1
|
Guo Y, Wu H, Wiesmüller L, Chen M. Canonical and non-canonical functions of p53 isoforms: potentiating the complexity of tumor development and therapy resistance. Cell Death Dis 2024; 15:412. [PMID: 38866752 PMCID: PMC11169513 DOI: 10.1038/s41419-024-06783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Full-length p53 (p53α) plays a pivotal role in maintaining genomic integrity and preventing tumor development. Over the years, p53 was found to exist in various isoforms, which are generated through alternative splicing, alternative initiation of translation, and internal ribosome entry site. p53 isoforms, either C-terminally altered or N-terminally truncated, exhibit distinct biological roles compared to p53α, and have significant implications for tumor development and therapy resistance. Due to a lack of part and/or complete C- or N-terminal domains, ectopic expression of some p53 isoforms failed to induce expression of canonical transcriptional targets of p53α like CDKN1A or MDM2, even though they may bind their promoters. Yet, p53 isoforms like Δ40p53α still activate subsets of targets including MDM2 and BAX. Furthermore, certain p53 isoforms transactivate even novel targets compared to p53α. More recently, non-canonical functions of p53α in DNA repair and of different isoforms in DNA replication unrelated to transcriptional activities were discovered, amplifying the potential of p53 as a master regulator of physiological and tumor suppressor functions in human cells. Both regarding canonical and non-canonical functions, alternative p53 isoforms frequently exert dominant negative effects on p53α and its partners, which is modified by the relative isoform levels. Underlying mechanisms include hetero-oligomerization, changes in subcellular localization, and aggregation. These processes ultimately influence the net activities of p53α and give rise to diverse cellular outcomes. Biological roles of p53 isoforms have implications for tumor development and cancer therapy resistance. Dysregulated expression of isoforms has been observed in various cancer types and is associated with different clinical outcomes. In conclusion, p53 isoforms have expanded our understanding of the complex regulatory network involving p53 in tumors. Unraveling the mechanisms underlying the biological roles of p53 isoforms provides new avenues for studies aiming at a better understanding of tumor development and developing therapeutic interventions to overcome resistance.
Collapse
Affiliation(s)
- Yitian Guo
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China.
| | - Hang Wu
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Ming Chen
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Onwubiko NO, Scheffel F, Tessmer I, Nasheuer HP. SV40 T antigen helicase domain regions responsible for oligomerisation regulate Okazaki fragment synthesis initiation. FEBS Open Bio 2022; 12:649-663. [PMID: 35073603 PMCID: PMC8886539 DOI: 10.1002/2211-5463.13373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/21/2021] [Accepted: 01/21/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Nichodemus O Onwubiko
- Biochemistry School of Biological and Chemical Sciences Biomedical Sciences Building NUI Galway, New Castle Road, Galway, H91 W2TY Ireland
| | - Felicia Scheffel
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Strasse 2, D‐97080 Würzburg Germany
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Strasse 2, D‐97080 Würzburg Germany
| | - Heinz Peter Nasheuer
- Biochemistry School of Biological and Chemical Sciences Biomedical Sciences Building NUI Galway, New Castle Road, Galway, H91 W2TY Ireland
| |
Collapse
|
3
|
Alkoxylalkyl Esters of Nucleotide Analogs Inhibit Polyomavirus DNA Replication and Large T Antigen Activities. Antimicrob Agents Chemother 2021; 65:AAC.01641-20. [PMID: 33288638 DOI: 10.1128/aac.01641-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
Polyomavirus infections occur commonly in humans and are normally nonfatal. However, in immunocompromised individuals, they are intractable and frequently fatal. Due to a lack of approved drugs to treat polyomavirus infections, cidofovir, a phosphonate nucleotide analog approved to treat cytomegalovirus infections, has been repurposed as an antipolyomavirus agent. Cidofovir has been modified in various ways to improve its efficacies as a broad-spectrum antiviral agent. However, the actual mechanisms and targets of cidofovir and its modified derivatives as antipolyomavirus agents are still under research. Here, polyomavirus large tumor antigen (Tag) activities were identified as the viral target of cidofovir derivatives. The alkoxyalkyl ester derivatives of cidofovir efficiently inhibit polyomavirus DNA replication in cell-free human extracts and a viral in vitro replication system utilizing only purified proteins. We present evidence that DNA helicase and DNA binding activities of polyomavirus Tags are diminished in the presence of low concentrations of alkoxyalkyl ester derivatives of cidofovir, suggesting that the inhibition of viral DNA replication is at least in part mediated by inhibiting single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) binding activities of Tags. These findings show that the alkoxyalkyl ester derivatives of cidofovir are effective in vitro without undergoing further conversions, and we conclude that the inhibitory mechanisms of nucleotide analog-based drugs are more complex than previously believed.
