1
|
Yadav H, Sharma P. A simple and novel DNA combing methodology for Fiber-FISH and optical mapping. Genomics 2018; 111:567-578. [PMID: 29550497 DOI: 10.1016/j.ygeno.2018.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 02/02/2023]
Abstract
Single molecule analysis can help us study genomics efficiently. It involves studying single DNA molecules for genomic studies. DNA combing is one of such techniques which allowed us to study single DNA molecules for multiple uses. DNA combing technology can be used to perform Fiber-FISH and optical mapping. Physical mapping of genomes can be studied by restriction digestion of combed DNA on glass slides. Restriction fragments can be arranged into optical maps by gathering fluorescent intensity data by CCD camera and image analysis by softwares. Physical mapping and DNA segment rearrangements can be studied by Fiber-FISH which involves application of probes on genomic DNA combed over glass slides. We developed a novel methodology involving combing solution optimization, denatured combed DNA and performed restriction digestion of combed DNA. Thus we provided an efficient and robust combing platform for its application in Fiber-FISH and optical mapping.
Collapse
Affiliation(s)
- Hemendra Yadav
- Department of Botany, University of Rajasthan, Jaipur, India.
| | | |
Collapse
|
2
|
Yadav H, Sharma P. Enhanced post wash retention of combed DNA molecules by varying multiple combing parameters. Anal Biochem 2017; 536:45-50. [PMID: 28821423 DOI: 10.1016/j.ab.2017.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/07/2017] [Accepted: 08/14/2017] [Indexed: 01/01/2023]
Abstract
Recent advances in genomics have created a need for efficient techniques for deciphering information hidden in various genomes. Single molecule analysis is one such technique to understand molecular processes at single molecule level. Fiber- FISH performed with the help of DNA combing can help us in understanding genetic rearrangements and changes in genome at single DNA molecule level. For performing Fiber-FISH we need high retention of combed DNA molecules post wash as Fiber-FISH requires profuse washing. We optimized combing process involving combing solution, method of DNA mounting on glass slides and coating of glass slides to enhance post-wash retention of DNA molecules. It was found that average number of DNA molecules observed post-wash per field of view was maximum with our optimized combing solution. APTES coated glass slides showed lesser retention than PEI surface but fluorescent intensity was higher in case of APTES coated surface. Capillary method used to mount DNA on glass slides also showed lesser retention but straight DNA molecules were observed as compared to force flow method.
Collapse
Affiliation(s)
- Hemendra Yadav
- Department of Botany, University of Rajasthan, Jaipur, India.
| | - Pulkit Sharma
- Bioinventree Pvt Ltd., SB 17 Bhawani Singh Road, Bapunagar, Jaipur 302015 India
| |
Collapse
|
3
|
Xia J, Su M. Chip-scale alignment of long DNA nanofibers on a patterned self-assembled monolayer. LAB ON A CHIP 2017; 17:3234-3239. [PMID: 28820213 DOI: 10.1039/c7lc00676d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Controlled alignment of long DNA nanofibers is challenging. This communication reports a method to align human genomic DNA with nearly unlimited length using lithographically produced micro-patterns of self-assembled monolayers (SAMs) with positively charged terminal groups. The micro-patterns act as local DNA reservoirs to supply DNAs for nanofiber formation, and can also stretch and align DNA nanofibers to form an ordered array by controlling the dewetting profile. By reducing the size and inter-patch distance of a micro-patch, a nearly uniform array of long DNA nanofibers can be patterned over a large area. A controlled motion of a DNA containing droplet allows for free patterning of DNA nanofibers and production of complex structures without a transfer process. Bending of DNA nanofibers due to local distortion of the contact line bridges more adjacent micro-patches and increases the chance of producing continuous nanofibers. The interplay between surface tension and electrostatic attraction of positively charged micro-patterns allows the production of long DNA nanofibers in a simple yet powerful way.
Collapse
Affiliation(s)
- J Xia
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
4
|
Wan M, Sun D, Wang S, Wu J, Yang Y, Wang K, He Q, Wang G, Bai J. Influence of concentration on distribution properties of stretched-DNA in the MEC studied with fluorescence imaging and drop shape analyzing. Colloids Surf B Biointerfaces 2017; 151:11-18. [PMID: 27939693 DOI: 10.1016/j.colsurfb.2016.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/19/2016] [Accepted: 12/01/2016] [Indexed: 11/28/2022]
Abstract
Stretching and manipulating DNA efficiently is significant for exploring the properties and applications of single DNA molecules. Here, the influence of concentrations of buffer and DNA on properties of stretched DNA molecules in the molecular evaporation combing (MEC) is investigated systematically with the single molecule fluorescence imaging microscopy and the high-precision drop shape analyzing technology. The stretched degree and uniformity of combed DNA molecules decrease as the buffer concentration are increased from 7 to 20mM. When the buffer concentration changes from 12 to 15mM, the stretched DNA molecules are apt to form a ringlike pattern. During the MEC process, there exist two kinds of evaporation modes, i.e., the constant contact angle mode and the constant contact radius mode. The former only takes effect in the lower concentration of buffer and DNA, enabling the uniform stretching. While the latter plays the leading role in the higher concentration, promoting the formation of the ringlike pattern of DNA molecules.
