1
|
Basharat Z, Foster LJ, Abbas S, Yasmin A. Comparative Proteomics of Bacteria Under Stress Conditions. Methods Mol Biol 2025; 2859:129-162. [PMID: 39436600 DOI: 10.1007/978-1-0716-4152-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Bacteria are unicellular organisms with the ability to exist in the harshest of climate and cope with sub-optimal fluctuating environmental conditions. They accomplish this by modification of their internal cellular environment. When external conditions are varied, change in the cell is triggered at the transcriptional level, which usually leads to proteolysis and rewiring of the proteome. Changes in cellular homeostasis, modifications in proteome, and dynamics of such survival mechanisms can be studied using various scientific techniques. Our focus in this chapter would be on comparative proteomics of bacteria under stress conditions using approaches like 2D electrophoresis accompanied by N-terminal sequencing and recently, mass spectrometry. More than 170 such studies on bacteria have been accomplished till to date and involve analysis of whole cells as well as that of cellular fractions, i.e., outer membrane, inner membrane, cell envelope, cytoplasm, thylakoid, lipid bodies, etc. Similar studies conducted on gram-negative and gram-positive model organism, i.e., Escherichia coli and Bacillus subtilis, respectively, have been summarized. Vital information, hypothesis about conservation of stress-specific proteome, and conclusions are also presented in the light of research conducted over the last decades.
Collapse
Affiliation(s)
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Labs, University of British Columbia, Vancouver, BC, Canada
| | - Sidra Abbas
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Azra Yasmin
- Microbiology & Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan.
| |
Collapse
|
2
|
Gasser C, Faurie JM, Rul F. Regulation of lactose, glucose and sucrose metabolisms in S. thermophilus. Food Microbiol 2024; 121:104487. [PMID: 38637064 DOI: 10.1016/j.fm.2024.104487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 04/20/2024]
Abstract
Streptococcus thermophilus is a bacterium widely used in the production of yogurts and cheeses, where it efficiently ferments lactose, the saccharide naturally present in milk. It is also employed as a starter in dairy- or plant-based fermented foods that contain saccharides other than lactose (e.g., sucrose, glucose). However, little is known about how saccharide use is regulated, in particular when saccharides are mixed. Here, we determine the effect of the 5 sugars that S. thermophilus is able to use, at different concentration and when they are mixed on the promoter activities of the C-metabolism genes. Using a transcriptional fusion approach, we discovered that lactose and glucose modulated the activity of the lacS and scrA promoters in a concentration-dependent manner. When mixed with lactose, glucose also repressed the two promoter activities; when mixed with sucrose, lactose still repressed scrA promoter activity. We determined that catabolite control protein A (CcpA) played a key role in these dynamics. We also showed that promoter activity was linked with glycolytic flux, which varied depending on saccharide type and concentration. Overall, this study identified key mechanisms in carbohydrate metabolism - autoregulation and partial hierarchical control - and demonstrated that they are partly mediated by CcpA.
Collapse
Affiliation(s)
- C Gasser
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France; Danone Nutricia Research, Avenue de la Vauve, 91120, Palaiseau, France; Yeasty, 4 rue Pierre Fontaine Génopole, 91000, Évry Courcouronnes, France
| | - J M Faurie
- Danone Nutricia Research, Avenue de la Vauve, 91120, Palaiseau, France; Procelys by Lesaffre, 103 Rue Jean Jaurès, 94704, Maisons-Alfort Cedex, France
| | - F Rul
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
| |
Collapse
|
3
|
Hirooka K. RhgKL and CcpA directly regulate the rhiLFGN-rhgR-yesTUV operon involved in the metabolism of rhamnogalacturonan type I in Bacillus subtilis. Biosci Biotechnol Biochem 2022; 86:1383-1397. [PMID: 35881471 DOI: 10.1093/bbb/zbac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/21/2022] [Indexed: 11/14/2022]
Abstract
The Bacillus subtilis rhiLFGN-rhgR-yesTUVWXYZ (formerly yesOPQRSTUVWXYZ) gene cluster includes genes for metabolizing rhamnogalacturonan type I (RG-I), a major pectin constituent, and the rhgR gene encoding an AraC/XylS transcriptional activator. The yesL-rhgKL (formerly yesLMN) operon, adjacent to the rhiL gene, includes the rhgKL genes encoding a two-component regulatory system. The reporter analyses showed that three promoters immediately upstream of the rhiL, yesW, and yesL genes were induced by RG-I and repressed by glucose in the medium. The reporter analyses also showed that RhgL and RhgR contribute to the RG-I-dependent induction of the rhiL promoter and that CcpA mediates the catabolite repression of the rhiL and yesL promoters. The in vitro experiments demonstrated that the RhgL response regulator and the CcpA complex bind to each site in the rhiL promoter region. The RT-PCR analysis and the different properties of the rhiL and yesW promoters suggested the rhiLFGN-rhgR-yesTUV genes as an operon.
Collapse
Affiliation(s)
- Kazutake Hirooka
- Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama, Hiroshima, Japan
| |
Collapse
|
4
|
Xiao F, Li Y, Zhang Y, Wang H, Zhang L, Ding Z, Gu Z, Xu S, Shi G. A new CcpA binding site plays a bidirectional role in carbon catabolism in Bacillus licheniformis. iScience 2021; 24:102400. [PMID: 33997685 PMCID: PMC8091064 DOI: 10.1016/j.isci.2021.102400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/06/2021] [Accepted: 04/05/2021] [Indexed: 11/17/2022] Open
Abstract
Bacillus licheniformis is widely used to produce various valuable products, such as food enzymes, industrial chemicals, and biocides. The carbon catabolite regulation process in the utilization of raw materials is crucial to maximizing the efficiency of this microbial cell factory. The current understanding of the molecular mechanism of this regulation is based on limited motif patterns in protein-DNA recognition, where the typical catabolite-responsive element (CRE) motif is "TGWNANCGNTNWCA". Here, CRETre is identified and characterized as a new CRE. It consists of two palindrome arms of 6 nucleotides (AGCTTT/AAAGCT) and an intermediate spacer. CRETre is involved in bidirectional regulation in a glucose stress environment. When AGCTTT appears in the 5' end, the regulatory element exhibits a carbon catabolite activation effect, while AAAGCT in the 5' end corresponds to carbon catabolite repression. Further investigation indicated a wide occurrence of CRETre in the genome of B. licheniformis.
Collapse
Affiliation(s)
- Fengxu Xiao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yupeng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Hanrong Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Zhenghua Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Functional and structural characterization of Deinococcus radiodurans R1 MazEF toxin-antitoxin system, Dr0416-Dr0417. J Microbiol 2021; 59:186-201. [DOI: 10.1007/s12275-021-0523-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
|
6
|
Yoshida KI, Shirae Y, Nishimura R, Fukui K, Ishikawa S. Identification of a repressor for the two iol operons required for inositol catabolism in Geobacillus kaustophilus. MICROBIOLOGY-SGM 2020; 167. [PMID: 33320079 DOI: 10.1099/mic.0.001008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Geobacillus kaustophilus HTA426, a thermophilic Gram-positive bacterium, feeds on inositol as its sole carbon source, and an iol gene cluster required for inositol catabolism has been postulated with reference to the iol genes in Bacillus subtilis. The iol gene cluster of G. kaustophilus comprises two tandem operons induced in the presence of inositol; however, the mechanism underlying this induction remains unclear. B. subtilis iolQ is known to be involved in the regulation of iolX encoding scyllo-inositol dehydrogenase, and its homologue in HTA426 was found two genes upstream of the first gene (gk1899) of the iol gene cluster and was termed iolQ in G. kaustophilus. When iolQ was inactivated in G. kaustophilus, not only cellular myo-inositol dehydrogenase activity due to gk1899 expression but also the transcription of the two iol operons became constitutive. IolQ was produced and purified as a C-terminal histidine (His)-tagged fusion protein in Escherichia coli and subjected to an in vitro gel electrophoresis mobility shift assay to examine its DNA-binding property. It was observed that IolQ bound to the DNA fragments containing each of the two iol promoter regions and that DNA binding was antagonized by myo-inositol. Moreover, DNase I footprinting analyses identified two tandem binding sites of IolQ within each of the iol promoter regions. By comparing the sequences of the binding sites, a consensus sequence for IolQ binding was deduced to form a palindrome of 5'-RGWAAGCGCTTSCY-3' (where R=A or G, W=A or T, S=G or C, and Y=C or T). IolQ functions as a transcriptional repressor regulating the induction of the two iol operons responding to myo-inositol.
