleavage propensity to DNA in the order of 3>2>1.
Collapse
|
49
|
Lodyga-Chruscinska E, Sierant M, Pawlak J, Sochacka E. Physicochemical and biological properties of nucleosides modified with an imidazole ring and their copper complexes. QSCIENCE CONNECT 2013. [DOI: 10.5339/connect.2013.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
50
|
Kavitha P, Saritha M, Laxma Reddy K. Synthesis, structural characterization, fluorescence, antimicrobial, antioxidant and DNA cleavage studies of Cu(II) complexes of formyl chromone Schiff bases. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 102:159-168. [PMID: 23220531 DOI: 10.1016/j.saa.2012.10.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/28/2012] [Accepted: 10/22/2012] [Indexed: 06/01/2023]
Abstract
Cu(II) complexes have been synthesized from different Schiff bases, such as 3-((2-hydroxy phenylimino)methyl)-4H-chromen-4-one (HL(1)), 2-((4-oxo-4H-chromen-3-yl)methylneamino) benzoicacid (HL(2)), 3-((3-hydroxypyridin-2-ylimino)methyl)-4H-chromen-4-one (HL(3)) and 3-((2-mercaptophenylimino)methyl)-4H-chromen-4-one (HL(4)). The complexes were characterized by analytical, molar conductance, IR, electronic, magnetic, ESR, thermal, powder XRD and SEM studies. The analytical data reveal that metal to ligand molar ratio is 1:2 in all the complexes. Molar conductivity data indicates that all the Cu(II) complexes are neutral. On the basis of magnetic and electronic spectral data, distorted octahedral geometry is proposed for all the Cu(II) complexes. Thermal behaviour of the synthesized complexes illustrates the presence of lattice water molecules in the complexes. X-ray diffraction studies reveal that all the ligands and their Cu(II) complexes have triclinic system with different unit cell parameters. Antimicrobial, antioxidant and DNA cleavage activities indicate that metal complexes exhibited greater activity as compared with ligands.
Collapse
Affiliation(s)
- P Kavitha
- Department of Chemistry, National Institute of Technology, Warangal 506 004, Andhra Pradesh, India
| | | | | |
Collapse
|