Collapse
Affiliation(s)
- Mengjiao Wan
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nanofunctional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, Shaanxi, China; School of Physics, Northwest University, Xi'an 710069, Shaanxi, China
| | - Dan Sun
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nanofunctional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, Shaanxi, China
| | - Shuang Wang
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nanofunctional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, Shaanxi, China
| | - Jianguo Wu
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nanofunctional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yuanyuan Yang
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nanofunctional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, Shaanxi, China
| | - Kaige Wang
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nanofunctional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Qingli He
- School of Physics, Northwest University, Xi'an 710069, Shaanxi, China
| | - Guiren Wang
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nanofunctional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, Shaanxi, China; Mechanical Engineering Department & Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Jintao Bai
- State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nanofunctional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, Shaanxi, China; School of Physics, Northwest University, Xi'an 710069, Shaanxi, China
| |
Collapse
|
5
|
Giri D, Li Z, Ashraf KM, Collinson MM, Higgins DA. Molecular Combing of λ-DNA using Self-Propelled Water Droplets on Wettability Gradient Surfaces. ACS APPLIED MATERIALS & INTERFACES 2016; 8:24265-24272. [PMID: 27541167 DOI: 10.1021/acsami.6b08607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Surface wettability gradients were used to elongate and align double stranded λ-DNA. Gradients were prepared by vapor phase deposition of octyltrichlorosilane (C8-silane) and fluorinated octyltrichlorosilane (F-silane) precursors. Gradient formation was confirmed by water contact angle and ellipsometric film thickness measurements. Placement of a droplet of aqueous DNA solution on the hydrophobic end of each gradient led to spontaneous motion of the droplet toward the hydrophilic end and deposition of the DNA. Fluorescence imaging of surface-adsorbed YOYO-1 labeled DNA molecules revealed that they are elongated and aligned perpendicular to the droplet-surface contact line at all positions along the gradient, consistent with a dominant role played by surface tension forces in elongating the DNA. The density of adsorbed DNA was found to be greatest on the C8-silane gradient at its hydrophobic end. DNA density decreased toward the hydrophilic end, while the length of the elongated DNA was less dependent on position. The elongation of DNA molecules by spontaneous droplet motion on chemical gradient surfaces has possible applications in DNA barcoding and studies of DNA-protein interactions.
Collapse
Affiliation(s)
- Dipak Giri
- Department of Chemistry, Kansas State University , Manhattan, Kansas 66506-0401, United States
| | - Zi Li
- Department of Chemistry, Kansas State University , Manhattan, Kansas 66506-0401, United States
| | - Kayesh M Ashraf
- Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284-2006, United States
| | - Maryanne M Collinson
- Department of Chemistry, Virginia Commonwealth University , Richmond, Virginia 23284-2006, United States
| | - Daniel A Higgins
- Department of Chemistry, Kansas State University , Manhattan, Kansas 66506-0401, United States
| |
Collapse
|
6
|
Direct and precise length measurement of single, stretched DNA fragments by dynamic molecular combing and STED nanoscopy. Anal Bioanal Chem 2016; 408:6453-9. [DOI: 10.1007/s00216-016-9764-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/25/2016] [Accepted: 07/04/2016] [Indexed: 11/25/2022]
|
7
|
Molecular Combing of Single DNA Molecules on the 10 Megabase Scale. Sci Rep 2016; 6:19636. [PMID: 26781994 PMCID: PMC4726065 DOI: 10.1038/srep19636] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
DNA combing allows the investigation of DNA replication on genomic single DNA molecules, but the lengths that can be analysed have been restricted to molecules of 200-500 kb. We have improved the DNA combing procedure so that DNA molecules can be analysed up to the length of entire chromosomes in fission yeast and up to 12 Mb fragments in human cells. Combing multi-Mb-scale DNA molecules revealed previously undetected origin clusters in fission yeast and shows that in human cells replication origins fire stochastically forming clusters of fired origins with an average size of 370 kb. We estimate that a single human cell forms around 3200 clusters at mid S-phase and fires approximately 100,000 origins to complete genome duplication. The procedure presented here will be adaptable to other organisms and experimental conditions.