Collapse
Affiliation(s)
- Ken-Ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | - Yusuke Shirae
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | - Ryo Nishimura
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | - Kaho Fukui
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| | - Shu Ishikawa
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657 8501, Japan
| |
Collapse
|
7
|
Zhang K, Mohsin A, Yu J, Hu Y, Ali MF, Chen Z, Zhuang Y, Chu J, Guo M. Two-Component-System RspA1/A2-Dependent Regulation on Primary Metabolism in Streptomyces albus A30 Cultivated With Glutamate as the Sole Nitrogen Source. Front Microbiol 2020; 11:1658. [PMID: 32849342 PMCID: PMC7411085 DOI: 10.3389/fmicb.2020.01658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/25/2020] [Indexed: 11/13/2022] Open
Abstract
In our previous study, a two-component-system (TCS) RspA1/A2 was identified and proven to play a positive role in the regulation of salinomycin (antibiotic) biosynthesis in Streptomyces albus. However, the regulatory mechanism of RspA1/A2 using a carbon source (glucose or acetate) for the cell growth of S. albus is still unclear till present research work. Therefore, in this work, the mechanistic pathway of RspA1/A2 on carbon source metabolism is unveiled. Firstly, this work reports that the response regulator RspA1 gene rspA1 knocked-out mutant ΔrspA1 exhibits lower biomass accumulation and lower glucose consumption rates as compared to the parental strain A30 when cultivated in a defined minimal medium (MM) complemented with 75 mM glutamate. Further, it is demonstrated that the regulation of TCS RspA1/A2 on the phosphoenolpyruvate-pyruvate-oxaloacetate node results in decreasing the intracellular acetyl-CoA pool in mutant ΔrspA1. Subsequently, it was verified that the RspA1 could not only directly interact with the promoter regions of key genes encoding AMP-forming acetyl-CoA synthase (ACS), citrate synthase (CS), and pyruvate dehydrogenase complex (PDH) but also bind promoter regions of the genes pyc, pck, and glpX in gluconeogenesis. In addition, the transcriptomic data analysis showed that pyruvate and glutamate transformations supported robust TCS RspA1/A2-dependent regulation of glucose metabolism, which led to a decreased flux of pyruvate into the TCA cycle and an increased flux of gluconeogenesis pathway in mutant ΔrspA1. Finally, a new transcriptional regulatory network of TCS RspA1/A2 on primary metabolism across central carbon metabolic pathways including the glycolysis pathway, TCA cycle, and gluconeogenesis pathway is proposed.
Collapse
Affiliation(s)
- Kuipu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Junxiong Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuwen Hu
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Muhammad Fahad Ali
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | | | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Park H, McGill SL, Arnold AD, Carlson RP. Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor. Cell Mol Life Sci 2020; 77:395-413. [PMID: 31768608 PMCID: PMC7015805 DOI: 10.1007/s00018-019-03377-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
Microorganisms acquire energy and nutrients from dynamic environments, where substrates vary in both type and abundance. The regulatory system responsible for prioritizing preferred substrates is known as carbon catabolite repression (CCR). Two broad classes of CCR have been documented in the literature. The best described CCR strategy, referred to here as classic CCR (cCCR), has been experimentally and theoretically studied using model organisms such as Escherichia coli. cCCR phenotypes are often used to generalize universal strategies for fitness, sometimes incorrectly. For instance, extremely competitive microorganisms, such as Pseudomonads, which arguably have broader global distributions than E. coli, have achieved their success using metabolic strategies that are nearly opposite of cCCR. These organisms utilize a CCR strategy termed 'reverse CCR' (rCCR), because the order of preferred substrates is nearly reverse that of cCCR. rCCR phenotypes prefer organic acids over glucose, may or may not select preferred substrates to optimize growth rates, and do not allocate intracellular resources in a manner that produces an overflow metabolism. cCCR and rCCR have traditionally been interpreted from the perspective of monocultures, even though most microorganisms live in consortia. Here, we review the basic tenets of the two CCR strategies and consider these phenotypes from the perspective of resource acquisition in consortia, a scenario that surely influenced the evolution of cCCR and rCCR. For instance, cCCR and rCCR metabolism are near mirror images of each other; when considered from a consortium basis, the complementary properties of the two strategies can mitigate direct competition for energy and nutrients and instead establish cooperative division of labor.
Collapse
Affiliation(s)
- Heejoon Park
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - S Lee McGill
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - Adrienne D Arnold
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, USA
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, USA.
- Department of Microbiology and Immunology, Montana State University, Bozeman, USA.
- Center for Biofilm Engineering, Montana State University, Bozeman, USA.
| |
Collapse
|
9
|
Packard H, Taylor ZW, Williams SL, Guimarães PI, Toth J, Jensen RV, Senger RS, Kuhn DD, Stevens AM. Identification of soil bacteria capable of utilizing a corn ethanol fermentation byproduct. PLoS One 2019; 14:e0212685. [PMID: 30849084 PMCID: PMC6407766 DOI: 10.1371/journal.pone.0212685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/07/2019] [Indexed: 11/19/2022] Open
Abstract
A commercial corn ethanol production byproduct (syrup) was used as a bacterial growth medium with the long-term aim to repurpose the resulting microbial biomass as a protein supplement in aquaculture feeds. Anaerobic batch reactors were used to enrich for soil bacteria metabolizing the syrup as the sole nutrient source over an eight-day period with the goal of obtaining pure cultures of facultative organisms from the reactors. Amplification of the V4 variable region of the 16S rRNA gene was performed using barcoded primers to track the succession of microbes enriched for during growth on the syrup. The resulting PCR products were sequenced using Illumina MiSeq protocols, analyzed via the program QIIME, and the alpha-diversity was calculated. Seven bacterial families were the most prevalent in the bioreactor community after eight days of enrichment: Clostridiaceae, Alicyclobacillaceae, Ruminococcaceae, Burkholderiaceae, Bacillaceae, Veillonellaceae, and Enterobacteriaceae. Pure culture isolates obtained from the reactors, and additional laboratory stock strains, capable of facultative growth, were grown aerobically in microtiter plates with the syrup substrate to monitor growth yield. Reactor isolates of interest were identified at a species level using the full 16S rRNA gene and other biomarkers. Bacillus species, commonly used as probiotics in aquaculture, showed the highest biomass yield of the monocultures examined. Binary combinations of monocultures yielded no apparent synergism between organisms, suggesting competition for nutrients instead of cooperative metabolite conversion.
Collapse
Affiliation(s)
- Holly Packard
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Zachary W. Taylor
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Stephanie L. Williams
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Pedro Ivo Guimarães
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - Jackson Toth
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - Roderick V. Jensen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Ryan S. Senger
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States of America
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - David D. Kuhn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, United States of America
| | - Ann M. Stevens
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Akanuma G, Tagana T, Sawada M, Suzuki S, Shimada T, Tanaka K, Kawamura F, Kato-Yamada Y. C-terminal regulatory domain of the ε subunit of F o F 1 ATP synthase enhances the ATP-dependent H + pumping that is involved in the maintenance of cellular membrane potential in Bacillus subtilis. Microbiologyopen 2019; 8:e00815. [PMID: 30809948 PMCID: PMC6692558 DOI: 10.1002/mbo3.815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 01/23/2023] Open
Abstract
The ε subunit of FoF1‐ATPase/synthase (FoF1) plays a crucial role in regulating FoF1 activity. To understand the physiological significance of the ε subunit‐mediated regulation of FoF1 in Bacillus subtilis, we constructed and characterized a mutant harboring a deletion in the C‐terminal regulatory domain of the ε subunit (ε∆C). Analyses using inverted membrane vesicles revealed that the ε∆C mutation decreased ATPase activity and the ATP‐dependent H+‐pumping activity of FoF1. To enhance the effects of ε∆C mutation, this mutation was introduced into a ∆rrn8 strain harboring only two of the 10 rrn (rRNA) operons (∆rrn8 ε∆C mutant strain). Interestingly, growth of the ∆rrn8 ε∆C mutant stalled at late‐exponential phase. During the stalled growth phase, the membrane potential of the ∆rrn8 ε∆C mutant cells was significantly reduced, which led to a decrease in the cellular level of 70S ribosomes. The growth stalling was suppressed by adding glucose into the culture medium. Our findings suggest that the C‐terminal region of the ε subunit is important for alleviating the temporal reduction in the membrane potential, by enhancing the ATP‐dependent H+‐pumping activity of FoF1.
Collapse
Affiliation(s)
- Genki Akanuma
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan.,Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Tomoaki Tagana
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Maho Sawada
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Shota Suzuki
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Tomohiro Shimada
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, Yokohama, Midori-ku, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, Yokohama, Midori-ku, Japan
| | - Fujio Kawamura
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Yasuyuki Kato-Yamada
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan.,Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| |
Collapse
|
11
|
Fan B, Wang C, Song X, Ding X, Wu L, Wu H, Gao X, Borriss R. Bacillus velezensis FZB42 in 2018: The Gram-Positive Model Strain for Plant Growth Promotion and Biocontrol. Front Microbiol 2018; 9:2491. [PMID: 30386322 PMCID: PMC6198173 DOI: 10.3389/fmicb.2018.02491] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022] Open
Abstract
Bacillus velezensis FZB42, the model strain for Gram-positive plant-growth-promoting and biocontrol rhizobacteria, has been isolated in 1998 and sequenced in 2007. In order to celebrate these anniversaries, we summarize here the recent knowledge about FZB42. In last 20 years, more than 140 articles devoted to FZB42 have been published. At first, research was mainly focused on antimicrobial compounds, apparently responsible for biocontrol effects against plant pathogens, recent research is increasingly directed to expression of genes involved in bacteria–plant interaction, regulatory small RNAs (sRNAs), and on modification of enzymes involved in synthesis of antimicrobial compounds by processes such as acetylation and malonylation. Till now, 13 gene clusters involved in non-ribosomal and ribosomal synthesis of secondary metabolites with putative antimicrobial action have been identified within the genome of FZB42. These gene clusters cover around 10% of the whole genome. Antimicrobial compounds suppress not only growth of plant pathogenic bacteria and fungi, but could also stimulate induced systemic resistance (ISR) in plants. It has been found that besides secondary metabolites also volatile organic compounds are involved in the biocontrol effect exerted by FZB42 under biotic (plant pathogens) and abiotic stress conditions. In order to facilitate easy access to the genomic data, we have established an integrating data bank ‘AmyloWiki’ containing accumulated information about the genes present in FZB42, available mutant strains, and other aspects of FZB42 research, which is structured similar as the famous SubtiWiki data bank.
