1
|
Shikov AE, Malovichko YV, Nizhnikov AA, Antonets KS. Current Methods for Recombination Detection in Bacteria. Int J Mol Sci 2022; 23:ijms23116257. [PMID: 35682936 PMCID: PMC9181119 DOI: 10.3390/ijms23116257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
The role of genetic exchanges, i.e., homologous recombination (HR) and horizontal gene transfer (HGT), in bacteria cannot be overestimated for it is a pivotal mechanism leading to their evolution and adaptation, thus, tracking the signs of recombination and HGT events is importance both for fundamental and applied science. To date, dozens of bioinformatics tools for revealing recombination signals are available, however, their pros and cons as well as the spectra of solvable tasks have not yet been systematically reviewed. Moreover, there are two major groups of software. One aims to infer evidence of HR, while the other only deals with horizontal gene transfer (HGT). However, despite seemingly different goals, all the methods use similar algorithmic approaches, and the processes are interconnected in terms of genomic evolution influencing each other. In this review, we propose a classification of novel instruments for both HR and HGT detection based on the genomic consequences of recombination. In this context, we summarize available methodologies paying particular attention to the type of traceable events for which a certain program has been designed.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
2
|
Travers A, Muskhelishvili G. Chromosomal Organization and Regulation of Genetic Function in Escherichia coli Integrates the DNA Analog and Digital Information. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0016-2019. [PMID: 32056535 PMCID: PMC11168577 DOI: 10.1128/ecosalplus.esp-0016-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Indexed: 12/22/2022]
Abstract
In this article, we summarize our current understanding of the bacterial genetic regulation brought about by decades of studies using the Escherichia coli model. It became increasingly evident that the cellular genetic regulation system is organizationally closed, and a major challenge is to describe its circular operation in quantitative terms. We argue that integration of the DNA analog information (i.e., the probability distribution of the thermodynamic stability of base steps) and digital information (i.e., the probability distribution of unique triplets) in the genome provides a key to understanding the organizational logic of genetic control. During bacterial growth and adaptation, this integration is mediated by changes of DNA supercoiling contingent on environmentally induced shifts in intracellular ionic strength and energy charge. More specifically, coupling of dynamic alterations of the local intrinsic helical repeat in the structurally heterogeneous DNA polymer with structural-compositional changes of RNA polymerase holoenzyme emerges as a fundamental organizational principle of the genetic regulation system. We present a model of genetic regulation integrating the genomic pattern of DNA thermodynamic stability with the gene order and function along the chromosomal OriC-Ter axis, which acts as a principal coordinate system organizing the regulatory interactions in the genome.
Collapse
Affiliation(s)
- Andrew Travers
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | | |
Collapse
|
3
|
Abstract
The bacterial flagellar motor is driven by an ion flux that is converted to torque by motor-attendant complexes known as stators. The dynamics of stator assembly around the motor in response to external stimuli have been the subject of much recent research, but less is known about the evolutionary origins of stator complexes and how they select for specific ions. Here, we review the latest structural and biochemical data for the stator complexes and compare these with other ion transporters and microbial motors to examine possible evolutionary origins of the stator complex.
Collapse
|
4
|
Zhang L, Xiao M, Zhou J, Yu J. Lineage-associated underrepresented permutations (LAUPs) of mammalian genomic sequences based on a Jellyfish-based LAUPs analysis application (JBLA). Bioinformatics 2018; 34:3624-3630. [DOI: 10.1093/bioinformatics/bty392] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Le Zhang
- College of Computer Science, Sichuan University, Chengdu, China
- School of Computer and Information Science, Southwest University, Chongqing, China
| | - Ming Xiao
- School of Computer and Information Science, Southwest University, Chongqing, China
- College of Mobile Telecommunications, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Jingsong Zhou
- College of Computer Science, Sichuan University, Chengdu, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Yatsyshyn VY, Kvasko AY, Yemets AI. Genetic approaches in research on the role of trehalose in plants. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717050127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Short branches lead to systematic artifacts when BLAST searches are used as surrogate for phylogenetic reconstruction. Mol Phylogenet Evol 2016; 107:338-344. [PMID: 27894995 DOI: 10.1016/j.ympev.2016.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/09/2016] [Accepted: 11/25/2016] [Indexed: 11/24/2022]
Abstract
Long Branch Attraction (LBA) is a well-known artifact in phylogenetic reconstruction when dealing with branch length heterogeneity. Here we show another phenomenon, Short Branch Attraction (SBA), which occurs when BLAST searches, a phenetic analysis, are used as a surrogate method for phylogenetic analysis. This error also results from branch length heterogeneity, but this time it is the short branches that are attracting. The SBA artifact is reciprocal and can be returned 100% of the time when multiple branches differ in length by a factor of more than two. SBA is an intended feature of BLAST searches, but becomes an issue, when top scoring BLAST hit analyses are used to infer Horizontal Gene Transfers (HGTs), assign taxonomic category with environmental sequence data in phylotyping, or gather homologous sequences for building gene families. SBA can lead researchers to believe that there has been a HGT event when only vertical descent has occurred, cause slowly evolving taxa to be over-represented and quickly evolving taxa to be under-represented in phylotyping, or systematically exclude quickly evolving taxa from analyses. SBA also contributes to the changing results of top scoring BLAST hit analyses as the database grows, because more slowly evolving taxa, or short branches, are added over time, introducing more potential for SBA. SBA can be detected by examining reciprocal best BLAST hits among a larger group of taxa, including the known closest phylogenetic neighbors. Therefore, one should look for this phenomenon when conducting best BLAST hit analyses as a surrogate method to identify HGTs, in phylotyping, or when using BLAST to gather homologous sequences.
Collapse
|
7
|
Tekaia F. Inferring Orthologs: Open Questions and Perspectives. GENOMICS INSIGHTS 2016; 9:17-28. [PMID: 26966373 PMCID: PMC4778853 DOI: 10.4137/gei.s37925] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/30/2015] [Accepted: 01/02/2016] [Indexed: 01/25/2023]
Abstract
With the increasing number of sequenced genomes and their comparisons, the detection of orthologs is crucial for reliable functional annotation and evolutionary analyses of genes and species. Yet, the dynamic remodeling of genome content through gain, loss, transfer of genes, and segmental and whole-genome duplication hinders reliable orthology detection. Moreover, the lack of direct functional evidence and the questionable quality of some available genome sequences and annotations present additional difficulties to assess orthology. This article reviews the existing computational methods and their potential accuracy in the high-throughput era of genome sequencing and anticipates open questions in terms of methodology, reliability, and computation. Appropriate taxon sampling together with combination of methods based on similarity, phylogeny, synteny, and evolutionary knowledge that may help detecting speciation events appears to be the most accurate strategy. This review also raises perspectives on the potential determination of orthology throughout the whole species phylogeny.
Collapse
Affiliation(s)
- Fredj Tekaia
- Institut Pasteur, Unit of Structural Microbiology, CNRS URA 3528 and University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
8
|
Zhang J, Shi H, Xu L, Zhu X, Li X. Site-Directed Mutagenesis of a Hyperthermophilic Endoglucanase Cel12B from Thermotoga maritima Based on Rational Design. PLoS One 2015. [PMID: 26218520 PMCID: PMC4517919 DOI: 10.1371/journal.pone.0133824] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To meet the demand for the application of high activity and thermostable cellulases in the production of new-generation bioethanol from nongrain-cellulose sources, a hyperthermostable β-1,4-endoglucase Cel12B from Thermotoga maritima was selected for further modification by gene site-directed mutagenesis method in the present study, based on homology modeling and rational design. As a result, two recombinant enzymes showed significant improvement in enzyme activity by 77% and 87%, respectively, higher than the parental enzyme TmCel12B. Furthermore, the two mutants could retain 80% and 90.5% of their initial activity after incubation at 80°C for 8 h, while only 45% for 5 h to TmCel12B. The Km and Vmax of the two recombinant enzymes were 1.97±0.05 mM, 4.23±0.15 μmol·mg(-1)·min(-1) of TmCel12B-E225H-K207G-D37V, and 2.97±0.12 mM, 3.15±0.21 μmol·mg(-1)·min(-1) of TmCel12B-E225H-K207G, respectively, when using CMC-Na as the substrate. The roles of the mutation sites were also analyzed and evaluated in terms of electron density, hydrophobicity of the modeled protein structures. The recombinant enzymes may be used in the hydrolysis of cellulose at higher temperature in the future. It was concluded that the gene mutagenesis approach of a certain active residues may effectively improve the performance of cellulases for the industrial applications and contribute to the study the thermostable mechanism of thermophilic enzymes.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, P. R. China
- School of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, P. R. China
| | - Hao Shi
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, P. R. China
| | - Linyu Xu
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, P. R. China
- School of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, P. R. China
| | - Xiaoyan Zhu
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, P. R. China
- School of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, P. R. China
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, Jiangsu 223300, P. R. China
| | - Xiangqian Li
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, P. R. China
- School of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, P. R. China
- * E-mail:
| |
Collapse
|
9
|
Abstract
Horizontal or Lateral Gene Transfer (HGT or LGT) is the transmission of portions of genomic DNA between organisms through a process decoupled from vertical inheritance. In the presence of HGT events, different fragments of the genome are the result of different evolutionary histories. This can therefore complicate the investigations of evolutionary relatedness of lineages and species. Also, as HGT can bring into genomes radically different genotypes from distant lineages, or even new genes bearing new functions, it is a major source of phenotypic innovation and a mechanism of niche adaptation. For example, of particular relevance to human health is the lateral transfer of antibiotic resistance and pathogenicity determinants, leading to the emergence of pathogenic lineages. Computational identification of HGT events relies upon the investigation of sequence composition or evolutionary history of genes. Sequence composition-based ("parametric") methods search for deviations from the genomic average, whereas evolutionary history-based ("phylogenetic") approaches identify genes whose evolutionary history significantly differs from that of the host species. The evaluation and benchmarking of HGT inference methods typically rely upon simulated genomes, for which the true history is known. On real data, different methods tend to infer different HGT events, and as a result it can be difficult to ascertain all but simple and clear-cut HGT events.