Collapse
|
4
|
The Tip of an Iceberg: Replication-Associated Functions of the Tumor Suppressor p53. Cancers (Basel) 2018; 10:cancers10080250. [PMID: 30060597 PMCID: PMC6115784 DOI: 10.3390/cancers10080250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
The tumor suppressor p53 is a transcriptional factor broadly mutated in cancer. Most inactivating and gain of function mutations disrupt the sequence-specific DNA binding domain, which activates target genes. This is perhaps the main reason why most research has focused on the relevance of such transcriptional activity for the prevention or elimination of cancer cells. Notwithstanding, transcriptional regulation may not be the only mechanism underlying its role in tumor suppression and therapeutic responses. In the past, a direct role of p53 in DNA repair transactions that include the regulation of homologous recombination has been suggested. More recently, the localization of p53 at replication forks has been demonstrated and the effect of p53 on nascent DNA elongation has been explored. While some data sets indicate that the regulation of ongoing replication forks by p53 may be mediated by p53 targets such as MDM2 (murine double minute 2) and polymerase (POL) eta other evidences demonstrate that p53 is capable of controlling DNA replication by directly interacting with the replisome and altering its composition. In addition to discussing such findings, this review will also analyze the impact that p53-mediated control of ongoing DNA replication has on treatment responses and tumor suppressor abilities of this important anti-oncogene.
Collapse
|
5
|
Fidelity of DNA replication-a matter of proofreading. Curr Genet 2018; 64:985-996. [PMID: 29500597 PMCID: PMC6153641 DOI: 10.1007/s00294-018-0820-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 01/29/2023]
Abstract
DNA that is transmitted to daughter cells must be accurately duplicated to maintain genetic integrity and to promote genetic continuity. A major function of replicative DNA polymerases is to replicate DNA with the very high accuracy. The fidelity of DNA replication relies on nucleotide selectivity of replicative DNA polymerase, exonucleolytic proofreading, and postreplicative DNA mismatch repair (MMR). Proofreading activity that assists most of the replicative polymerases is responsible for removal of incorrectly incorporated nucleotides from the primer terminus before further primer extension. It is estimated that proofreading improves the fidelity by a 2–3 orders of magnitude. The primer with the incorrect terminal nucleotide has to be moved to exonuclease active site, and after removal of the wrong nucleotide must be transferred back to polymerase active site. The mechanism that allows the transfer of the primer between pol and exo site is not well understood. While defects in MMR are well known to be linked with increased cancer incidence only recently, the replicative polymerases that have alterations in the exonuclease domain have been associated with some sporadic and hereditary human cancers. In this review, we would like to emphasize the importance of proofreading (3′-5′ exonuclease activity) in the fidelity of DNA replication and to highlight what is known about switching from polymerase to exonuclease active site.
Collapse
|
6
|
DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression. Proc Natl Acad Sci U S A 2016; 113:E4311-9. [PMID: 27407148 DOI: 10.1073/pnas.1605828113] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker-induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress.