Collapse
Affiliation(s)
- Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Cong Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiaolei Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Liming Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Rainer Borriss
- Institut für Biologie, Humboldt Universität Berlin, Berlin, Germany.,Nord Reet UG, Greifswald, Germany
| |
Collapse
|
12
|
Buffing MF, Link H, Christodoulou D, Sauer U. Capacity for instantaneous catabolism of preferred and non-preferred carbon sources in Escherichia coli and Bacillus subtilis. Sci Rep 2018; 8:11760. [PMID: 30082753 PMCID: PMC6079084 DOI: 10.1038/s41598-018-30266-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/26/2018] [Indexed: 02/08/2023] Open
Abstract
Making the right choice for nutrient consumption in an ever-changing environment is a key factor for evolutionary success of bacteria. Here we investigate the regulatory mechanisms that enable dynamic adaptation between non-preferred and preferred carbon sources for the model Gram-negative and -positive species Escherichia coli and Bacillus subtilis, respectively. We focus on the ability for instantaneous catabolism of a gluconeogenic carbon source upon growth on a glycolytic carbon source and vice versa. By following isotopic tracer dynamics on a 1–2 minute scale, we show that flux reversal from the preferred glucose to non-preferred pyruvate as the sole carbon source is primarily transcriptionally regulated. In the opposite direction, however, E. coli can reverse its flux instantaneously by means of allosteric regulation, whereas in B. subtilis this flux reversal is transcriptionally regulated. Upon removal of transcriptional regulation, B. subtilis assumes the ability of instantaneous glucose catabolism. Using an approach that combines quantitative metabolomics and kinetic modelling, we then identify the additionally necessary key metabolite-enzyme interactions that implement the instantaneous flux reversal in the transcriptionally deregulated B. subtilis, and validate the most relevant allosteric interactions.
Collapse
Affiliation(s)
- Marieke F Buffing
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Dimitris Christodoulou
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Bauer R, Mauerer S, Spellerberg B. Regulation of the β-hemolysin gene cluster of Streptococcus anginosus by CcpA. Sci Rep 2018; 8:9028. [PMID: 29899560 PMCID: PMC5998137 DOI: 10.1038/s41598-018-27334-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/30/2018] [Indexed: 11/09/2022] Open
Abstract
Streptococcus anginosus is increasingly recognized as an opportunistic pathogen. However, our knowledge about virulence determinants in this species is scarce. One exception is the streptolysin-S (SLS) homologue responsible for the β-hemolytic phenotype of the S. anginosus type strain. In S. anginosus the expression of the hemolysin is reduced in the presence of high glucose concentrations. To investigate the genetic mechanism of the hemolysin repression we created an isogenic ccpA deletion strain. In contrast to the wild type strain, this mutant exhibits hemolytic activity in presence of up to 25 mM glucose supplementation, a phenotype that could be reverted by ccpA complementation. To further demonstrate that CcpA directly regulates the hemolysin expression, we performed an in silico analysis of the promoter of the SLS gene cluster and we verified the binding of CcpA to the promoter by electrophoretic mobility shift assays. This allowed us to define the CcpA binding site in the SLS promoter region of S. anginosus. In conclusion, we report for the first time the characterization of a potential virulence regulator in S. anginosus.
Collapse
Affiliation(s)
- Richard Bauer
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| | - Stefanie Mauerer
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany.
| |
Collapse
|
14
|
Cárdenas A, Neave MJ, Haroon MF, Pogoreutz C, Rädecker N, Wild C, Gärdes A, Voolstra CR. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton. ISME JOURNAL 2017; 12:59-76. [PMID: 28895945 PMCID: PMC5739002 DOI: 10.1038/ismej.2017.142] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 07/23/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
Coastal pollution and algal cover are increasing on many coral reefs, resulting in higher dissolved organic carbon (DOC) concentrations. High DOC concentrations strongly affect microbial activity in reef waters and select for copiotrophic, often potentially virulent microbial populations. High DOC concentrations on coral reefs are also hypothesized to be a determinant for switching microbial lifestyles from commensal to pathogenic, thereby contributing to coral reef degradation, but evidence is missing. In this study, we conducted ex situ incubations to assess gene expression of planktonic microbial populations under elevated concentrations of naturally abundant monosaccharides (glucose, galactose, mannose, and xylose) in algal exudates and sewage inflows. We assembled 27 near-complete (>70%) microbial genomes through metagenomic sequencing and determined associated expression patterns through metatranscriptomic sequencing. Differential gene expression analysis revealed a shift in the central carbohydrate metabolism and the induction of metalloproteases, siderophores, and toxins in Alteromonas, Erythrobacter, Oceanicola, and Alcanivorax populations. Sugar-specific induction of virulence factors suggests a mechanistic link for the switch from a commensal to a pathogenic lifestyle, particularly relevant during increased algal cover and human-derived pollution on coral reefs. Although an explicit test remains to be performed, our data support the hypothesis that increased availability of specific sugars changes net microbial community activity in ways that increase the emergence and abundance of opportunistic pathogens, potentially contributing to coral reef degradation.
Collapse
Affiliation(s)
- Anny Cárdenas
- Leibniz Center for Tropical Marine Ecology (ZMT), Bremen, Germany.,Max Plank Institute for Marine Microbiology, Bremen, Germany.,Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Matthew J Neave
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mohamed Fauzi Haroon
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Claudia Pogoreutz
- Leibniz Center for Tropical Marine Ecology (ZMT), Bremen, Germany.,Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Marine Ecology Group, Faculty of Biology and Chemistry, University of Bremen, Germany
| | - Nils Rädecker
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Marine Ecology Group, Faculty of Biology and Chemistry, University of Bremen, Germany
| | - Christian Wild
- Marine Ecology Group, Faculty of Biology and Chemistry, University of Bremen, Germany
| | - Astrid Gärdes
- Leibniz Center for Tropical Marine Ecology (ZMT), Bremen, Germany
| | - Christian R Voolstra
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
15
|
Singh A, Singh R, Gupta N. Role of Supercomputers in Bioinformatics. Oncology 2017. [DOI: 10.4018/978-1-5225-0549-5.ch021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Due to the involvement of effective and client-friendly components (i.e. supercomputers), rapid data analysis is being accomplished. In Bioinformatics, it is expanding many areas of research such as genomics, proteomics, metabolomics, etc. Structure-based drug design is one of the major areas of research to cure human malady. This chapter initiates a discussion on supercomputing in sequence analysis with a detailed table summarizing the software and Web-based programs used for sequence analysis. A brief talk on the supercomputing in virtual screening is given where the databases like DOCK, ZINC, EDULISS, etc. are introduced. As the chapter transitions to the next phase, the intricacies of advanced Quantitative Structure-Activity Relationship technologies like Fragment-Based 2D QSAR, Multiple-Field 3D QSAR, and Amino Acid-Based Peptide Prediction are put forth in a manner similar to the concept of abstraction. The supercomputing in docking studies is stressed where docking software for Protein-Ligand docking, Protein-Protein docking, and Multi-Protein docking are provided. The chapter ends with the applications of supercomputing in widely used microarray data analysis.
Collapse
Affiliation(s)
- Anamika Singh
- Maitreyi College, India & University of Delhi, India
| | - Rajeev Singh
- Division of RCH, Indian Council of Medical Research, India
| | - Neha Gupta
- Northeastern University, USA & Osmania University, India
| |
Collapse
|
16
|
Irla M, Heggeset TMB, Nærdal I, Paul L, Haugen T, Le SB, Brautaset T, Wendisch VF. Genome-Based Genetic Tool Development for Bacillus methanolicus: Theta- and Rolling Circle-Replicating Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadaverine Production. Front Microbiol 2016; 7:1481. [PMID: 27713731 PMCID: PMC5031790 DOI: 10.3389/fmicb.2016.01481] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/06/2016] [Indexed: 11/30/2022] Open
Abstract
Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 6.5 to 10.2 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium.
Collapse
Affiliation(s)
- Marta Irla
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University Bielefeld, Germany
| | - Tonje M B Heggeset
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine Trondheim, Norway
| | - Ingemar Nærdal
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine Trondheim, Norway
| | - Lidia Paul
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University Bielefeld, Germany
| | - Tone Haugen
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine Trondheim, Norway
| | - Simone B Le
- SINTEF Materials and Chemistry, Department of Biotechnology and Nanomedicine Trondheim, Norway
| | - Trygve Brautaset
- SINTEF Materials and Chemistry, Department of Biotechnology and NanomedicineTrondheim, Norway; Department of Biotechnology, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University Bielefeld, Germany
| |
Collapse
|
17
|
Abstract
Pathogenic bacteria must contend with immune systems that actively restrict the availability of nutrients and cofactors, and create a hostile growth environment. To deal with these hostile environments, pathogenic bacteria have evolved or acquired virulence determinants that aid in the acquisition of nutrients. This connection between pathogenesis and nutrition may explain why regulators of metabolism in nonpathogenic bacteria are used by pathogenic bacteria to regulate both metabolism and virulence. Such coordinated regulation is presumably advantageous because it conserves carbon and energy by aligning synthesis of virulence determinants with the nutritional environment. In Gram-positive bacterial pathogens, at least three metabolite-responsive global regulators, CcpA, CodY, and Rex, have been shown to coordinate the expression of metabolism and virulence genes. In this chapter, we discuss how environmental challenges alter metabolism, the regulators that respond to this altered metabolism, and how these regulators influence the host-pathogen interaction.