Collapse
Affiliation(s)
| | - Nives Škunca
- ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| | | | - Christophe Dessimoz
- University College London, London, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
10
|
Abstract
A periodic bias in nucleotide frequency with a period of about 11 bp is characteristic for bacterial genomes. This signal is commonly interpreted to relate to the helical pitch of negatively supercoiled DNA. Functions in supercoiling-dependent RNA transcription or as a 'structural code' for DNA packaging have been suggested. Cyanobacterial genomes showed especially strong periodic signals and, on the other hand, DNA supercoiling and supercoiling-dependent transcription are highly dynamic and underlie circadian rhythms of these phototrophic bacteria. Focusing on this phylum and dinucleotides, we find that a minimal motif of AT-tracts (AT2) yields the strongest signal. Strong genome-wide periodicity is ancestral to a clade of unicellular and polyploid species but lost upon morphological transitions into two baeocyte-forming and a symbiotic species. The signal is intermediate in heterocystous species and weak in monoploid picocyanobacteria. A pronounced 'structural code' may support efficient nucleoid condensation and segregation in polyploid cells. The major source of the AT2 signal are protein-coding regions, where it is encoded preferentially in the first and third codon positions. The signal shows only few relations to supercoiling-dependent and diurnal RNA transcription in Synechocystis sp. PCC 6803. Strong and specific signals in two distinct transposons suggest roles in transposase transcription and transpososome formation.
Collapse
Affiliation(s)
- Robert Lehmann
- Institute for Theoretical Biology, Humboldt University, Berlin, Invalidenstraße 43, D-10115, Berlin, Germany
| | - Rainer Machné
- Institute for Theoretical Biology, Humboldt University, Berlin, Invalidenstraße 43, D-10115, Berlin, Germany Institute for Theoretical Chemistry, University of Vienna, Währinger Straße 17, A-1090, Vienna, Austria
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt University, Berlin, Invalidenstraße 43, D-10115, Berlin, Germany
| |
Collapse
|
11
|
Putonti C, Nowicki B, Shaffer M, Fofanov Y, Nowicki S. Where does Neisseria acquire foreign DNA from: an examination of the source of genomic and pathogenic islands and the evolution of the Neisseria genus. BMC Evol Biol 2013; 13:184. [PMID: 24007216 PMCID: PMC3848584 DOI: 10.1186/1471-2148-13-184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/28/2013] [Indexed: 02/03/2023] Open
Abstract
Background Pathogenicity islands (PAIs) or genomic islands (GEIs) are considered to be the result of a recent horizontal transfer. Detecting PAIs/GEIs as well as their putative source can provide insight into the organism’s pathogenicity within its host. Previously we introduced a tool called S-plot which provides a visual representation of the variation in compositional properties across and between genomic sequences. Utilizing S-plot and new functionality developed here, we examined 18 publicly available Neisseria genomes, including strains of both pathogenic and non-pathogenic species, in order to identify regions of unusual compositional properties (RUCPs) using both a sliding window as well as a gene-by-gene approach. Results Numerous GEIs and PAIs were identified including virulence genes previously found within the pathogenic Neisseria species. While some genes were conserved amongst all species, only pathogenic species, or an individual species, a number of genes were detected that are unique to an individual strain. While the majority of such genes have an origin unknown, a number of putative sources including pathogenic and capsule-containing bacteria were determined, indicative of gene exchange between Neisseria spp. and other bacteria within their microhabitat. Furthermore, we uncovered evidence that both N. meningitidis and N. gonorrhoeae have separately acquired DNA from their human host. Data suggests that all three Neisseria species have received horizontally transferred elements post-speciation. Conclusions Using this approach, we were able to not only find previously identified regions of virulence but also new regions which may be contributing to the virulence of the species. This comparative analysis provides a means for tracing the evolutionary history of the acquisition of foreign DNA within this genus. Looking specifically at the RUCPs present within the 18 genomes considered, a stronger similarity between N. meningitidis and N. lactamica is observed, suggesting that N. meningitidis arose before N. gonorrhoeae.
Collapse
Affiliation(s)
- Catherine Putonti
- Department of Biology, Loyola University Chicago, 1032 W, Sheridan Rd, Chicago, IL 60660, USA.
| | | | | | | | | |
Collapse
|
12
|
Ausili A, Staiano M, Dattelbaum J, Varriale A, Capo A, D'Auria S. Periplasmic Binding Proteins in Thermophiles: Characterization and Potential Application of an Arginine-Binding Protein from Thermotoga maritima: A Brief Thermo-Story. Life (Basel) 2013; 3:149-60. [PMID: 25371336 PMCID: PMC4187188 DOI: 10.3390/life3010149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/11/2013] [Accepted: 01/29/2013] [Indexed: 01/26/2023] Open
Abstract
Arginine-binding protein from the extremophile Thermotoga maritima is a 27.7 kDa protein possessing the typical two-domain structure of the periplasmic binding proteins family. The protein is characterized by a very high specificity and affinity to bind to arginine, also at high temperatures. Due to its features, this protein could be taken into account as a potential candidate for the design of a biosensor for arginine. It is important to investigate the stability of proteins when they are used for biotechnological applications. In this article, we review the structural and functional features of an arginine-binding protein from the extremophile Thermotoga maritima with a particular eye on its potential biotechnological applications.
Collapse
Affiliation(s)
- Alessio Ausili
- Laboratory for Molecular Sensing, Institute of Protein Biochemistry, CNR, Via Pietro Castellino, 111, Napoli, 80131, Italy.
| | - Maria Staiano
- Laboratory for Molecular Sensing, Institute of Protein Biochemistry, CNR, Via Pietro Castellino, 111, Napoli, 80131, Italy.
| | | | - Antonio Varriale
- Laboratory for Molecular Sensing, Institute of Protein Biochemistry, CNR, Via Pietro Castellino, 111, Napoli, 80131, Italy.
| | - Alessandro Capo
- Laboratory for Molecular Sensing, Institute of Protein Biochemistry, CNR, Via Pietro Castellino, 111, Napoli, 80131, Italy.
| | - Sabato D'Auria
- Laboratory for Molecular Sensing, Institute of Protein Biochemistry, CNR, Via Pietro Castellino, 111, Napoli, 80131, Italy.
| |
Collapse
|
13
|
Kravatskaya GI, Chechetkin VR, Kravatsky YV, Tumanyan VG. Structural attributes of nucleotide sequences in promoter regions of supercoiling-sensitive genes: how to relate microarray expression data with genomic sequences. Genomics 2012; 101:1-11. [PMID: 23085385 DOI: 10.1016/j.ygeno.2012.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 09/10/2012] [Accepted: 10/11/2012] [Indexed: 11/18/2022]
Abstract
The level of supercoiling in the chromosome can affect gene expression. To clarify the basis of supercoiling sensitivity, we analyzed the structural features of nucleotide sequences in the vicinity of promoters for the genes with expression enhanced and decreased in response to loss of chromosomal supercoiling in Escherichia coli. Fourier analysis of promoter sequences for supercoiling-sensitive genes reveals the tendency in selection of sequences with helical periodicities close to 10nt for relaxation-induced genes and to 11nt for relaxation-repressed genes. The helical periodicities in the subsets of promoters recognized by RNA polymerase with different sigma factors were also studied. A special procedure was developed for the study of correlations between the intensities of periodicities in promoter sequences and the expression levels of corresponding genes. Significant correlations of expression with the AT content and with AT periodicities about 10, 11, and 50nt indicate their role in regulation of supercoiling-sensitive genes.