Collapse
|
7
|
Human cytomegalovirus primase UL70 specifically interacts with cellular factor Snapin. J Virol 2011; 85:11732-41. [PMID: 21917956 DOI: 10.1128/jvi.05357-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genomic DNA synthesis is a universally conserved process for all herpesviruses, including human cytomegalovirus (HCMV). HCMV UL70 is believed to encode the primase of the DNA replication machinery, a function which requires localization in the nucleus, the site of viral DNA synthesis. No host factors that interact with UL70 have been reported. In this study, we provide the first direct evidence that UL70 specifically interacts with Snapin, a human protein that is predominantly localized in the cytoplasm and is associated with cellular vesicles. The interaction between UL70 and Snapin was identified in both the two-hybrid screen in yeast and coimmunoprecipitation in human cells. The nuclear import of UL70 was decreased in cells overexpressing Snapin and increased in cells in which the expression of Snapin was downregulated with anti-Snapin small interfering RNA (siRNA) molecules, respectively. Furthermore, viral DNA synthesis and progeny production were decreased in cells overexpressing Snapin and increased in the anti-Snapin siRNA-treated cells, respectively. In contrast, no significant difference in the nuclear level of UL70, viral DNA synthesis, and progeny production was found among the parental cells and cells that either expressed a control empty vector or were treated with control siRNA molecules that did not recognize any viral or cellular transcripts. Our results suggest that Snapin may play a key role in regulating the cellular localization of UL70 in HCMV, leading to modulation of viral DNA synthesis and progeny production.
Collapse
|
8
|
Zheltukhin AO, Chumakov PM. Constitutive and induced functions of the p53 gene. BIOCHEMISTRY (MOSCOW) 2011; 75:1692-721. [DOI: 10.1134/s0006297910130110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Kang YH, Lee CH, Seo YS. Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes. Crit Rev Biochem Mol Biol 2010; 45:71-96. [PMID: 20131965 DOI: 10.3109/10409230903578593] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA replication is a primary mechanism for maintaining genome integrity, but it serves this purpose best by cooperating with other proteins involved in DNA repair and recombination. Unlike leading strand synthesis, lagging strand synthesis has a greater risk of faulty replication for several reasons: First, a significant part of DNA is synthesized by polymerase alpha, which lacks a proofreading function. Second, a great number of Okazaki fragments are synthesized, processed and ligated per cell division. Third, the principal mechanism of Okazaki fragment processing is via generation of flaps, which have the potential to form a variety of structures in their sequence context. Finally, many proteins for the lagging strand interact with factors involved in repair and recombination. Thus, lagging strand DNA synthesis could be the best example of a converging place of both replication and repair proteins. To achieve the risky task with extraordinary fidelity, Okazaki fragment processing may depend on multiple layers of redundant, but connected pathways. An essential Dna2 endonuclease/helicase plays a pivotal role in processing common structural intermediates that occur during diverse DNA metabolisms (e.g. lagging strand synthesis and telomere maintenance). Many roles of Dna2 suggest that the preemptive removal of long or structured flaps ultimately contributes to genome maintenance in eukaryotes. In this review, we describe the function of Dna2 in Okazaki fragment processing, and discuss its role in the maintenance of genome integrity with an emphasis on its functional interactions with other factors required for genome maintenance.
Collapse
Affiliation(s)
- Young-Hoon Kang
- Center for DNA Replication and Genome Instability, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | | |
Collapse
|
10
|
Gührs KH, Groth M, Grosse F. A label-free assay of exonuclease activity using a pyrosequencing technique. Anal Biochem 2010; 405:11-8. [PMID: 20522331 DOI: 10.1016/j.ab.2010.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/17/2010] [Accepted: 05/19/2010] [Indexed: 12/01/2022]
Abstract
Enzymes with 3'-5' exonuclease activities are important in promoting the accuracy of DNA replication and DNA repair by proofreading. The alteration of the function of these enzymes by endogenous or exogenous effectors could, therefore, have a considerable impact on DNA replication and ultimately on genome integrity. We have developed a label-free high-throughput screening method for quantifying the effects of different reagents on exonuclease activity. The assay is based on a hairpin-forming biotinylated oligonucleotide substrate that contains one or more exonuclease-resistant phosphorothioate nucleotides. The activity and specificity of the selected 3'-5' exonuclease is determined indirectly using a sensitive pyrosequencing reaction after cleanup of the samples. In this pyrosequencing step, the amount of nucleotides filled into each position of the exonucleolytically degraded 3' end of the substrate can be recorded quantitatively and equals the amount of the nucleotides removed by the exonuclease. This system allows the estimation of both processivity and efficiency of the exonuclease activity. We have employed compounds reported in the literature to inhibit the exonuclease activities of either exonuclease III or the large fragment of polymerase I (Klenow fragment) to evaluate the assay.