Collapse
|
18
|
Greppi A, Rantsiou K. Methodological advancements in foodborne pathogen determination: from presence to behavior. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Regulation of the rhaEWRBMA Operon Involved in l-Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis. J Bacteriol 2015; 198:830-45. [PMID: 26712933 DOI: 10.1128/jb.00856-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/15/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The Bacillus subtilis rhaEWRBMA (formerly yuxG-yulBCDE) operon consists of four genes encoding enzymes for l-rhamnose catabolism and the rhaR gene encoding a DeoR-type transcriptional regulator. DNase I footprinting analysis showed that the RhaR protein specifically binds to the regulatory region upstream of the rhaEW gene, in which two imperfect direct repeats are included. Gel retardation analysis revealed that the direct repeat farther upstream is essential for the high-affinity binding of RhaR and that the DNA binding of RhaR was effectively inhibited by L-rhamnulose-1-phosphate, an intermediate of L-rhamnose catabolism. Moreover, it was demonstrated that the CcpA/P-Ser-HPr complex, primarily governing the carbon catabolite control in B. subtilis, binds to the catabolite-responsive element, which overlaps the RhaR binding site. In vivo analysis of the rhaEW promoter-lacZ fusion in the background of ccpA deletion showed that the L-rhamnose-responsive induction of the rhaEW promoter was negated by the disruption of rhaA or rhaB but not rhaEW or rhaM, whereas rhaR disruption resulted in constitutive rhaEW promoter activity. These in vitro and in vivo results clearly indicate that RhaR represses the operon by binding to the operator site, which is detached by L-rhamnulose-1-phosphate formed from L-rhamnose through a sequence of isomerization by RhaA and phosphorylation by RhaB, leading to the derepression of the operon. In addition, the lacZ reporter analysis using the strains with or without the ccpA deletion under the background of rhaR disruption supported the involvement of CcpA in the carbon catabolite repression of the operon. IMPORTANCE Since L-rhamnose is a component of various plant-derived compounds, it is a potential carbon source for plant-associating bacteria. Moreover, it is suggested that L-rhamnose catabolism plays a significant role in some bacteria-plant interactions, e.g., invasion of plant pathogens and nodulation of rhizobia. Despite the physiological importance of L-rhamnose catabolism for various bacterial species, the transcriptional regulation of the relevant genes has been poorly understood, except for the regulatory system of Escherichia coli. In this study, we show that, in Bacillus subtilis, one of the plant growth-promoting rhizobacteria, the rhaEWRBMA operon for L-rhamnose catabolism is controlled by RhaR and CcpA. This regulatory system can be another standard model for better understanding the regulatory mechanisms of L-rhamnose catabolism in other bacterial species.
Collapse
|
20
|
Fukuhara T, Kobayashi K, Kanayama Y, Enomoto SI, Kondo T, Tsunekawa N, Nemoto M, Ogasawara N, Inagaki K, Tamura T. Identification and characterization of the zosA gene involved in copper uptake in Bacillus subtilis 168. Biosci Biotechnol Biochem 2015; 80:600-9. [PMID: 26566138 DOI: 10.1080/09168451.2015.1107462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
DL-Penicillamine, a copper-specific metal chelator, remarkably suppressed the growth of Bacillus subtilis 168 when added to a synthetic medium under Cu(2+) limitation. DNA microarray and screening of 2,602 knockout mutants showed that the zosA gene was de-repressed in the presence of 0.1% dl-penicillamine, and that the zosA mutant was sensitive to dl-penicillamine medium. The zosA mutant delayed the growth under Cu-limitation even without the chelator, and the sensitivity to dl-penicillamine was reversed by induction using 0.3 mM IPTG and the Pspac promoter inserted directly upstream of the zosA gene. Furthermore, the zosA mutant showed elevated tolerance of excessive Cu(2+) but not of excessive Zn(2+) added to LB and synthetic media. Homology modeling of the ZosA protein suggested that the protein can fold itself into essential domains for constituting a metal transporting ATPase. Our study suggests that zosA is a candidate gene involved in copper uptake.
Collapse
Affiliation(s)
- Takahiro Fukuhara
- a Graduate School of Life and Environmental Science , Okayama University , Okayama , Japan
| | - Kazuo Kobayashi
- b Graduate School of Information Science , Nara Institute of Science & Technology , Ikoma , Japan
| | - Yousuke Kanayama
- c Laboratory of Multiple Molecular Imaging Research , Center for Molecular Imaging Science, RIKEN Kobe Institute , Hyogo , Japan
| | - Shu-ichi Enomoto
- c Laboratory of Multiple Molecular Imaging Research , Center for Molecular Imaging Science, RIKEN Kobe Institute , Hyogo , Japan
| | - Taeko Kondo
- a Graduate School of Life and Environmental Science , Okayama University , Okayama , Japan
| | - Naoki Tsunekawa
- d Institute of Molecular and Cellular Biosciences , The University of Tokyo , Tokyo , Japan
| | - Michiko Nemoto
- a Graduate School of Life and Environmental Science , Okayama University , Okayama , Japan
| | - Naotake Ogasawara
- b Graduate School of Information Science , Nara Institute of Science & Technology , Ikoma , Japan
| | - Kenji Inagaki
- a Graduate School of Life and Environmental Science , Okayama University , Okayama , Japan
| | - Takashi Tamura
- a Graduate School of Life and Environmental Science , Okayama University , Okayama , Japan.,e PRESTO, Japan Science and Technology Agency , Tokyo , Japan
| |
Collapse
|
21
|
Research Progress Concerning Fungal and Bacterial β-Xylosidases. Appl Biochem Biotechnol 2015; 178:766-95. [DOI: 10.1007/s12010-015-1908-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/22/2015] [Indexed: 01/08/2023]
|
22
|
Detert Oude Weme R, Seidel G, Kuipers OP. Probing the regulatory effects of specific mutations in three major binding domains of the pleiotropic regulator CcpA of Bacillus subtilis. Front Microbiol 2015; 6:1051. [PMID: 26483775 PMCID: PMC4591507 DOI: 10.3389/fmicb.2015.01051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/14/2015] [Indexed: 11/30/2022] Open
Abstract
Carbon catabolite control is required for efficient use of available carbon sources to ensure rapid growth of bacteria. CcpA is a global regulator of carbon metabolism in Gram-positive bacteria like Bacillus subtilis. In this study the genome-wide gene regulation of a CcpA knockout and three specific CcpA mutants were studied by transcriptome analysis, to further elucidate the function of specific binding sites in CcpA. The following three amino acids were mutated to characterize their function: M17(R) which is involved in DNA binding, T62(H) which is important for the allosteric switch in CcpA upon HPr-Ser46-P binding, and R304(W) which is important for binding of the coeffectors HPr-Ser46-P and fructose-1,6-bisphosphate. The results confirm that CcpA was also involved in gene regulation in the absence of glucose. CcpA-M17R showed a small relief of Carbon Catabolite Control; the CcpA-M17R mutant regulates fewer genes than the CcpA-wt and the palindromicity of the cre site is less important for CcpA-M17R. CcpA-T62H was a stronger repressor than CcpA-wt and also acted as a strong repressor in the absence of glucose. CcpA-R304W was shown here to be less dependent on HPr-Ser46-P for its carbon catabolite control activities. The results presented here provide detailed information on alterations in gene regulation for each CcpA-mutant.
Collapse
Affiliation(s)
- Ruud Detert Oude Weme
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| | - Gerald Seidel
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik der Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen, Germany
| | - Oscar P Kuipers
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| |
Collapse
|
23
|
Wenzel M, Altenbuchner J. Development of a markerless gene deletion system for Bacillus subtilis based on the mannose phosphoenolpyruvate-dependent phosphotransferase system. MICROBIOLOGY-SGM 2015; 161:1942-1949. [PMID: 26238998 DOI: 10.1099/mic.0.000150] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To optimize Bacillus subtilis as a production strain for proteins and low molecular substances by genome engineering, we developed a markerless gene deletion system. We took advantage of a general property of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), in particular the mannose PTS. Mannose is phosphorylated during uptake by its specific transporter (ManP) to mannose 6-phosphate, which is further converted to fructose 6-phosphate by the mannose-6-phosphate isomerase (ManA). When ManA is missing, accumulation of the phosphorylated mannose inhibits cell growth. This system was constructed by deletion of manP and manA in B. subtilis Δ6, a 168 derivative strain with six large deletions of prophages and antibiotic biosynthesis genes. The manP gene was inserted into an Escherichia coli plasmid together with a spectinomycin resistance gene for selection in B. subtilis. To delete a specific region, its up- and downstream flanking sites (each of approximately 700 bp) were inserted into the vector. After transformation, integration of the plasmid into the chromosome of B. subtilis by single cross-over was selected by spectinomycin. In the second step, excision of the plasmid was selected by growth on mannose. Finally, excision and concomitant deletion of the target region were verified by colony PCR. In this way, all nine prophages, seven antibiotic biosynthesis gene clusters and two sigma factors for sporulation were deleted and the B. subtilis genome was reduced from 4215 to 3640 kb. Despite these extensive deletions, growth rate and cell morphology remained similar to the B. subtilis 168 parental strain.