Collapse
Affiliation(s)
- Galina I Kravatskaya
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Russia.
| | | | | | | |
Collapse
|
14
|
The temperature dependent proteomic analysis of Thermotoga maritima. PLoS One 2012; 7:e46463. [PMID: 23071576 PMCID: PMC3465335 DOI: 10.1371/journal.pone.0046463] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/30/2012] [Indexed: 11/21/2022] Open
Abstract
Thermotoga maritima (T. maritima) is a typical thermophile, and its proteome response to environmental temperature changes has yet to be explored. This study aims to uncover the temperature-dependent proteins of T. maritima using comparative proteomic approach. T. maritima was cultured under four temperatures, 60°C, 70°C, 80°C and 90°C, and the bacterial proteins were extracted and electrophoresed in two-dimensional mode. After analysis of gel images, a total of 224 spots, either cytoplasm or membrane, were defined as temperature-dependent. Of these spots, 75 unique bacterial proteins were identified using MALDI TOF/TOF MS. As is well known, the chaperone proteins such as heat shock protein 60 and elongation factor Tu, were up-regulated in abundance due to increased temperature. However, several temperature-dependent proteins of T. maritima responded very differently when compared to responses of the thermophile T. tengcongensis. Intriguingly, a number of proteins involved in central carbohydrate metabolism were significantly up-regulated at higher temperature. Their corresponding mRNA levels were elevated accordingly. The increase in abundance of several key enzymes indicates that a number of central carbohydrate metabolism pathways of T. maritima are activated at higher temperatures.
Collapse
|
15
|
Abel J, Mrázek J. Differences in DNA curvature-related sequence periodicity between prokaryotic chromosomes and phages, and relationship to chromosomal prophage content. BMC Genomics 2012; 13:188. [PMID: 22587570 PMCID: PMC3431218 DOI: 10.1186/1471-2164-13-188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/07/2012] [Indexed: 02/07/2023] Open
Abstract
Background Periodic spacing of A-tracts (short runs of A or T) with the DNA helical period of ~10–11 bp is characteristic of intrinsically bent DNA. In eukaryotes, the DNA bending is related to chromatin structure and nucleosome positioning. However, the physiological role of strong sequence periodicity detected in many prokaryotic genomes is not clear. Results We developed measures of intensity and persistency of DNA curvature-related sequence periodicity and applied them to prokaryotic chromosomes and phages. The results indicate that strong periodic signals present in chromosomes are generally absent in phage genomes. Moreover, chromosomes containing prophages are less likely to possess a persistent periodic signal than chromosomes with no prophages. Conclusions Absence of DNA curvature-related sequence periodicity in phages could arise from constraints associated with DNA packaging in the viral capsid. Lack of prophages in chromosomes with persistent periodic signal suggests that the sequence periodicity and concomitant DNA curvature could play a role in protecting the chromosomes from integration of phage DNA.
Collapse
Affiliation(s)
- Jacob Abel
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
16
|
Abstract
The power spectra of the nucleotides in the coding and noncoding sequences of the complete genomes of twenty-two archaea and bacteria are obtained. According to the intensities at the periodicity of 3 bp in the spectra, it is observed that the genomic sequences may be classified into three types. Moreover, the spectra generally have a small but broad peak in the 10–11 bp periodicities. For the archaea, the peak is seen to locate preferably at about 10 bp periodicity, while for the bacteria, it tends to locate at about 11 bp. These features suggest that the DNA sequences of archaea generally have a tighter double helical structure than those of bacteria in order to cope with harsh environmental conditions. Besides, among the archaea, A. Pernixi K1 is found to have the largest periodicity of about 11 bp, but has a comparatively high CG content in its genome and hence a high denaturation temperature.
Collapse
Affiliation(s)
- SU-LONG NYEO
- Department of Physics, National Cheng Kung University, Tainan, Taiwan 701, R.O.C
| | - I-CHING YANG
- Department of Natural Science Education, National Taitung Teachers College, Taitung, Taiwan 950, R.O.C
| | - CHI-HAO WU
- Department of Physics, National Cheng Kung University, Tainan, Taiwan 701, R.O.C
| |
Collapse
|
17
|
Mrázek J, Chaudhari T, Basu A. PerPlot & PerScan: tools for analysis of DNA curvature-related periodicity in genomic nucleotide sequences. MICROBIAL INFORMATICS AND EXPERIMENTATION 2011; 1:13. [PMID: 22587738 PMCID: PMC3372288 DOI: 10.1186/2042-5783-1-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 11/28/2011] [Indexed: 04/12/2023]
Abstract
Background Periodic spacing of short adenine or thymine runs phased with DNA helical period of ~10.5 bp is associated with intrinsic DNA curvature and deformability, which play important roles in DNA-protein interactions and in the organization of chromosomes in both eukaryotes and prokaryotes. Local differences in DNA sequence periodicity have been linked to differences in gene expression in some organisms. Despite the significance of these periodic patterns, there are virtually no publicly accessible tools for their analysis. Results We present novel tools suitable for assessments of DNA curvature-related sequence periodicity in nucleotide sequences at the genome scale. Utility of the present software is demonstrated on a comparison of sequence periodicities in the genomes of Haemophilus influenzae, Methanocaldococcus jannaschii, Saccharomyces cerevisiae, and Arabidopsis thaliana. The software can be accessed through a web interface and the programs are also available for download. Conclusions The present software is suitable for comparing DNA curvature-related sequence periodicity among different genomes as well as for analysis of intrachromosomal heterogeneity of the sequence periodicity. It provides a quick and convenient way to detect anomalous regions of chromosomes that could have unusual structural and functional properties and/or distinct evolutionary history.
Collapse
Affiliation(s)
- Jan Mrázek
- Department of Microbiology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602-2605, USA.
| | | | | |
Collapse
|
18
|
Coexistence of different base periodicities in prokaryotic genomes as related to DNA curvature, supercoiling, and transcription. Genomics 2011; 98:223-31. [PMID: 21722724 DOI: 10.1016/j.ygeno.2011.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/30/2011] [Accepted: 06/13/2011] [Indexed: 01/15/2023]
Abstract
We analyzed the periodic patterns in E. coli promoters and compared the distributions of the corresponding patterns in promoters and in the complete genome to elucidate their function. Except the three-base periodicity, coincident with that in the coding regions and growing stronger in the region downstream from the transcriptions start (TS), all other salient periodicities are peaked upstream of TS. We found that helical periodicities with the lengths about B-helix pitch ~10.2-10.5 bp and A-helix pitch ~10.8-11.1 bp coexist in the genomic sequences. We mapped the distributions of stretches with A-, B-, and Z-like DNA periodicities onto E. coli genome. All three periodicities tend to concentrate within non-coding regions when their intensity becomes stronger and prevail in the promoter sequences. The comparison with available experimental data indicates that promoters with the most pronounced periodicities may be related to the supercoiling-sensitive genes.
Collapse
|
19
|
Phylogeny and molecular signatures for the phylum Thermotogae and its subgroups. Antonie van Leeuwenhoek 2011; 100:1-34. [DOI: 10.1007/s10482-011-9576-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 03/11/2011] [Indexed: 11/25/2022]
|
20
|
Chen K, Wang L, Yang M, Liu J, Xin C, Hu S, Yu J. Sequence signatures of nucleosome positioning in Caenorhabditis elegans. GENOMICS PROTEOMICS & BIOINFORMATICS 2010; 8:92-102. [PMID: 20691394 PMCID: PMC5054450 DOI: 10.1016/s1672-0229(10)60010-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Our recent investigation in the protist Trichomonas vaginalis suggested a DNA sequence periodicity with a unit length of 120.9 nt, which represents a sequence signature for nucleosome positioning. We now extended our observation in higher eukaryotes and identified a similar periodicity of 175 nt in length in Caenorhabditis elegans. In the process of defining the sequence compositional characteristics, we found that the 10.5-nt periodicity, the sequence signature of DNA double helix, may not be sufficient for cross-nucleosome positioning but provides essential guiding rails to facilitate positioning. We further dissected nucleosome-protected sequences and identified a strong positive purine (AG) gradient from the 5′-end to the 3′-end, and also learnt that the nucleosome-enriched regions are GC-rich as compared to the nucleosome-free sequences as purine content is positively correlated with GC content. Sequence characterization allowed us to develop a hidden Markov model (HMM) algorithm for decoding nucleosome positioning computationally, and based on a set of training data from the fifth chromosome of C. elegans, our algorithm predicted 60%-70% of the well-positioned nucleosomes, which is 15%-20% higher than random positioning. We concluded that nucleosomes are not randomly positioned on DNA sequences and yet bind to different genome regions with variable stability, well-positioned nucleosomes leave sequence signatures on DNA, and statistical positioning of nucleosomes across genome can be decoded computationally based on these sequence signatures.