Collapse
Affiliation(s)
- Karl-Heinz Gührs
- Biochemistry Workgroup, Leibniz Institute for Age Research-Fritz Lipmann Institute, D-07745 Jena, Germany.
| | | | | |
Collapse
|
11
|
Broderick S, Rehmet K, Concannon C, Nasheuer HP. Eukaryotic single-stranded DNA binding proteins: central factors in genome stability. Subcell Biochem 2010; 50:143-163. [PMID: 20012581 DOI: 10.1007/978-90-481-3471-7_8] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The single-stranded DNA binding proteins (SSBs) are required to maintain the integrity of the genome in all organisms. Replication protein A (RPA) is a nuclear SSB protein found in all eukaryotes and is required for multiple processes in DNA metabolism such as DNA replication, DNA repair, DNA recombination, telomere maintenance and DNA damage signalling. RPA is a heterotrimeric complex, binds ssDNA with high affinity, and interacts specifically with multiple proteins to fulfil its function in eukaryotes. RPA is phosphorylated in a cell cycle and DNA damage-dependent manner with evidence suggesting that phosphorylation has an important function in modulating the cellular DNA damage response. Considering the DNA-binding properties of RPA a mechanism of "molecular counting" to initiate DNA damage-dependent signalling is discussed. Recently a human homologue to the RPA2 subunit, called RPA4, was discovered and RPA4 can substitute for RPA2 in the RPA complex resulting in an "alternative" RPA (aRPA), which can bind to ssDNA with similar affinity as canonical RPA. Additional human SSBs, hSSB1 and hSSB2, were recently identified, with hSSB1 being localized in the nucleus and having implications in DNA repair. Mitochondrial SSBs (mtSSBs) have been found in all eukaryotes studied. mtSSBs are related to prokaryotic SSBs and essential to main the genome stability in eukaryotic mitochondria. Recently human mtSSB was identified as a novel binding partner of p53 and that it is able to stimulate the intrinsic exonuclease activity of p53. These findings and recent results associated with mutations in RPA suggest a link of SSBs to cancer.
Collapse
Affiliation(s)
- Sandra Broderick
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | | | | | | |
Collapse
|
12
|
Abstract
OBJECTIVE Nucleoside analogs, used against HIV, can be incorporated into a mitochondrial DNA by DNA polymerase gamma. Both the decrease in mitochondrial DNA and increased mutations of mitochondrial DNA may lead to mitochondrial diseases. The tumor suppressor protein p53 exhibits 3' --> 5' exonuclease activity and can provide a proofreading function for DNA polymerases. In the present study, we investigated the ability of p53 to excise incorporated nucleoside analogs from DNA in mitochondria. DESIGN The functional interaction of p53 and DNA polymerase gamma during the incorporation of nucleoside analog was examined in mitochondrial fractions of p53-null H1299 cells, as the source of DNA polymerase gamma. METHODS Primer extension reactions were carried out to elucidate the incorporation and removal of nucleoside analogs. RESULTS The results demonstrate that the excision of incorporated nucleoside analogs in mitochondrial fractions of H1299 cells increased in the presence of purified recombinant p53, or cytoplasmic extracts of large cell carcinoma 2 cells expressing endogenous wild-type p53 (but not specifically predepleted extracts) or cytoplasmic extracts of H1299 cells overexpressing wild-type p53, but not exonuclease-deficient mutant p53-R175H. The amount of nucleoside analogs incorporated into the elongated DNA with mitochondrial fractions of human colon carcinoma 116 (HCT116)(p53+/+) cells was lower than that of HCT116(p53-/-) cells. Furthermore, mitochondrion-localized elevation of p53 in HCT116(p53+/+) cells, following the irradiation-stress stimuli, correlates with the reduction in incorporation of nucleoside analogs and wrong nucleotides. CONCLUSION p53 in mitochondria may functionally interact with DNA polymerase gamma, thus providing a proofreading function during mitochondrial DNA replication for excision of nucleoside analogs and polymerization errors.