Collapse
Affiliation(s)
- Marian Wenzel
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Josef Altenbuchner
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
24
|
Abstract
In Salmonella enterica, the reversible lysine acetylation (RLA) system is comprised of the protein acetyltransferase (Pat) and sirtuin deacetylase (CobB). RLA controls the activities of many proteins, including the acetyl coenzyme A (acetyl-CoA) synthetase (Acs), by modulating the degree of Acs acetylation. We report that IolR, a myo-inositol catabolism repressor, activates the expression of genes encoding components of the RLA system. In vitro evidence shows that the IolR protein directly regulates pat expression. An iolR mutant strain displayed a growth defect in minimal medium containing 10 mM acetate, a condition under which RLA function is critical to control Acs activity. Increased levels of Pat, CobB, or Acs activity reversed the growth defect, suggesting the Pat/CobB ratio in an iolR strain is altered and that such a change affects the level of acetylated, inactive Acs. Results of quantitative reverse transcription-PCR (qRT-PCR) analyses of pat, cobB, and acs expression indicated that expression of the genes alluded to in the IolR-deficient strain was reduced 5-, 3-, and 2.6-fold, respectively, relative to the levels present in the strain carrying the iolR+ allele. Acs activity in cell-free extracts from an iolR mutant strain was reduced ~25% relative to that of the iolR+ strain. Glucose differentially regulated expression of pat, cobB, and acs. The catabolite repressor protein (Crp) positively regulated expression of pat while having no effect on cobB. Reversible lysine acylation is used by cells of all domains of life to modulate the function of proteins involved in diverse cellular processes. Work reported herein begins to outline the regulatory circuitry that integrates the expression of genes encoding enzymes that control the activity of a central metabolic enzyme in C2 metabolism. Genetic analyses revealed effects on reversible lysine acylation that greatly impacted the growth behavior of the cell. This work provides the first insights into the complexities of the system responsible for controlling reversible lysine acylation at the transcriptional level in the enteropathogenic bacterium Salmonella enterica.
Collapse
|
25
|
Lang X, Wan Z, Pan Y, Wang X, Wang X, Bu Z, Qian J, Zeng H, Wang X. Investigation into the role of catabolite control protein A in the metabolic regulation of Streptococcus suis serotype 2 using gene expression profile analysis. Exp Ther Med 2015; 10:127-132. [PMID: 26170923 DOI: 10.3892/etm.2015.2470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 03/20/2015] [Indexed: 01/14/2023] Open
Abstract
Catabolite control protein A (CcpA) serves a key function in the catabolism of Streptococcus suis serotype 2 (S. suis 2) by affecting the biological function and metabolic regulatory mechanisms of this bacterium. The aim of the present study was to identify variations in CcpA expression in S. suis 2 using gene expression profile analysis. Using sequencing and functional analysis, CcpA was demonstrated to play a regulatory role in the expression and regulation of virulence genes, carbon metabolism and immunoregulation in S. suis 2. Gene Ontology and Kyto Encyclopedia of Genes and Genomes analyses indicated that CcpA in S. suis 2 is involved in the regulation of multiple metabolic processes. Furthermore, combined analysis of the transcriptome and metabolite data suggested that metabolites varied due to the modulation of gene expression levels under the influence of CcpA regulation. In addition, metabolic network analysis indicated that CcpA impacted carbon metabolism to a certain extent. Therefore, the present study has provided a more comprehensive analysis of the role of CcpA in the metabolic regulation of S. suis 2, which may facilitate future investigation into this mechanism. Furthermore, the results of the present study provide a foundation for further research into the regulatory function of CcpA and associated metabolic pathways in S. suis 2.
Collapse
Affiliation(s)
- Xulong Lang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Zhonghai Wan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Ying Pan
- Changchun Stomatological Hospital, Changchun, Jilin 130042, P.R. China
| | - Xiuran Wang
- School of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Xiaoxu Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Zhaoyang Bu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Jing Qian
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| | - Huazong Zeng
- Shanghai Sensichip Infotech Co. Ltd., Shanghai 200433, P.R. China
| | - Xinglong Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China
| |
Collapse
|
26
|
Becker J, Wittmann C. Advanced Biotechnology: Metabolically Engineered Cells for the Bio-Based Production of Chemicals and Fuels, Materials, and Health-Care Products. Angew Chem Int Ed Engl 2015; 54:3328-50. [DOI: 10.1002/anie.201409033] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Indexed: 12/16/2022]
|
27
|
Biotechnologie von Morgen: metabolisch optimierte Zellen für die bio-basierte Produktion von Chemikalien und Treibstoffen, Materialien und Gesundheitsprodukten. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201409033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Xie S, Wu H, Chen L, Zang H, Xie Y, Gao X. Transcriptome profiling of Bacillus subtilis OKB105 in response to rice seedlings. BMC Microbiol 2015; 15:21. [PMID: 25651892 PMCID: PMC4326333 DOI: 10.1186/s12866-015-0353-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 01/19/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Plant growth-promoting rhizobacteria (PGPR) are soil beneficial microorganisms that colonize plant roots for nutritional purposes and accordingly benefit plants by increasing plant growth or reducing disease. However, the mechanisms and pathways involved in the interactions between PGPR and plants remain unclear. In order to better understand these complex plant-PGPR interactions, changes in the transcriptome of the typical PGPR Bacillus subtilis in response to rice seedlings were analyzed. RESULTS Microarray technology was used to study the global transcriptionl response of B. subtilis OKB105 to rice seedlings after an interaction period of 2 h. A total of 176 genes representing 3.8% of the B. subtilis strain OKB105 transcriptome showed significantly altered expression levels in response to rice seedlings. Among these, 52 were upregulated, the majority of which are involved in metabolism and transport of nutrients, and stress responses, including araA, ywkA, yfls, mtlA, ydgG et al. The 124 genes that were downregulated included cheV, fliL, spmA and tua, and these are involved in chemotaxis, motility, sporulation and teichuronic acid biosynthesis, respectively. CONCLUSIONS We present a transcriptome analysis of the bacteria Bacillus subtilis OKB105 in response to rice seedings. Many of the 176 differentially expressed genes are likely to be involved in the interaction between Gram-positive bacteria and plants.
Collapse
Affiliation(s)
- Shanshan Xie
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Weigang No.1, Nanjing, 210095, People's Republic of China.
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Weigang No.1, Nanjing, 210095, People's Republic of China.
| | - Lina Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Weigang No.1, Nanjing, 210095, People's Republic of China.
| | - Haoyu Zang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Weigang No.1, Nanjing, 210095, People's Republic of China.
| | - Yongli Xie
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Weigang No.1, Nanjing, 210095, People's Republic of China.
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Weigang No.1, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
29
|
Enhancement of riboflavin production by deregulating gluconeogenesis in Bacillus subtilis. World J Microbiol Biotechnol 2014; 30:1893-900. [DOI: 10.1007/s11274-014-1611-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 01/19/2014] [Indexed: 10/25/2022]
|
30
|
Antelmann H, Hecker M, Zuber P. Proteomic signatures uncover thiol-specific electrophile resistance mechanisms inBacillus subtilis. Expert Rev Proteomics 2014; 5:77-90. [DOI: 10.1586/14789450.5.1.77] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Abe K, Yoshinari A, Aoyagi T, Hirota Y, Iwamoto K, Sato T. Regulated DNA rearrangement during sporulation inBacillus weihenstephanensis KBAB4. Mol Microbiol 2013; 90:415-27. [DOI: 10.1111/mmi.12375] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Kimihiro Abe
- Research Center of Micro-Nano Technology; Hosei University; Koganei; 184-0003; Tokyo; Japan
| | - Akira Yoshinari
- Department of Frontier Bioscience; Hosei University; Koganei; 184-8584; Tokyo; Japan
| | - Takahiro Aoyagi
- Department of Frontier Bioscience; Hosei University; Koganei; 184-8584; Tokyo; Japan
| | - Yasunori Hirota
- Department of Frontier Bioscience; Hosei University; Koganei; 184-8584; Tokyo; Japan
| | - Keito Iwamoto
- Department of Frontier Bioscience; Hosei University; Koganei; 184-8584; Tokyo; Japan
| | | |
Collapse
|
32
|
Ishii H, Tanaka T, Ogura M. The Bacillus subtilis response regulator gene degU is positively regulated by CcpA and by catabolite-repressed synthesis of ClpC. J Bacteriol 2013; 195:193-201. [PMID: 23123903 PMCID: PMC3553847 DOI: 10.1128/jb.01881-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 10/24/2012] [Indexed: 01/18/2023] Open
Abstract
In Bacillus subtilis, the response regulator DegU and its cognate kinase, DegS, constitute a two-component system that regulates many cellular processes, including exoprotease production and genetic competence. Phosphorylated DegU (DegU-P) activates its own promoter and is degraded by the ClpCP protease. We observed induction of degU by glucose in sporulation medium. This was abolished in two mutants: the ccpA (catabolite control protein A) and clpC disruptants. Transcription of the promoter of the operon containing clpC (PclpC) decreased in the presence of glucose, and the disruption of ccpA resulted in derepression of PclpC. However, this was not directly mediated by CcpA, because we failed to detect binding of CcpA to PclpC. Glucose decreased the expression of clpC, leading to low cellular concentrations of the ClpCP protease. Thus, degU is induced through activation of autoregulation by a decrease in ClpCP-dependent proteolysis of DegU-P. An electrophoretic mobility shift assay showed that CcpA bound directly to the degU upstream region, indicating that CcpA activates degU through binding. The bound region was narrowed down to 27 bases, which contained a cre (catabolite-responsive element) sequence with a low match to the cre consensus sequence. In a footprint analysis, CcpA specifically protected a region containing the cre sequence from DNase I digestion. The induction of degU by glucose showed complex regulation of the degU gene.