Collapse
Affiliation(s)
- Kaifu Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Comparative analysis of sequence periodicity among prokaryotic genomes points to differences in nucleoid structure and a relationship to gene expression. J Bacteriol 2010; 192:3763-72. [PMID: 20494989 DOI: 10.1128/jb.00149-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regular spacing of short runs of A or T nucleotides in DNA sequences with a period close to the helical period of the DNA double helix has been associated with intrinsic DNA bending and nucleosome positioning in eukaryotes. Analogous periodic signals were also observed in prokaryotic genomes. While the exact role of this periodicity in prokaryotes is not known, it has been proposed to facilitate the DNA packaging in the prokaryotic nucleoid and/or to promote negative or positive supercoiling. We developed a methodology for assessments of intragenomic heterogeneity of these periodic patterns and applied it in analysis of 1,025 prokaryotic chromosomes. This technique allows more detailed analysis of sequence periodicity than previous methods where sequence periodicity was assessed in an integral form across the whole chromosome. We found that most genomes have the periodic signal confined to several chromosomal segments while most of the chromosome lacks a strong sequence periodicity. Moreover, there are significant differences among different prokaryotes in both the intensity and persistency of sequence periodicity related to DNA curvature. We proffer that the prokaryotic nucleoid consists of relatively rigid sections stabilized by short intrinsically bent DNA segments and characterized by locally strong periodic patterns alternating with regions featuring a weak periodic signal, which presumably permits higher structural flexibility. This model applies to most bacteria and archaea. In genomes with an exceptionally persistent periodic signal, highly expressed genes tend to concentrate in aperiodic sections, suggesting that structural heterogeneity of the nucleoid is related to local differences in transcriptional activity.
Collapse
|
22
|
Bacterial infections associated with cancer: possible implication in etiology with special reference to lateral gene transfer. Cancer Metastasis Rev 2010; 29:331-7. [DOI: 10.1007/s10555-010-9217-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Comparative community genomics in the Dead Sea: an increasingly extreme environment. ISME JOURNAL 2009; 4:399-407. [PMID: 20033072 DOI: 10.1038/ismej.2009.141] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Owing to the extreme salinity ( approximately 10 times saltier than the oceans), near toxic magnesium levels (approximately 2.0 M Mg(2+)), the dominance of divalent cations, acidic pH (6.0) and high-absorbed radiation flux rates, the Dead Sea represents a unique and harsh ecosystem. Measures of microbial presence (microscopy, pigments and lipids) indicate that during rare bloom events after exceptionally rainy seasons, the microbial communities can reach high densities. However, most of the time, when the Dead Sea level is declining and halite is precipitating from the water column, it is difficult to reliably measure the presence of microorganisms and their activities. Although a number of halophilic Archaea have been previously isolated from the Dead Sea, polar lipid analyses of biomass collected during Dead Sea blooms suggested that these isolates were not the major components of the microbial community of these blooms. In this study, in an effort to characterize the perennial microbial community of the Dead Sea and compare it with bloom assemblages, we performed metagenomic analyses of concentrated biomass from hundreds of liters of brine and of microbial material from the last massive Dead Sea bloom. The difference between the two conditions was reflected in community composition and diversity, in which the bloom was different and less diverse from the residual brine population. The distributional patterns of microbial genes suggested Dead Sea community trends in mono- and divalent cation metabolisms as well as in transposable elements. This may indicate possible mechanisms and pathways enabling these microbes to survive in such a harsh environment.
Collapse
|
24
|
DNA photolyase of enterococci: possible explanation for its low sunlight inactivation rate. Biologia (Bratisl) 2009. [DOI: 10.2478/s11756-009-0168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Nov Klaiman T, Hosid S, Bolshoy A. Upstream curved sequences in E. coli are related to the regulation of transcription initiation. Comput Biol Chem 2009; 33:275-82. [PMID: 19646927 DOI: 10.1016/j.compbiolchem.2009.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 06/17/2009] [Indexed: 01/03/2023]
Abstract
The advancement in Escherichia coli genome research has made the information regarding transcription start sites of many genes available. A study relying on the availability of transcription start locations was performed. The first question addressed was what an average DNA curvature profile upstream of genes would look like when these genes are aligned by transcription start sites in comparison to alignment by translation start sites. Since it was hypothesized that curvature plays a role in transcription regulation, the expectation was that curvature measurements relative to transcription starts, rather than translation, should strengthen the signal. Our study justified this expectation. The second question aimed to clarify the relation between DNA curvature and promoter strength. Through clustering based on DNA curvature profiles along promoter regions, a strong positive correlation between the promoter strength and the curved DNA was found. The third question dealt with dinucleotide periodicity in E. coli to see whether a periodicity pattern specific to promoter regions exists. Such unknown pattern might shed new light on transcription regulation mechanisms in E. coli. A sequence periodicity of about 11 bp is characteristic to the whole E. coli genome, and is especially well-expressed in intergenic regions. Here it was shown that regions of the size of about 100-150 bp centered 70-100 bp upstream to transcription starts carry hidden periodicity with a period of about 10.3 bp.
Collapse
Affiliation(s)
- Tamar Nov Klaiman
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 31905, Israel
| | | | | |
Collapse
|
26
|
A hybrid technique for the periodicity characterization of genomic sequence data. EURASIP JOURNAL ON BIOINFORMATICS & SYSTEMS BIOLOGY 2009:924601. [PMID: 19365578 DOI: 10.1155/2009/924601] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 10/13/2008] [Accepted: 01/21/2009] [Indexed: 11/17/2022]
Abstract
Many studies of biological sequence data have examined sequence structure in terms of periodicity, and various methods for measuring periodicity have been suggested for this purpose. This paper compares two such methods, autocorrelation and the Fourier transform, using synthetic periodic sequences, and explains the differences in periodicity estimates produced by each. A hybrid autocorrelation-integer period discrete Fourier transform is proposed that combines the advantages of both techniques. Collectively, this representation and a recently proposed variant on the discrete Fourier transform offer alternatives to the widely used autocorrelation for the periodicity characterization of sequence data. Finally, these methods are compared for various tetramers of interest in C. elegans chromosome I.
Collapse
|
27
|
Mrazek J. Phylogenetic Signals in DNA Composition: Limitations and Prospects. Mol Biol Evol 2009; 26:1163-9. [DOI: 10.1093/molbev/msp032] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
28
|
Lin GN, Cai Z, Lin G, Chakraborty S, Xu D. ComPhy: prokaryotic composite distance phylogenies inferred from whole-genome gene sets. BMC Bioinformatics 2009; 10 Suppl 1:S5. [PMID: 19208152 PMCID: PMC2648732 DOI: 10.1186/1471-2105-10-s1-s5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background With the increasing availability of whole genome sequences, it is becoming more and more important to use complete genome sequences for inferring species phylogenies. We developed a new tool ComPhy, 'Composite Distance Phylogeny', based on a composite distance matrix calculated from the comparison of complete gene sets between genome pairs to produce a prokaryotic phylogeny. Results The composite distance between two genomes is defined by three components: Gene Dispersion Distance (GDD), Genome Breakpoint Distance (GBD) and Gene Content Distance (GCD). GDD quantifies the dispersion of orthologous genes along the genomic coordinates from one genome to another; GBD measures the shared breakpoints between two genomes; GCD measures the level of shared orthologs between two genomes. The phylogenetic tree is constructed from the composite distance matrix using a neighbor joining method. We tested our method on 9 datasets from 398 completely sequenced prokaryotic genomes. We have achieved above 90% agreement in quartet topologies between the tree created by our method and the tree from the Bergey's taxonomy. In comparison to several other phylogenetic analysis methods, our method showed consistently better performance. Conclusion ComPhy is a fast and robust tool for genome-wide inference of evolutionary relationship among genomes. It can be downloaded from .
Collapse
Affiliation(s)
- Guan Ning Lin
- Digital Biology Laboratory, Informatics Institute, Computer Science Department and Christopher S, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | |
Collapse
|
29
|
Luchansky MS, Der BS, D’Auria S, Pocsfalvi G, Iozzino L, Marasco D, Dattelbaum JD. Amino acid transport in thermophiles: characterization of an arginine-binding protein in Thermotoga maritima. ACTA ACUST UNITED AC 2009; 6:142-51. [DOI: 10.1039/b908412f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Chen K, Meng Q, Ma L, Liu Q, Tang P, Chiu C, Hu S, Yu J. A novel DNA sequence periodicity decodes nucleosome positioning. Nucleic Acids Res 2008; 36:6228-36. [PMID: 18829715 PMCID: PMC2577358 DOI: 10.1093/nar/gkn626] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
There have been two types of well-characterized DNA sequence periodicities; both are found to be associated with important molecular mechanisms. One is a 3-nt periodicity corresponding to codon triplets, the other is a 10.5-nt periodicity related to the structure of DNA helixes. In the process of analyzing the genome and transcriptome of Trichomonas vaginalis, we observed a 120.9-nt periodicity along DNA sequences. Different from the 3- and 10.5-nt periodicities, this novel periodicity originates near the 5′-end of transcripts, extends along the direction of transcription, and weakens gradually along transcripts. As a result, codon usage as well as amino acid composition is constrained by this periodicity. Similar periodicities were also identified in other organisms, but with variable length associated with the length of nucleosome units. We validated this association experimentally in T. vaginalis, and demonstrated that the periodicity manifests nucleotide variations between linker-DNA and wrapping-DNA along nucleosome array. We conclude that this novel DNA sequence periodicity is a signature of nucleosome organization suggesting that nucleosomes are well-positioned with regularity, especially near the 5′-end of transcripts.