Collapse
|
8
|
Dorfman KD, King SB, Olson DW, Thomas JDP, Tree DR. Beyond gel electrophoresis: microfluidic separations, fluorescence burst analysis, and DNA stretching. Chem Rev 2013; 113:2584-667. [PMID: 23140825 PMCID: PMC3595390 DOI: 10.1021/cr3002142] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Scott B. King
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Daniel W. Olson
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Joel D. P. Thomas
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Douglas R. Tree
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| |
Collapse
|
9
|
Zarkov A, Vasilev A, Deligeorgiev T, Stoynov S, Nedelcheva-Veleva M. Novel Fluorescent Dyes for Single DNA Molecule Techniques. Mol Imaging 2013. [DOI: 10.2310/7290.2012.00018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Alexander Zarkov
- From the Institute of Molecular Biology “Roumen Tsanev,” Bulgarian Academy of Sciences, and Faculty of Chemistry, University of Sofia, Sofia, Bulgaria
| | - Aleksey Vasilev
- From the Institute of Molecular Biology “Roumen Tsanev,” Bulgarian Academy of Sciences, and Faculty of Chemistry, University of Sofia, Sofia, Bulgaria
| | - Todor Deligeorgiev
- From the Institute of Molecular Biology “Roumen Tsanev,” Bulgarian Academy of Sciences, and Faculty of Chemistry, University of Sofia, Sofia, Bulgaria
| | - Stoyno Stoynov
- From the Institute of Molecular Biology “Roumen Tsanev,” Bulgarian Academy of Sciences, and Faculty of Chemistry, University of Sofia, Sofia, Bulgaria
| | - Marina Nedelcheva-Veleva
- From the Institute of Molecular Biology “Roumen Tsanev,” Bulgarian Academy of Sciences, and Faculty of Chemistry, University of Sofia, Sofia, Bulgaria
| |
Collapse
|
10
|
Study of the interaction of DNA and histones by spin-stretching and droplet evaporation. CHINESE SCIENCE BULLETIN-CHINESE 2011. [DOI: 10.1007/s11434-011-4422-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Rodríguez-Pérez JC, Hamley IW, Squires AM. Infrared Linear Dichroism Spectroscopy on Amyloid Fibrils Aligned by Molecular Combing. Biomacromolecules 2011; 12:1810-21. [DOI: 10.1021/bm200167n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ian W. Hamley
- Department of Chemistry, University of Reading, Reading, RG6 6AD, United Kingdom
| | - Adam M. Squires
- Department of Chemistry, University of Reading, Reading, RG6 6AD, United Kingdom
| |
Collapse
|
12
|
Kim HJ, Roh Y, Hong B. Selective formation of a latticed nanostructure with the precise alignment of DNA-templated gold nanowires. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:18315-18319. [PMID: 20973556 DOI: 10.1021/la101086h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A very efficient method is introduced to selectively align and uniformly separate λ-DNA molecules and thus DNA-templated gold nanowires (AuNW's) using a combination of molecular combing and surface-patterning techniques. By the method presented in this work, it is possible to obtain parallel and latticed nanostructures consisting of DNA molecules and thus DNA-templated AuNW's aligned at 400 nm intervals. DNA-templated AuNW's are uniformly formed with an average height of 2.5 nm. This method is expected to hold potential for the integration of nanosized building blocks applicable to nanodevice construction.
Collapse
Affiliation(s)
- Hyung Jin Kim
- School of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | |
Collapse
|
13
|
Mello MLS, Moraes AS, Vidal BC. Extended chromatin fibers and chromatin organization. Biotech Histochem 2010; 86:213-25. [DOI: 10.3109/10520290903549022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Affiliation(s)
- Hidenobu NAKAO
- Nanoarchitecture Group, Organic Nanomaterials Center, National Institute for Materials Science
| |
Collapse
|
15
|
Sheridan SD, Yu X, Roth R, Heuser JE, Sehorn MG, Sung P, Egelman EH, Bishop DK. A comparative analysis of Dmc1 and Rad51 nucleoprotein filaments. Nucleic Acids Res 2008; 36:4057-66. [PMID: 18535008 PMCID: PMC2475612 DOI: 10.1093/nar/gkn352] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The eukaryotic RecA homologs Rad51 and Dmc1 are essential for strand exchange between homologous chromosomes during meiosis. All members of the RecA family of recombinases polymerize on DNA to form helical nucleoprotein filaments, which is the active form of the protein. Here we compare the filament structures of the Rad51 and Dmc1 proteins from both human and budding yeast. Previous studies of Dmc1 filaments suggested that they might be structurally distinct from filaments of other members of the RecA family, including Rad51. The data presented here indicate that Rad51 and Dmc1 filaments are essentially identical with respect to several structural parameters, including persistence length, helical pitch, filament diameter, DNA base pairs per helical turn and helical handedness. These data, together with previous studies demonstrating similar in vitro recombinase activity for Dmc1 and Rad51, support the view that differences in the meiotic function of Rad51 and Dmc1 are more likely to result from the influence of distinct sets of accessory proteins than from intrinsic differences in filament structure.