Collapse
Affiliation(s)
- Hiroshi Ishii
- Institute of Oceanic Research and Development, Tokai University, Orido-Shimizu, Shizuoka, Japan
| | | | | |
Collapse
|
33
|
Baycin-Hizal D, Tabb DL, Chaerkady R, Chen L, Lewis NE, Nagarajan H, Sarkaria V, Kumar A, Wolozny D, Colao J, Jacobson E, Tian Y, O'Meally RN, Krag SS, Cole RN, Palsson BO, Zhang H, Betenbaugh M. Proteomic analysis of Chinese hamster ovary cells. J Proteome Res 2012; 11:5265-76. [PMID: 22971049 DOI: 10.1021/pr300476w] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO cells including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis, multidimensional liquid chromatography, and solid phase extraction of glycopeptides (SPEG). From the 120 different mass spectrometry analyses generating 682,097 MS/MS spectra, 93,548 unique peptide sequences were identified with at most 0.02 false discovery rate (FDR). A total of 6164 grouped proteins were identified from both glycoproteome and proteome analysis, representing an 8-fold increase in the number of proteins currently identified in the CHO proteome. Furthermore, this is the first proteomic study done using the CHO genome exclusively, which provides for more accurate identification of proteins. From this analysis, the CHO codon frequency was determined and found to be distinct from humans, which will facilitate expression of human proteins in CHO cells. Analysis of the combined proteomic and mRNA data sets indicated the enrichment of a number of pathways including protein processing and apoptosis but depletion of proteins involved in steroid hormone and glycosphingolipid metabolism. Five-hundred four of the detected proteins included N-acetylation modifications, and 1292 different proteins were observed to be N-glycosylated. This first large-scale proteomic analysis will enhance the knowledge base about CHO capabilities for recombinant expression and provide information useful in cell engineering efforts aimed at modifying CHO cellular functions.
Collapse
Affiliation(s)
- Deniz Baycin-Hizal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Direct and indirect regulation of the ycnKJI operon involved in copper uptake through two transcriptional repressors, YcnK and CsoR, in Bacillus subtilis. J Bacteriol 2012; 194:5675-87. [PMID: 22904286 DOI: 10.1128/jb.00919-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Northern blot and primer extension analyses revealed that the ycnKJI operon and the ycnL gene of Bacillus subtilis are transcribed from adjacent promoters that are divergently oriented. The ycnK and ycnJ genes encode a DeoR-type transcriptional regulator and a membrane protein involved in copper uptake, respectively. DNA binding experiments showed that the YcnK protein specifically binds to the ycnK-ycnL intergenic region, including a 16-bp direct repeat that is essential for the high binding affinity of YcnK, and that a copper-specific chelator significantly inhibits YcnK's DNA binding. lacZ reporter analysis showed that the ycnK promoter is induced by copper limitation or ycnK disruption. These results are consistent with YcnK functioning as a copper-responsive repressor that derepresses ycnKJI expression under copper limitation. On the other hand, the ycnL promoter was hardly induced by copper limitation, but ycnK disruption resulted in a slight induction of the ycnL promoter, suggesting that YcnK also represses ycnL weakly. Moreover, while the CsoR protein did not bind to the ycnK-ycnL intergenic region, lacZ reporter analysis demonstrated that csoR disruption induces the ycnK promoter only in the presence of intact ycnK and copZA genes. Since the copZA operon is involved in copper export and repressed by CsoR, it appears that the constitutive copZA expression brought by csoR disruption causes intracellular copper depletion, which releases the repression of the ycnKJI operon by YcnK.
Collapse
|
35
|
Li J, Huang C, Zheng D, Wang Y, Yuan Z. CcpA-Mediated Enhancement of Sugar and Amino Acid Metabolism in Lysinibacillus sphaericus by NMR-Based Metabolomics. J Proteome Res 2012; 11:4654-61. [DOI: 10.1021/pr300469v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Li
- Center for Applied and Environmental
Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic
of China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
People’s Republic of China
| | - Chongyang Huang
- Wuhan Center of
Magnetic Resonance,
State Key Laboratory of Magnetic Resonance and Atomic and Molecular
Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People’s
Republic of China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
People’s Republic of China
| | - Dasheng Zheng
- Center for Applied and Environmental
Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic
of China
| | - Yulan Wang
- Wuhan Center of
Magnetic Resonance,
State Key Laboratory of Magnetic Resonance and Atomic and Molecular
Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People’s
Republic of China
| | - Zhiming Yuan
- Center for Applied and Environmental
Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic
of China
| |
Collapse
|
36
|
Cabrera-Valladares N, Martínez LM, Flores N, Hernández-Chávez G, Martínez A, Bolívar F, Gosset G. Physiologic Consequences of Glucose Transport and Phosphoenolpyruvate Node Modifications inBacillus subtilis168. J Mol Microbiol Biotechnol 2012; 22:177-97. [DOI: 10.1159/000339973] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
37
|
Rantsiou K, Mataragas M, Jespersen L, Cocolin L. Understanding the behavior of foodborne pathogens in the food chain: New information for risk assessment analysis. Trends Food Sci Technol 2011. [DOI: 10.1016/j.tifs.2011.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Catabolite repression of the Bacillus subtilis FadR regulon, which is involved in fatty acid catabolism. J Bacteriol 2011; 193:2388-95. [PMID: 21398533 DOI: 10.1128/jb.00016-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis fadR regulon involved in fatty acid degradation comprises five operons, lcfA-fadR-fadB-etfB-etfA, lcfB, fadN-fadA-fadE, fadH-fadG, and fadF-acdA-rpoE. Since the lcfA-fadRB-etfBA, lcfB, and fadNAE operons, whose gene products directly participate in the β-oxidation cycle, had been found to be probably catabolite repressed upon genome-wide transcript analysis, we performed Northern blotting, which indicated that they are clearly under CcpA-dependent catabolite repression. So, we searched for catabolite-responsive elements (cre's) to which the complex of CcpA and P-Ser-HPr binds to exert catabolite repression by means of a web-based cis-element search in the B. subtilis genome using known cre sequences, which revealed the respective candidate cre sequences in the lcfA, lcfB, and fadN genes. DNA footprinting indicated that the complex actually interacted with these cre's in vitro. Deletion analysis of each cre using the lacZ fusions with the respective promoter regions of the three operons with and without it, indicated that these cre's are involved in the CcpA-dependent catabolite repression of the operons in vivo.
Collapse
|
39
|
Structural and functional insights into Aeropyrum pernix OppA, a member of a novel archaeal OppA subfamily. J Bacteriol 2010; 193:620-30. [PMID: 21097609 DOI: 10.1128/jb.00899-10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study we gain insight into the structural and functional characterization of the Aeropyrum pernix oligopeptide-binding protein (OppA(Ap)) previously identified from the extracellular medium of an Aeropyrum pernix cell culture at late stationary phase. OppA(Ap) showed an N-terminal Q32 in a pyroglutamate form and C-terminal processing at the level of a threonine-rich region probably involved in protein membrane anchoring. Moreover, the OppA(Ap) protein released into the medium was identified as a "nicked" form composed of two tightly associated fragments detachable only under strong denaturing conditions. The cleavage site E569-G570 seems be located on an exposed surface loop that is highly conserved in several three-dimensional (3D) structures of dipeptide/oligopeptide-binding proteins from different sources. Structural and biochemical properties of the nicked protein were virtually indistinguishable from those of the intact form. Indeed, studies of the entire bacterially expressed OppA(Ap) protein owning the same N and C termini of the nicked form supported these findings. Moreover, in the middle exponential growth phase, OppA(Ap) was found as an intact cell membrane-associated protein. Interestingly, the native exoprotein OppA(Ap) was copurified with a hexapeptide (EKFKIV) showing both lysines methylated and possibly originating from an A. pernix endogenous stress-induced lipoprotein. Therefore, the involvement of OppA(Ap) in the recycling of endogenous proteins was suggested to be a potential physiological function. Finally, a new OppA from Sulfolobus solfataricus, SSO1288, was purified and preliminarily characterized, allowing the identification of a common structural/genetic organization shared by all "true" archaeal OppA proteins of the dipeptide/oligopeptide class.