Collapse
Affiliation(s)
- Kaifu Chen
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Graduate University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Menconi G, Benci V, Buiatti M. Data compression and genomes: a two-dimensional life domain map. J Theor Biol 2008; 253:281-8. [PMID: 18430439 DOI: 10.1016/j.jtbi.2008.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 03/10/2008] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
Abstract
We define the complexity of DNA sequences as the information content per nucleotide, calculated by means of some Lempel-Ziv data compression algorithm. It is possible to use the statistics of the complexity values of the functional regions of different complete genomes to distinguish among genomes of different domains of life (Archaea, Bacteria and Eukarya). We shall focus on the distribution function of the complexity of non-coding regions. We show that the three domains may be plotted in separate regions within the two-dimensional space where the axes are the skewness coefficient and the curtosis coefficient of the aforementioned distribution. Preliminary results on 15 genomes are introduced.
Collapse
Affiliation(s)
- Giulia Menconi
- Dipartimento di Matematica Applicata, Università di Pisa, Via Buonarroti 1C-56127, Pisa, Italy.
| | | | | |
Collapse
|
32
|
Bohlin J, Skjerve E, Ussery DW. Reliability and applications of statistical methods based on oligonucleotide frequencies in bacterial and archaeal genomes. BMC Genomics 2008; 9:104. [PMID: 18307761 PMCID: PMC2289816 DOI: 10.1186/1471-2164-9-104] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 02/28/2008] [Indexed: 11/22/2022] Open
Abstract
Background The increasing number of sequenced prokaryotic genomes contains a wealth of genomic data that needs to be effectively analysed. A set of statistical tools exists for such analysis, but their strengths and weaknesses have not been fully explored. The statistical methods we are concerned with here are mainly used to examine similarities between archaeal and bacterial DNA from different genomes. These methods compare observed genomic frequencies of fixed-sized oligonucleotides with expected values, which can be determined by genomic nucleotide content, smaller oligonucleotide frequencies, or be based on specific statistical distributions. Advantages with these statistical methods include measurements of phylogenetic relationship with relatively small pieces of DNA sampled from almost anywhere within genomes, detection of foreign/conserved DNA, and homology searches. Our aim was to explore the reliability and best suited applications for some popular methods, which include relative oligonucleotide frequencies (ROF), di- to hexanucleotide zero'th order Markov methods (ZOM) and 2.order Markov chain Method (MCM). Tests were performed on distant homology searches with large DNA sequences, detection of foreign/conserved DNA, and plasmid-host similarity comparisons. Additionally, the reliability of the methods was tested by comparing both real and random genomic DNA. Results Our findings show that the optimal method is context dependent. ROFs were best suited for distant homology searches, whilst the hexanucleotide ZOM and MCM measures were more reliable measures in terms of phylogeny. The dinucleotide ZOM method produced high correlation values when used to compare real genomes to an artificially constructed random genome with similar %GC, and should therefore be used with care. The tetranucleotide ZOM measure was a good measure to detect horizontally transferred regions, and when used to compare the phylogenetic relationships between plasmids and hosts, significant correlation (R2 = 0.4) was found with genomic GC content and intra-chromosomal homogeneity. Conclusion The statistical methods examined are fast, easy to implement, and powerful for a number of different applications involving genomic sequence comparisons. However, none of the measures examined were superior in all tests, and therefore the choice of the statistical method should depend on the task at hand.
Collapse
Affiliation(s)
- Jon Bohlin
- Norwegian School of Veterinary Science, P.O. Box 8146 Dep., N-0033 Oslo, Norway.
| | | | | |
Collapse
|
33
|
Abstract
Trehalose metabolism and signaling is an area of emerging significance. In less than a decade our views on the importance of trehalose metabolism and its role in plants have gone through something of a revolution. An obscure curiosity has become an indispensable regulatory system. Mutant and transgenic plants of trehalose synthesis display wide-ranging and unprecedented phenotypes for the perturbation of a metabolic pathway. Molecular physiology and genomics have provided a glimpse of trehalose biology that had not been possible with conventional techniques, largely because the products of the synthetic pathway, trehalose 6-phosphate (T6P) and trehalose, are in trace abundance and difficult to measure in most plants. A consensus is emerging that T6P plays a central role in the coordination of metabolism with development. The discovery of trehalose metabolism has been one of the most exciting developments in plant metabolism and plant science in recent years. The field is fast moving and this review highlights the most recent insights.
Collapse
Affiliation(s)
- Matthew J Paul
- Center for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom.
| | | | | | | |
Collapse
|
34
|
Revisiting the relationship between compositional sequence complexity and periodicity. Comput Biol Chem 2007; 32:17-28. [PMID: 17983838 DOI: 10.1016/j.compbiolchem.2007.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 05/21/2007] [Accepted: 09/03/2007] [Indexed: 11/20/2022]
Abstract
BACKGROUND Given a big sequence fragment or a set of functionally related sequences we consider two problems of a sequence analysis associated with the given sequence(s). The first problem is to measure sequence complexity (repetitiveness, compactness) to estimate how informative the set as a whole is. Usually an obtained measure should be compared with an appropriate random background calculated using permutation of the given sequences. We propose a novel and effective approach for background information measurement instead of the usual sequence reshuffling. The second problem is to detect a periodic bias to determine if it is one of the set features. Sequence periodicity, when sometimes one has in mind hidden periodicity, is a very basic genomic property. The sequence period of 3, which is considered to characterize coding sequences, and period 10-11, which may be due to the alternation of hydrophobic and hydrophilic amino acids, DNA curvature, and bendability were discovered and described. Searching for periodical biases brought significant results in the study of sequence-dependent nucleosome positioning: nucleosomal sites carry hidden period of about 10.4 bases. RESULTS Calculated differences between genomic sequences and background showed high biological relevancy of the method that we proposed in this study. Our algorithm was applied to a few natural and artificial datasets. We constructed a simple "periodic" dataset by replacement of every tenth dinucleotide in each sequence of a trial set by the same dinucleotide "CC". We showed that the method reveals the introduced periodicity and that this periodical pattern carries higher information than in uninterrupted subsequences. An application of the method to the nucleosomal dataset revealed a weak pseudo-periodicity of 10.4 nucleotides confirming previous knowledge. An application of the method to Escherichia coli datasets revealed the well-known periodicity of 3bp as a genic attribute, a secondary genic period slightly larger than 11bp, and an intergenic period a bit smaller than 11bp. CONCLUSIONS We reported a novel compositional complexity-based method for sequence analysis. We found that the difference between the sequence complexity of a natural sequence and of background is especially high for a set consisting exclusively of coding sequences. Hidden periodicities were found with no need of any preliminary assumptions regarding a composition of periodic elements. We illustrated the power of the method by studying the sets with known weak periodic properties: a nucleosomal database and sets of different regions of E. coli. We showed that the method conveniently indicated all kinds of periodicity and related features in these sets of DNA sequences.
Collapse
|
35
|
Travers A, Muskhelishvili G. A common topology for bacterial and eukaryotic transcription initiation? EMBO Rep 2007; 8:147-51. [PMID: 17268506 PMCID: PMC1796767 DOI: 10.1038/sj.embor.7400898] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 12/11/2006] [Indexed: 11/09/2022] Open
Abstract
DNA supercoiling is a major regulator of transcription in bacteria. Negative supercoiling acts both by promoting the formation of nucleoprotein structures containing wrapped DNA and by altering the twist of DNA. The latter affects the initiation of transcription by RNA polymerase as well as recombination processes. Here, we argue that although bacteria and eukaryotes differ in their mode of packaging DNA supercoils, increases in DNA twist are associated with chromatin folding and transcriptional silencing in both. Conversely, decreases in DNA twist are associated with chromatin unfolding and the acquisition of transcriptional competence. In other words, at the most fundamental level, the principles of genetic regulation are common to all organisms. The apparent differences in the details of regulation probably represent alternative methods of fine-tuning similar underlying processes.