Collapse
Affiliation(s)
- Sean D Sheridan
- Committee on Genetics, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu YY, Wang PY, Dou SX, Wang WC, Xie P, Yin HW, Zhang XD, Xi XG. Ionic effect on combing of single DNA molecules and observation of their force-induced melting by fluorescence microscopy. J Chem Phys 2006; 121:4302-9. [PMID: 15332979 DOI: 10.1063/1.1777220] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular combing is a powerful and simple method for aligning DNA molecules onto a surface. Using this technique combined with fluorescence microscopy, we observed that the length of lambda-DNA molecules was extended to about 1.6 times their contour length (unextended length, 16.2 microm) by the combing method on hydrophobic polymethylmetacrylate coated surfaces. The effects of sodium and magnesium ions and pH of the DNA solution were investigated. Interestingly, we observed force-induced melting of single DNA molecules.
Collapse
Affiliation(s)
- Yu-Ying Liu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100080, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dinu CZ, Opitz J, Pompe W, Howard J, Mertig M, Diez S. Parallel manipulation of bifunctional DNA molecules on structured surfaces using kinesin-driven microtubules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2006; 2:1090-8. [PMID: 17193173 DOI: 10.1002/smll.200600112] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We have developed a technique to manipulate bifunctional DNA molecules: One end is thiolated to bind to a patterned gold surface and the other end is biotinylated to bind to a microtubule gliding over a kinesin-coated surface. We found that DNA molecules can be stretched and overstretched between the gold pads and the motile microtubules, and that they can form dynamic networks. This serves as a proof-of-principle that biological machineries can be used in vitro to accomplish the parallel formation of structured DNA templates that will have applications in biophysics and nanoelectronics.
Collapse
Affiliation(s)
- Cerasela Zoica Dinu
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Shin M, Kwon C, Kim SK, Kim HJ, Roh Y, Hong B, Park JB, Lee H. Formation of lambda-DNA's in parallel- and crossed-line arrays by molecular combing and scanning-probe lithography. NANO LETTERS 2006; 6:1334-8. [PMID: 16834406 DOI: 10.1021/nl060160u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
With the combination of a molecular combing technique and scanning-probe lithographic patterning, lambda-DNA's were stretched and aligned to form line array structures on patterned organic monolayer surfaces. The pattern was generated by anodizing a silicon surface using scanning-probe lithography to implant a polar organic layer in the middle of a nonpolar layer. The molecule in the polar layer, (aminopropyl)triethoxysilane (APS), has a -NH(3)(+) terminal group, which interacts strongly with phosphate backbone of DNA and provides a site for selective attachment of DNA. When parallel lines of APS were patterned, followed by combing along the lines, a single DNA was attached from the very top of each line and stretched along the line all the way to the bottom. The DNA-APS interaction was strong enough to withstand the second combing applied perpendicular to the first one. Thereby, the crossed-line array of DNA's was formed on the crossed-line array pattern of APS on a silicon substrate.
Collapse
Affiliation(s)
- Minjung Shin
- Department of Chemistry, Sungkyunkwan University, Suwon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hegner M, Grange W. Mechanics and imaging of single DNA molecules. J Muscle Res Cell Motil 2003; 23:367-75. [PMID: 12785091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
We review recent experiments that have revealed mechanical properties of single DNA molecules using advanced manipulation and force sensing techniques(scanning force microscopy (SFM), optical or magnetic tweezers, microneedles). From such measurements, intrinsic relevant parameters (persistence length, stretch modulus) as well as their dependence on external parameters (non-physiological conditions, coating with binding agents or proteins) are obtained on a single-molecule level. In addition, imaging of DNA molecules using SFM is presented.
Collapse
Affiliation(s)
- M Hegner
- Institute of Physics, NCCR Nanoscale Science, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | | |
Collapse
|