Collapse
|
40
|
Inositol catabolism, a key pathway in sinorhizobium meliloti for competitive host nodulation. Appl Environ Microbiol 2010; 76:7972-80. [PMID: 20971862 DOI: 10.1128/aem.01972-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen-fixing symbiont of alfalfa, Sinorhizobium meliloti, is able to use myo-inositol as the sole carbon source. Putative inositol catabolism genes (iolA and iolRCDEB) have been identified in the S. meliloti genome based on their similarities with the Bacillus subtilis iol genes. In this study, functional mutational analysis revealed that the iolA and iolCDEB genes are required for growth not only with the myo-isomer but also for growth with scyllo- and d-chiro-inositol as the sole carbon source. An additional, hypothetical dehydrogenase of the IdhA/MocA/GFO family encoded by the smc01163 gene was found to be essential for growth with scyllo-inositol, whereas the idhA-encoded myo-inositol dehydrogenase was responsible for the oxidation of d-chiro-inositol. The putative regulatory iolR gene, located upstream of iolCDEB, encodes a repressor of the iol genes, negatively regulating the activity of the myo- and the scyllo-inositol dehydrogenases. Mutants with insertions in the iolA, smc01163, and individual iolRCDE genes could not compete against the wild type in a nodule occupancy assay on alfalfa plants. Thus, a functional inositol catabolic pathway and its proper regulation are important nutritional or signaling factors in the S. meliloti-alfalfa symbiosis.
Collapse
|
41
|
Waltman P, Kacmarczyk T, Bate AR, Kearns DB, Reiss DJ, Eichenberger P, Bonneau R. Multi-species integrative biclustering. Genome Biol 2010; 11:R96. [PMID: 20920250 PMCID: PMC2965388 DOI: 10.1186/gb-2010-11-9-r96] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/19/2010] [Accepted: 09/29/2010] [Indexed: 12/22/2022] Open
Abstract
We describe an algorithm, multi-species cMonkey, for the simultaneous biclustering of heterogeneous multiple-species data collections and apply the algorithm to a group of bacteria containing Bacillus subtilis, Bacillus anthracis, and Listeria monocytogenes. The algorithm reveals evolutionary insights into the surprisingly high degree of conservation of regulatory modules across these three species and allows data and insights from well-studied organisms to complement the analysis of related but less well studied organisms.
Collapse
Affiliation(s)
- Peter Waltman
- Computer Science Department, Warren Weaver Hall (Room 305), 251 Mercer Street, New York, NY 10012, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Soufi B, Kumar C, Gnad F, Mann M, Mijakovic I, Macek B. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Applied to Quantitative Proteomics of Bacillus subtilis. J Proteome Res 2010; 9:3638-46. [DOI: 10.1021/pr100150w] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Boumediene Soufi
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark, Micalis, AgroParisTech-INRA, Domaine de Vilvert, 78352 Jouy-en-Josas, France, and Proteome Center Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Chanchal Kumar
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark, Micalis, AgroParisTech-INRA, Domaine de Vilvert, 78352 Jouy-en-Josas, France, and Proteome Center Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Florian Gnad
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark, Micalis, AgroParisTech-INRA, Domaine de Vilvert, 78352 Jouy-en-Josas, France, and Proteome Center Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Matthias Mann
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark, Micalis, AgroParisTech-INRA, Domaine de Vilvert, 78352 Jouy-en-Josas, France, and Proteome Center Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Ivan Mijakovic
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark, Micalis, AgroParisTech-INRA, Domaine de Vilvert, 78352 Jouy-en-Josas, France, and Proteome Center Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Boris Macek
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark, Micalis, AgroParisTech-INRA, Domaine de Vilvert, 78352 Jouy-en-Josas, France, and Proteome Center Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
43
|
Identification of the sequences recognized by the Bacillus subtilis response regulator YclJ. Arch Microbiol 2010; 192:569-80. [PMID: 20512483 DOI: 10.1007/s00203-010-0586-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 05/06/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
Abstract
The Bacillus subtilis yclJ gene encodes an OmpR-type response regulator of a two-component regulatory system with unknown function. A previous DNA microarray experiment suggested that multicopy yclJ greatly enhances the expression of several operons in a cognate kinase (YclK)-deficient strain. To confirm this, lacZ fusion analysis was performed in the yclK background with overexpressed yclJ. As a result, yclHI, ykcBC, and yngABC were indeed positively regulated by YclJ. Gel retardation and DNase I footprint analyses revealed that YclJ binds to the promoter regions of yclHI, ykcBC, and yngABC. Nucleotide sequence analysis of the binding regions suggested that YclJ recognizes a direct repeat of the consensus sequence TTCATANTTT, the upstream half of which has close similarity to the consensus binding sequence of the other OmpR family response regulator PhoP. LacZ fusion analysis of the control region of yngA with deletion or point mutation confirmed that the YclJ-binding sequence is required for the YclJ-mediated activation of yngA. Furthermore, we identified two more YclJ-regulated genes, yycA and yfjR, using bioinformatic analysis of the B. subtilis genome, and it was shown that YclJ binds to those promoters and controls the expression of those genes.
Collapse
|
44
|
Morinaga T, Kobayashi K, Ashida H, Fujita Y, Yoshida KI. Transcriptional regulation of the Bacillus subtilis asnH operon and role of the 5'-proximal long sequence triplication in RNA stabilization. MICROBIOLOGY-SGM 2010; 156:1632-1641. [PMID: 20185509 DOI: 10.1099/mic.0.036582-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Bacillus subtilis asnH operon, comprising yxbB, yxbA, yxnB, asnH and yxaM, is induced dramatically in the transition between exponential growth and stationary phase in rich sporulation medium. The asnH operon is transcribed to produce an unstable long transcript covering the entire operon as well as a short one corresponding to the first three genes. Northern blot analysis revealed that the discrete band corresponding to the short transcript was detectable even 1 h after the addition of excess rifampicin, suggesting its unusual stability. The transcription start site of the operon was determined; its corresponding promoter was most likely sigma-A dependent and under tight control of AbrB and CodY. Within the 5'-proximal region of the transcript preceding yxbB, there is a mysterious long sequence triplication (LST) segment, consisting of a tandem repeat of two highly conserved 118 bp units and a less conserved 129 bp unit. This LST segment was not involved in regulation by AbrB and CodY. Transcriptional fusion of the 5'-region containing the LST segment to lacZ resulted in a significant increase in beta-galactosidase synthesis in cells; the LST segment was thought to prevent degradation of the 5'-region-lacZ fusion transcript. These results suggest that the 5'-region containing the LST segment could function as an mRNA stabilizer that prolongs the lifetime of the transcript to which it is fused.
Collapse
Affiliation(s)
- Tetsuro Morinaga
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kazuo Kobayashi
- Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yasutaro Fujita
- Department of Biotechnology, Fukuyama University, 985 Sanzo, Higashimura, Fukuyama 729-0292, Japan
| | - Ken-Ichi Yoshida
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
45
|
Heavy involvement of stringent transcription control depending on the adenine or guanine species of the transcription initiation site in glucose and pyruvate metabolism in Bacillus subtilis. J Bacteriol 2010; 192:1573-85. [PMID: 20081037 DOI: 10.1128/jb.01394-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis cells, the GTP level decreases and the ATP level increases upon a stringent response. This reciprocal change in the concentrations of the substrates of RNA polymerase affects the rate of transcription initiation of certain stringent genes depending on the purine species at their transcription initiation sites. DNA microarray analysis suggested that not only the rrn and ilv-leu genes encoding rRNAs and the enzymes for synthesis of branched-chain amino acids, respectively, but also many genes, including genes involved in glucose and pyruvate metabolism, might be subject to this kind of stringent transcription control. Actually, the ptsGHI and pdhABCD operons encoding the glucose-specific phosphoenolpyruvate:sugar phosphotransferase system and the pyruvate dehydrogenase complex were found to be negatively regulated, like rrn, whereas the pycA gene encoding pyruvate carboxylase and the alsSD operon for synthesis of acetoin from pyruvate were positively regulated, like ilv-leu. Replacement of the guanine at position 1 and/or position 2 of ptsGHI and at position 1 of pdhABCD (transcription initiation base at position 1) by adenine changed the negative stringent control of these operons in the positive direction. The initiation bases for transcription of pdhABCD and pycA were newly determined. Then the promoter sequences of these stringent operons were aligned, and the results suggested that the presence of a guanine(s) and the presence of an adenine(s) at position 1 and/or position 2 might be indispensable for negative and positive stringent control, respectively. Such stringent transcription control that affects the transcription initiation rate through reciprocal changes in the GTP and ATP levels likely occurs for numerous genes of B. subtilis.