Collapse
Affiliation(s)
- Andrew Travers
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | |
Collapse
|
36
|
Radomski JP, Slonimski PP. Primary sequences of proteins from complete genomes display a singular periodicity: Alignment-free N-gram analysis. C R Biol 2007; 330:33-48. [PMID: 17241946 DOI: 10.1016/j.crvi.2006.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 11/07/2006] [Indexed: 11/25/2022]
Abstract
A method is proposed to represent and to analyze complete genome sequences (52 species from procaryotes and eukaryotes), based upon n-gram sequence's frequencies of amino acid pairs (bigrams), separated by a given number of other residues. For each of the species analyzed, it allows us to construct over-abundant and over-deficient occurrence profiles, summarizing amino acid bigram frequencies over the entire genome. The method deals efficiently with a sparseness of statistical representations of individual sequences, and describes every gene sequence in the same way, independently of its length and of the genome sizes. The frequency of over-abundant and over-deficient occurrences of bigrams presents a singular periodicity around 3.5 peptide bonds, suggesting a relation with the alpha helical secondary structure.
Collapse
Affiliation(s)
- Jan P Radomski
- Interdisciplinary Centre for Mathematical and Computational Modelling, Warsaw University, Pawińskiego 5A, Bldg. D, 02106 Warsaw, Poland.
| | | |
Collapse
|
37
|
Conners SB, Mongodin EF, Johnson MR, Montero CI, Nelson KE, Kelly RM. Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. FEMS Microbiol Rev 2006; 30:872-905. [PMID: 17064285 DOI: 10.1111/j.1574-6976.2006.00039.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
High-throughput sequencing of microbial genomes has allowed the application of functional genomics methods to species lacking well-developed genetic systems. For the model hyperthermophile Thermotoga maritima, microarrays have been used in comparative genomic hybridization studies to investigate diversity among Thermotoga species. Transcriptional data have assisted in prediction of pathways for carbohydrate utilization, iron-sulfur cluster synthesis and repair, expolysaccharide formation, and quorum sensing. Structural genomics efforts aimed at the T. maritima proteome have yielded hundreds of high-resolution datasets and predicted functions for uncharacterized proteins. The information gained from genomics studies will be particularly useful for developing new biotechnology applications for T. maritima enzymes.
Collapse
Affiliation(s)
- Shannon B Conners
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Background The compatible solute trehalose is a non-reducing disaccharide, which accumulates upon heat, cold or osmotic stress. It was commonly accepted that trehalose is only present in extremophiles or cryptobiotic organisms. However, in recent years it has been shown that although higher plants do not accumulate trehalose at significant levels they have actively transcribed genes encoding the corresponding biosynthetic enzymes. Results In this study we show that trehalose biosynthesis ability is present in eubacteria, archaea, plants, fungi and animals. In bacteria there are five different biosynthetic routes, whereas in fungi, plants and animals there is only one. We present phylogenetic analyses of the trehalose-6-phosphate synthase (TPS) and trehalose-phosphatase (TPP) domains and show that there is a close evolutionary relationship between these domains in proteins from diverse organisms. In bacteria TPS and TPP genes are clustered, whereas in eukaryotes these domains are fused in a single protein. Conclusion We have demonstrated that trehalose biosynthesis pathways are widely distributed in nature. Interestingly, several eubacterial species have multiple pathways, while eukaryotes have only the TPS/TPP pathway. Vertebrates lack trehalose biosynthetic capacity but can catabolise it. TPS and TPP domains have evolved mainly in parallel and it is likely that they have experienced several instances of gene duplication and lateral gene transfer.
Collapse
|
39
|
Binnewies TT, Motro Y, Hallin PF, Lund O, Dunn D, La T, Hampson DJ, Bellgard M, Wassenaar TM, Ussery DW. Ten years of bacterial genome sequencing: comparative-genomics-based discoveries. Funct Integr Genomics 2006; 6:165-85. [PMID: 16773396 DOI: 10.1007/s10142-006-0027-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 02/24/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
It has been more than 10 years since the first bacterial genome sequence was published. Hundreds of bacterial genome sequences are now available for comparative genomics, and searching a given protein against more than a thousand genomes will soon be possible. The subject of this review will address a relatively straightforward question: "What have we learned from this vast amount of new genomic data?" Perhaps one of the most important lessons has been that genetic diversity, at the level of large-scale variation amongst even genomes of the same species, is far greater than was thought. The classical textbook view of evolution relying on the relatively slow accumulation of mutational events at the level of individual bases scattered throughout the genome has changed. One of the most obvious conclusions from examining the sequences from several hundred bacterial genomes is the enormous amount of diversity--even in different genomes from the same bacterial species. This diversity is generated by a variety of mechanisms, including mobile genetic elements and bacteriophages. An examination of the 20 Escherichia coli genomes sequenced so far dramatically illustrates this, with the genome size ranging from 4.6 to 5.5 Mbp; much of the variation appears to be of phage origin. This review also addresses mobile genetic elements, including pathogenicity islands and the structure of transposable elements. There are at least 20 different methods available to compare bacterial genomes. Metagenomics offers the chance to study genomic sequences found in ecosystems, including genomes of species that are difficult to culture. It has become clear that a genome sequence represents more than just a collection of gene sequences for an organism and that information concerning the environment and growth conditions for the organism are important for interpretation of the genomic data. The newly proposed Minimal Information about a Genome Sequence standard has been developed to obtain this information.
Collapse
Affiliation(s)
- Tim T Binnewies
- Center for Biological Sequence Analysis, Technical University of Denmark, 2800, Lyngby, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nanavati DM, Thirangoon K, Noll KM. Several archaeal homologs of putative oligopeptide-binding proteins encoded by Thermotoga maritima bind sugars. Appl Environ Microbiol 2006; 72:1336-45. [PMID: 16461685 PMCID: PMC1392961 DOI: 10.1128/aem.72.2.1336-1345.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hyperthermophilic bacterium Thermotoga maritima has shared many genes with archaea through horizontal gene transfer. Several of these encode putative oligopeptide ATP binding cassette (ABC) transporters. We sought to test the hypothesis that these transporters actually transport sugars by measuring the substrate affinities of their encoded substrate-binding proteins (SBPs). This information will increase our understanding of the selective pressures that allowed this organism to retain these archaeal homologs. By measuring changes in intrinsic fluorescence of these SBPs in response to exposure to various sugars, we found that five of the eight proteins examined bind to sugars. We could not identify the ligands of the SBPs TM0460, TM1150, and TM1199. The ligands for the archaeal SBPs are TM0031 (BglE), the beta-glucosides cellobiose and laminaribiose; TM0071 (XloE), xylobiose and xylotriose; TM0300 (GloE), large glucose oligosaccharides represented by xyloglucans; TM1223 (ManE), beta-1,4-mannobiose; and TM1226 (ManD), beta-1,4-mannobiose, beta-1,4-mannotriose, beta-1,4-mannotetraose, beta-1,4-galactosyl mannobiose, and cellobiose. For comparison, seven bacterial putative sugar-binding proteins were examined and ligands for three (TM0595, TM0810, and TM1855) were not identified. The ligands for these bacterial SBPs are TM0114 (XylE), xylose; TM0418 (InoE), myo-inositol; TM0432 (AguE), alpha-1,4-digalactouronic acid; and TM0958 (RbsB), ribose. We found that T. maritima does not grow on several complex polypeptide mixtures as sole sources of carbon and nitrogen, so it is unlikely that these archaeal ABC transporters are used primarily for oligopeptide transport. Since these SBPs bind oligosaccharides with micromolar to nanomolar affinities, we propose that they are used primarily for oligosaccharide transport.
Collapse
Affiliation(s)
- Dhaval M Nanavati
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | |
Collapse
|
41
|
Ricard G, McEwan NR, Dutilh BE, Jouany JP, Macheboeuf D, Mitsumori M, McIntosh FM, Michalowski T, Nagamine T, Nelson N, Newbold CJ, Nsabimana E, Takenaka A, Thomas NA, Ushida K, Hackstein JHP, Huynen MA. Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment. BMC Genomics 2006; 7:22. [PMID: 16472398 PMCID: PMC1413528 DOI: 10.1186/1471-2164-7-22] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 02/10/2006] [Indexed: 12/04/2022] Open
Abstract
Background The horizontal transfer of expressed genes from Bacteria into Ciliates which live in close contact with each other in the rumen (the foregut of ruminants) was studied using ciliate Expressed Sequence Tags (ESTs). More than 4000 ESTs were sequenced from representatives of the two major groups of rumen Cilates: the order Entodiniomorphida (Entodinium simplex, Entodinium caudatum, Eudiplodinium maggii, Metadinium medium, Diploplastron affine, Polyplastron multivesiculatum and Epidinium ecaudatum) and the order Vestibuliferida, previously called Holotricha (Isotricha prostoma, Isotricha intestinalis and Dasytricha ruminantium). Results A comparison of the sequences with the completely sequenced genomes of Eukaryotes and Prokaryotes, followed by large-scale construction and analysis of phylogenies, identified 148 ciliate genes that specifically cluster with genes from the Bacteria and Archaea. The phylogenetic clustering with bacterial genes, coupled with the absence of close relatives of these genes in the Ciliate Tetrahymena thermophila, indicates that they have been acquired via Horizontal Gene Transfer (HGT) after the colonization of the gut by the rumen Ciliates. Conclusion Among the HGT candidates, we found an over-representation (>75%) of genes involved in metabolism, specifically in the catabolism of complex carbohydrates, a rich food source in the rumen. We propose that the acquisition of these genes has greatly facilitated the Ciliates' colonization of the rumen providing evidence for the role of HGT in the adaptation to new niches.