Collapse
|
46
|
Functional analysis of the stability determinant AlfB of pBET131, a miniplasmid derivative of bacillus subtilis (natto) plasmid pLS32. J Bacteriol 2009; 192:1221-30. [PMID: 20023009 DOI: 10.1128/jb.01312-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis plasmid pBET131 is a derivative of pLS32, which was isolated from a natto strain of Bacillus subtilis. The DNA region in pBET131 that confers segregational stability contains an operon consisting of three genes, of which alfA, encoding an actin-like ATPase, and alfB are essential for plasmid stability. In this work, the alfB gene product and its target DNA region were studied in detail. Transcription of the alf operon initiated from a sigma(A)-type promoter was repressed by the alfB gene product. Overproduction of AlfA was inhibitory to cell growth, suggesting that the repression of the alf operon by AlfB is important for maintaining appropriate levels of AlfA. An electrophoretic mobility shift assay and footprinting analysis with purified His-tagged AlfB showed that it bound to a DNA region containing three tandem repeats of 8-bp AT-rich sequence (here designated parN), which partially overlaps the -35 sequence of the promoter. A sequence alteration in the first or third repeat did not affect the AlfB binding and plasmid stability, whereas that in the second repeat resulted in inhibition of these phenomena. The repression of alfA-lacZ expression was observed in the constructs carrying a mutation in either the first or third repeat, but not in the second repeat, indicating a correlation between plasmid stability, AlfB binding, and repression. It was also demonstrated by the yeast two-hybrid system that AlfA and AlfB interact with each other and among themselves. From these results, it was concluded that AlfB participates in partitioning pBET131 by forming a complex with AlfA and parN, the mode of which is typified by the type II partition mechanism.
Collapse
|
47
|
Bendz M, Möller MC, Arrigoni G, Wåhlander Å, Stella R, Cappadona S, Levander F, Hederstedt L, James P. Quantification of Membrane Proteins Using Nonspecific Protease Digestions. J Proteome Res 2009; 8:5666-73. [DOI: 10.1021/pr900741t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Maria Bendz
- Protein Technology, Department of Immunotechnology, CREATE Health, Lund University, Sweden, Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden, Department of Cell & Organism Biology, Lund University, Sweden, Department of Biological Chemistry, University of Padova, Italy, and Department of Bioengineering, IIT Unit, Politecnico di Milano, Italy
| | - Mirja Carlsson Möller
- Protein Technology, Department of Immunotechnology, CREATE Health, Lund University, Sweden, Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden, Department of Cell & Organism Biology, Lund University, Sweden, Department of Biological Chemistry, University of Padova, Italy, and Department of Bioengineering, IIT Unit, Politecnico di Milano, Italy
| | - Giorgio Arrigoni
- Protein Technology, Department of Immunotechnology, CREATE Health, Lund University, Sweden, Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden, Department of Cell & Organism Biology, Lund University, Sweden, Department of Biological Chemistry, University of Padova, Italy, and Department of Bioengineering, IIT Unit, Politecnico di Milano, Italy
| | - Åsa Wåhlander
- Protein Technology, Department of Immunotechnology, CREATE Health, Lund University, Sweden, Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden, Department of Cell & Organism Biology, Lund University, Sweden, Department of Biological Chemistry, University of Padova, Italy, and Department of Bioengineering, IIT Unit, Politecnico di Milano, Italy
| | - Roberto Stella
- Protein Technology, Department of Immunotechnology, CREATE Health, Lund University, Sweden, Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden, Department of Cell & Organism Biology, Lund University, Sweden, Department of Biological Chemistry, University of Padova, Italy, and Department of Bioengineering, IIT Unit, Politecnico di Milano, Italy
| | - Salvatore Cappadona
- Protein Technology, Department of Immunotechnology, CREATE Health, Lund University, Sweden, Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden, Department of Cell & Organism Biology, Lund University, Sweden, Department of Biological Chemistry, University of Padova, Italy, and Department of Bioengineering, IIT Unit, Politecnico di Milano, Italy
| | - Fredrik Levander
- Protein Technology, Department of Immunotechnology, CREATE Health, Lund University, Sweden, Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden, Department of Cell & Organism Biology, Lund University, Sweden, Department of Biological Chemistry, University of Padova, Italy, and Department of Bioengineering, IIT Unit, Politecnico di Milano, Italy
| | - Lars Hederstedt
- Protein Technology, Department of Immunotechnology, CREATE Health, Lund University, Sweden, Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden, Department of Cell & Organism Biology, Lund University, Sweden, Department of Biological Chemistry, University of Padova, Italy, and Department of Bioengineering, IIT Unit, Politecnico di Milano, Italy
| | - Peter James
- Protein Technology, Department of Immunotechnology, CREATE Health, Lund University, Sweden, Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden, Department of Cell & Organism Biology, Lund University, Sweden, Department of Biological Chemistry, University of Padova, Italy, and Department of Bioengineering, IIT Unit, Politecnico di Milano, Italy
| |
Collapse
|
48
|
Licht A, Brantl S. The transcriptional repressor CcpN from Bacillus subtilis uses different repression mechanisms at different promoters. J Biol Chem 2009; 284:30032-8. [PMID: 19726675 DOI: 10.1074/jbc.m109.033076] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CcpN, a transcriptional repressor from Bacillus subtilis that is responsible for the carbon catabolite repression of three genes, has been characterized in detail in the past 4 years. However, nothing is known about the actual repression mechanism as yet. Here, we present a detailed study on how CcpN exerts its repression effect at its three known target promoters of the genes sr1, pckA, and gapB. Using gel shift assays under non-repressive and repressive conditions, we showed that CcpN and RNA polymerase can bind simultaneously and that CcpN does not prevent RNA polymerase (RNAP) binding to the promoter. Furthermore, we investigated the effect of CcpN on open complex formation and demonstrate that CcpN also does not act at this step of transcription initiation at the sr1 and pckA and presumably at the gapB promoter. Investigation of abortive transcript synthesis revealed that CcpN acts differently at the three promoters: At the sr1 and pckA promoter, promoter clearance is impeded by CcpN, whereas synthesis of abortive transcripts is repressed at the gapB promoter. Eventually, we demonstrated with Far Western blots and co-elution experiments that CcpN is able to interact with the RNAP alpha-subunit, which completes the picture of the requirements for the repressive action of CcpN. On the basis of the presented results, we propose a new working model for CcpN action.
Collapse
Affiliation(s)
- Andreas Licht
- Arbeitsgruppe Bakteriengenetik, Friedrich-Schiller-Universität, 07743 Jena, Germany.
| | | |
Collapse
|
49
|
Poncet S, Soret M, Mervelet P, Deutscher J, Noirot P. Transcriptional activator YesS is stimulated by histidine-phosphorylated HPr of the Bacillus subtilis phosphotransferase system. J Biol Chem 2009; 284:28188-28197. [PMID: 19651770 PMCID: PMC2788870 DOI: 10.1074/jbc.m109.046334] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In low GC content Gram-positive bacteria, the HPr protein is the master regulator of carbon metabolism. HPr is a key component of the phosphoenolpyruvate (PEP):sugar phosphotransferase system that interacts with and/or phosphorylates proteins relevant to carbon catabolite repression. HPr can be phosphorylated by two distinct kinases as follows: the bifunctional enzyme HPr kinase/Ser(P)-HPr phosphorylase (HprK/P) phosphorylating the serine 46 residue (Ser(P)-HPr) and acting as a phosphorylase on Ser(P)-HPr; and the PEP-requiring enzyme I (EI) generating histidine 15-phosphorylated HPr (His(P)-HPr). The various HPr forms interact with numerous enzymes and modulate their activity. By carrying out a genome-wide yeast two-hybrid screen of a Bacillus subtilis library, we identified a novel HPr-interacting protein, the transcriptional activator YesS, which regulates the expression of pectin/rhamnogalacturonan utilization genes. Remarkably, yeast tri-hybrid assays involving the ATP-dependent HprK/P and the PEP-dependent EI suggested that YesS interacts with HPr and His(P)-HPr but not with Ser(P)-HPr. These findings were confirmed by in vitro interaction assays using the purified HPr-binding domain of the YesS protein. Furthermore, pectin utilization and in vivo YesS-mediated transcriptional activation depended upon the presence of His(P)-HPr, indicating that HPr-mediated YesS regulation serves as a novel type of carbon catabolite repression. In the yeast two-hybrid assays, B. subtilis HprK/P and EI were active and specifically recognized their substrates. Both kinases formed long lived complexes only with the corresponding nonphosphorylatable mutant HPr. These findings suggest that two-hybrid assays can be used for the identification of unknown kinases of phosphorylated bacterial proteins detected in phosphoproteome analyses.
Collapse
Affiliation(s)
- Sandrine Poncet
- Laboratoire de Microbiologie et Génétique Moléculaire, INRA-AgroParisTech-CNRS, 78850 Thiverval-Grignon
| | - Maryline Soret
- Laboratoire de Génétique Microbienne, Domaine de Vilvert, INRA, 78352 Jouy en Josas Cedex, France
| | - Peggy Mervelet
- Laboratoire de Génétique Microbienne, Domaine de Vilvert, INRA, 78352 Jouy en Josas Cedex, France
| | - Josef Deutscher
- Laboratoire de Microbiologie et Génétique Moléculaire, INRA-AgroParisTech-CNRS, 78850 Thiverval-Grignon.
| | - Philippe Noirot
- Laboratoire de Génétique Microbienne, Domaine de Vilvert, INRA, 78352 Jouy en Josas Cedex, France.
| |
Collapse
|
50
|
Catara G, Fiume I, Iuliano F, Maria G, Ruggiero G, Palmieri G, Capasso A, Rossi M. A new kumamolisin-like protease fromAlicyclobacillus acidocaldarius: an enzyme active under extreme acidic conditions. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420600792094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|