Collapse
Affiliation(s)
- Guénola Ricard
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Neil R McEwan
- Institute of Rural Sciences, University of Wales, Aberystwyth, SY23 3AL, UK
| | - Bas E Dutilh
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Jean-Pierre Jouany
- I.N.R.A., Station de Recherches sur la Nutrition des Herbivores, Centre de Recherches de Clermont-Ferrand/Theix, France
| | - Didier Macheboeuf
- I.N.R.A., Station de Recherches sur la Nutrition des Herbivores, Centre de Recherches de Clermont-Ferrand/Theix, France
| | - Makoto Mitsumori
- National Institute of Livestock and Grassland Science, 2 Ikenodai, Kukizaki, Ibaraki, 305-0901, Japan
| | | | - Tadeusz Michalowski
- Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jablonna, Warsaw, Poland
| | - Takafumi Nagamine
- Rumen Microbiology Research Team, STAFF-Institute, 446-1 Ippaizuka, Kamiyokoba, Tsukuba 305-0854, Japan
| | - Nancy Nelson
- Rowett Research Institute, Aberdeen, AB21 9SB, UK
| | - Charles J Newbold
- Rumen Microbiology Research Team, STAFF-Institute, 446-1 Ippaizuka, Kamiyokoba, Tsukuba 305-0854, Japan
| | - Eli Nsabimana
- I.N.R.A., Station de Recherches sur la Nutrition des Herbivores, Centre de Recherches de Clermont-Ferrand/Theix, France
| | - Akio Takenaka
- National Institute of Livestock and Grassland Science, 2 Ikenodai, Kukizaki, Ibaraki, 305-0901, Japan
| | | | - Kazunari Ushida
- Laboratory of Animal Science, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan
| | - Johannes HP Hackstein
- Department of Evolutionary Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
42
|
Ragan MA, Harlow TJ, Beiko RG. Do different surrogate methods detect lateral genetic transfer events of different relative ages? Trends Microbiol 2005; 14:4-8. [PMID: 16356716 DOI: 10.1016/j.tim.2005.11.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/18/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
Non-tree-based ("surrogate") methods have been used to identify instances of lateral genetic transfer in microbial genomes but agreement among predictions of different methods can be poor. It has been proposed that this disagreement arises because different surrogate methods are biased towards the detection of certain types of transfer events. This conjecture is supported by a rigorous phylogenetic analysis of 3776 proteins in Escherichia coli K12 MG1655 to map the ages of transfer events relative to one another.
Collapse
Affiliation(s)
- Mark A Ragan
- ARC Centre in Bioinformatics and Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | |
Collapse
|
43
|
Sampathkumar P, Turley S, Ulmer JE, Rhie HG, Sibley CH, Hol WGJ. Structure of the Mycobacterium tuberculosis flavin dependent thymidylate synthase (MtbThyX) at 2.0A resolution. J Mol Biol 2005; 352:1091-104. [PMID: 16139296 DOI: 10.1016/j.jmb.2005.07.071] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 07/26/2005] [Accepted: 07/28/2005] [Indexed: 11/30/2022]
Abstract
A novel flavin-dependent thymidylate synthase was identified recently as an essential gene in many archaebacteria and some pathogenic eubacteria. This enzyme, ThyX, is a potential antibacterial drug target, since humans and most eukaryotes lack the thyX gene and depend upon the conventional thymidylate synthase (TS) for their dTMP requirements. We have cloned and overexpressed the thyX gene (Rv2754c) from Mycobacterium tuberculosis in Escherichia coli. The M.tuberculosis ThyX (MtbThyX) enzyme complements the E.coli chi2913 strain that lacks its conventional TS activity. The crystal structure of the homotetrameric MtbThyX was determined in the presence of the cofactor FAD and the substrate analog, 5-bromo-2'-deoxyuridine-5'-monophosphate (BrdUMP). In the active site, which is formed by three monomers, FAD is bound in an extended conformation with the adenosine ring in a deep pocket and BrdUMP in a closed conformation near the isoalloxazine ring. Structure-based mutational studies have revealed a critical role played by residues Lys165 and Arg168 in ThyX activity, possibly by governing access to the carbon atom to be methylated of a totally buried substrate dUMP.
Collapse
|
44
|
Omelchenko MV, Wolf YI, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Daly MJ, Koonin EV, Makarova KS. Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance. BMC Evol Biol 2005; 5:57. [PMID: 16242020 PMCID: PMC1274311 DOI: 10.1186/1471-2148-5-57] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 10/20/2005] [Indexed: 01/02/2023] Open
Abstract
Background Thermus thermophilus and Deinococcus radiodurans belong to a distinct bacterial clade but have remarkably different phenotypes. T. thermophilus is a thermophile, which is relatively sensitive to ionizing radiation and desiccation, whereas D. radiodurans is a mesophile, which is highly radiation- and desiccation-resistant. Here we present an in-depth comparison of the genomes of these two related but differently adapted bacteria. Results By reconstructing the evolution of Thermus and Deinococcus after the divergence from their common ancestor, we demonstrate a high level of post-divergence gene flux in both lineages. Various aspects of the adaptation to high temperature in Thermus can be attributed to horizontal gene transfer from archaea and thermophilic bacteria; many of the horizontally transferred genes are located on the single megaplasmid of Thermus. In addition, the Thermus lineage has lost a set of genes that are still present in Deinococcus and many other mesophilic bacteria but are not common among thermophiles. By contrast, Deinococcus seems to have acquired numerous genes related to stress response systems from various bacteria. A comparison of the distribution of orthologous genes among the four partitions of the Deinococcus genome and the two partitions of the Thermus genome reveals homology between the Thermus megaplasmid (pTT27) and Deinococcus megaplasmid (DR177). Conclusion After the radiation from their common ancestor, the Thermus and Deinococcus lineages have taken divergent paths toward their distinct lifestyles. In addition to extensive gene loss, Thermus seems to have acquired numerous genes from thermophiles, which likely was the decisive contribution to its thermophilic adaptation. By contrast, Deinococcus lost few genes but seems to have acquired many bacterial genes that apparently enhanced its ability to survive different kinds of environmental stresses. Notwithstanding the accumulation of horizontally transferred genes, we also show that the single megaplasmid of Thermus and the DR177 megaplasmid of Deinococcus are homologous and probably were inherited from the common ancestor of these bacteria.
Collapse
Affiliation(s)
- Marina V Omelchenko
- Department of Pathology, F.E. Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Elena K Gaidamakova
- Department of Pathology, F.E. Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA
| | - Vera Y Matrosova
- Department of Pathology, F.E. Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA
| | - Alexander Vasilenko
- Department of Pathology, F.E. Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA
| | - Min Zhai
- Department of Pathology, F.E. Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA
| | - Michael J Daly
- Department of Pathology, F.E. Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
45
|
Coenye T, Vandamme P. Displacement of ɛ-proteobacterial core genes by horizontally transferred homologous genes. Res Microbiol 2005; 156:738-47. [PMID: 15950129 DOI: 10.1016/j.resmic.2005.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 01/13/2005] [Accepted: 01/28/2005] [Indexed: 11/15/2022]
Abstract
The introduction of novel genes by horizontal gene transfer (HGT) is considered an alternative mechanism for genetic adaptation, leading to diversification and speciation. The goal of this study was to determine which genes that are present in all sequenced epsilon-proteobacterial genomes were acquired by HGT. In our approach we used BLAST analysis to reduce the number of genes that subsequently needed to be analysed using more in-depth phylogenetic methods, including neighbour-joining and maximum likelihood. Among the 991 core genes found in all five completed epsilon-proteobacterial genome sequences, we identified 30 genes that were probably acquired by HGT. It is proposed that these genes displaced an ancestral core gene with a similar function. Although it was not possible to identify putative donor taxa for all acquired genes, it was clear that genes were acquired from a wide range of Bacteria, including Spirochaetes, Firmicutes, Actinobacteria, mycoplasmas and several subdivisions of the Proteobacteria. We did not observe HGT from Archaea to the epsilon-Proteobacteria. The majority of acquired genes were operational genes involved in transport, metabolism, signal transduction and energy production and conversion.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratorium voor Microbiologie, Universiteit Ghent, Ghent, Belgium.
| | | |
Collapse
|
46
|
Nanavati DM, Nguyen TN, Noll KM. Substrate specificities and expression patterns reflect the evolutionary divergence of maltose ABC transporters in Thermotoga maritima. J Bacteriol 2005; 187:2002-9. [PMID: 15743948 PMCID: PMC1064059 DOI: 10.1128/jb.187.6.2002-2009.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Duplication of transporter genes is apparent in the genome sequence of the hyperthermophilic bacterium Thermotoga maritima. The physiological impacts of these duplications are not well understood, so we used the bacterium's two putative maltose transporters to begin a study of the evolutionary relationship between a transporter's function and the control of expression of its genes. We show that the substrate binding proteins encoded by these operons, MalE1 and MalE2, have different substrate specificities and affinities and that they are expressed under different growth conditions. MalE1 binds maltose (dissociation constant [KD], 24 +/- 1 microM), maltotriose (KD, 8 +/- 0.5 nM), and beta-(1-->4)-mannotetraose (KD, 38 +/- 1 microM). In contrast, MalE2 binds maltose (KD, 8.4 +/- 1 microM), maltotriose (KD, 11.5 +/- 1.5 microM), and trehalose (KD, 9.5 +/- 1.0 microM) confirming the findings of Wassenberg et al. (J. Mol. Biol. 295:279-288, 2000). Neither protein binds lactose. We examined the expression of these operons at both the transcriptional and translational levels and found that MalE1 is expressed in cells grown on lactose or guar gum and that MalE2 is highly expressed in starch- and trehalose-grown cells. Evidence is provided that malE1, malF1, and perhaps malG1 are cotranscribed and so constitute an operon. An open reading frame encoding a putative transcriptional regulatory protein adjacent to this operon (TM1200) is also up-regulated in response to growth on lactose. These evolutionarily related transporter operons have diverged both in function and expression to assume apparently different physiological roles.
Collapse
Affiliation(s)
- Dhaval M Nanavati
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | |
Collapse
|
47
|
Schieg P, Herzel H. Periodicities of 10–11bp as Indicators of the Supercoiled State of Genomic DNA. J Mol Biol 2004; 343:891-901. [PMID: 15476808 DOI: 10.1016/j.jmb.2004.08.068] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 03/30/2004] [Accepted: 08/10/2004] [Indexed: 11/21/2022]
Abstract
DNA sequences contain information about the bendability and native conformation of DNA. For example, a repetition of certain dinucleotides at distances of 10-11bp supports wrapping around nucleosomes and supercoiled structures of bacterial DNA. We analyzed 86 eubacterial genomes, 16 archaea, and six genomes of higher eukaryotes. First, we discuss whether or not the observed periodicities represent indeed bendability signals. This claim is confirmed since: (1) dinucleotide signals are of comparable size to mononucleotide signals, (2) the signals are present in non-coding DNA as well, and (3) repeat masking has only a minor effect on 10-11bp periodicities. Moreover, the periodicities persist up to 150bp, comparable to the nucleosome size. We show that doublet peaks in Caenorhabditis elegans and some prokaryotes can be traced back to long-ranging modulations. In mammalian genomes, we find consistently spectral peaks as observed earlier in human chromosomes 20, 21 and 22. It has been shown in previous studies that archaea have periods of 10bp, whereas eubacteria exhibit 11bp periodicities. These differences reflect different supercoiled states of microbial DNA. Is the period of 10bp an archaeal or a thermophilic feature? This question is addressed by relating periodicities to optimal growth temperatures. It turns out that the archaea Methanopyrus kandleri (t(opt)=80 degrees C) and a Halobacterium strain (t(opt)=42 degrees C) both have longer periods of about 11bp. Eubacterial genomes have consistently periods around 11bp indicative of negative supercoiling.
Collapse
Affiliation(s)
- Patrick Schieg
- Institute for Theoretical Biology, Humboldt University, Invalidenstr. 43, 10115 Berlin, Germany
| | | |
Collapse
|
48
|
Hosid S, Trifonov EN, Bolshoy A. Sequence periodicity of Escherichia coli is concentrated in intergenic regions. BMC Mol Biol 2004; 5:14. [PMID: 15333140 PMCID: PMC516772 DOI: 10.1186/1471-2199-5-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2003] [Accepted: 08/26/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sequence periodicity with a period close to the DNA helical repeat is a very basic genomic property. This genomic feature was demonstrated for many prokaryotic genomes. The Escherichia coli sequences display the period close to 11 base pairs. RESULTS Here we demonstrate that practically only ApA/TpT dinucleotides contribute to overall dinucleotide periodicity in Escherichia coli. The noncoding sequences reveal this periodicity much more prominently compared to protein-coding sequences. The sequence periodicity of ApC/GpT, ApT and GpC dinucleotides along the Escherichia coli K-12 is found to be located as well mainly within the intergenic regions. CONCLUSIONS The observed concentration of the dinucleotide sequence periodicity in the intergenic regions of E. coli suggests that the periodicity is a typical property of prokaryotic intergenic regions. We suppose that this preferential distribution of dinucleotide periodicity serves many biological functions; first of all, the regulation of transcription.
Collapse
Affiliation(s)
- Sergey Hosid
- Genome Diversity Center, Institute of Evolution, University of Haifa, Mt. Carmel 31905 ISRAEL
| | - Edward N Trifonov
- Genome Diversity Center, Institute of Evolution, University of Haifa, Mt. Carmel 31905 ISRAEL
| | - Alexander Bolshoy
- Genome Diversity Center, Institute of Evolution, University of Haifa, Mt. Carmel 31905 ISRAEL
| |
Collapse
|
49
|
Abstract
The scope and impact of horizontal gene transfer (HGT) in Bacteria and Archaea has grown from a topic largely ignored by the microbiological community to a hot-button issue gaining staunch supporters (on particular points of view) at a seemingly ever-increasing rate. Opinions range from HGT being a phenomenon with minor impact on overall microbial evolution and diversification to HGT being so rampant as to obfuscate any opportunities for elucidating microbial evolution - especially organismal phylogeny - from sequence comparisons. This contentious issue has been fuelled by the influx of complete genome sequences, which has allowed for a more detailed examination of this question than previously afforded. We propose that the lack of common ground upon which to formulate consensus viewpoints probably stems from the absence of answers to four critical questions. If addressed, they could clarify concepts, reject tenuous speculation and solidify a robust foundation for the integration of HGT into a framework for long-term microbial evolution, regardless of the intellectual camp in which you reside. Here, we examine these issues, why their answers shape the outcome of this debate and the progress being made to address them.
Collapse
Affiliation(s)
- Jeffrey G Lawrence
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, 352 Crawford Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
50
|
Park W, Jeon CO, Hohnstock-Ashe AM, Winans SC, Zylstra GJ, Madsen EL. Identification and characterization of the conjugal transfer region of the pCg1 plasmid from naphthalene-degrading Pseudomonas putida Cg1. Appl Environ Microbiol 2003; 69:3263-71. [PMID: 12788725 PMCID: PMC161498 DOI: 10.1128/aem.69.6.3263-3271.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hybridization and restriction fragment length polymorphism data (K. G. Stuart-Keil, A. M. Hohnstock, K. P. Drees, J. B. Herrick, and E. L. Madsen, Appl. Environ. Microbiol. 64:3633-3640, 1998) have shown that pCg1, a naphthalene catabolic plasmid carried by Pseudomonas putida Cg1, is homologous to the archetypal naphthalene catabolic plasmid, pDTG1, in P. putida NCIB 9816-4. Sequencing of the latter plasmid allowed PCR primers to be designed for amplifying and sequencing the conjugal transfer region in pCg1. The mating pair formation (mpf) gene, mpfA encoding the putative precursor of the conjugative pilin subunit from pCg1, was identified along with other trb-like mpf genes. Sequence comparison revealed that the 10 mpf genes in pCg1 and pDTG1 are closely related (61 to 84% identity) in sequence and operon structure to the putative mpf genes of catabolic plasmid pWW0 (TOL plasmid of P. putida) and pM3 (antibiotic resistance plasmid of Pseudomonas. spp). A polar mutation caused by insertional inactivation in mpfA of pCg1 and reverse transcriptase PCR analysis of mRNA showed that this mpf region was involved in conjugation and was transcribed from a promoter located upstream of an open reading frame adjacent to mpfA. lacZ transcriptional fusions revealed that mpf genes of pCg1 were expressed constitutively both in liquid and on solid media. This expression did not respond to host exposure to naphthalene. Conjugation frequency on semisolid media was consistently 10- to 100-fold higher than that in liquid media. Thus, conjugation of pCg1 in P. putida Cg1 was enhanced by expression of genes in the mpf region and by surfaces where conditions fostering stable, high-density cell-to-cell contact are manifest.
Collapse
Affiliation(s)
- Woojun Park
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | | | | | | | | | | |
Collapse
|