Collapse
|
13
|
Abstract
Mitochondrial localization of p53 was observed in stressed and unstressed cells. p53 is involved in DNA repair and apoptosis. It exerts physical and functional interactions with mitochondrial DNA and DNA polymerase gamma (pol gamma). The functional cooperation of p53 and pol gamma during DNA synthesis was examined in the mitochondrial fraction of p53-null H1299 cells, as the source of pol gamma. The results show that p53 may affect the accuracy of DNA synthesis in mitochondria: (1) the excision of a misincorporated nucleotide increases in the presence of (a) recombinant wild-type p53 (wtp53); (b) cytoplasmic fraction of LCC2 cells expressing endogenous wtp53 (but not specifically pre-depleted fraction); (c) cytoplasmic extract of H1299 cells overexpressing wtp53, but not exonuclease-deficient mutant p53-R175H. (2) Mitochondrial extracts of HCT116(p53+/+) cells display higher exonuclease activity compared with that of HCT116(p53-/-) cells. Addition of exogenous p53 complements the HCT116(p53-/-) mitochondrial extract mispair excision. Furthermore, the misincorporation was lower in the mitochondrial fraction of HCT116(p53+/+) cells as compared with that of HCT116(p53-/-) cells. (3) Irradiation-induced mitochondrial translocation of endogenous p53 in HCT116(p53+/+) cells correlates with the enhancement of error-correction activities. Taken together, the data suggest that p53 in mitochondria may be a component of an error-repair pathway and serve as guardian of the mitochondrial genome. The function of p53 in DNA repair and apoptosis is discussed.
Collapse
|
14
|
Bakhanashvili M, Gedelovich R, Grinberg S, Rahav G. Exonucleolytic degradation of RNA by p53 protein in cytoplasm. J Mol Med (Berl) 2007; 86:75-88. [PMID: 17701148 DOI: 10.1007/s00109-007-0247-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 07/04/2007] [Accepted: 07/09/2007] [Indexed: 12/28/2022]
Abstract
p53 in cytoplasm displays an intrinsic 3'-->5' exonuclease activity. To understand the significance of p53 exonuclease activity in cytoplasm, cytoplasmic extracts of various cell lines were examined for exonuclease activity with different single-stranded RNA (ssRNA) substrates. Using an in vitro RNA degradation assay, we observed in cytoplasmic extracts of LCC2 cells, expressing high levels of endogenous wtp53, an efficient 3'-->5' exonuclease activity with RNA substrates, removing the 3'-terminal nucleotides. Interestingly, RNA containing AU-rich sequences (ARE) is the permissive substrate for exonucleolytic degradation. Evidence that exonuclease function with RNA detected in cytoplasmic extracts is attributed to the p53 is supported by several facts: (1) this activity closely parallels with status and levels of endogenous cytoplasmic p53; (2) the endogenous exonuclease exerts identical RNA substrate specificity and excision profile characteristic for purified baculovirus-or bacterially-expressed wtp53s; (3) the exonuclease activity with ARE RNA is competed out by the presence of ss or double-stranded DNA substrate utilized by p53 protein in cytoplasm; (4) immunoprecipitation by specific anti-p53 antibodies markedly reduced the exonuclease activity with both RNA and DNA substrates; and (5) transfection of the wtp53, but not exonuclease-deficient mutant p53-R175H, into p53-null H1299 or HCT116 cells induced high levels of exonuclease activity with ARE RNA substrate in cytoplasm with characteristic excision profile. The efficient ARE RNA degradation correlates with the efficient binding of p53 to ARE RNA in cytoplasm. The possible role of p53 exonuclease activity in ARE-mRNA destabilization in cytoplasm, which may be important for expression of proteins that control cell growth and/or apoptosis is discussed.
Collapse
|
15
|
Abstract
Convergent studies demonstrated that p53 regulates homologous recombination (HR) independently of its classic tumour-suppressor functions in transcriptionally transactivating cellular target genes that are implicated in growth control and apoptosis. In this review, we summarise the analyses of the involvement of p53 in spontaneous and double-strand break (DSB)-triggered HR and in alternative DSB repair routes. Molecular characterisation indicated that p53 controls the fidelity of Rad51-dependent HR and represses aberrant processing of replication forks after stalling at unrepaired DNA lesions. These findings established a genome stabilising role of p53 in counteracting error-prone DSB repair. However, recent work has also unveiled a stimulatory role for p53 in topoisomerase I-induced recombinative repair events that may have implications for a gain-of-function phenotype of cancer-related p53 mutants. Additional evidence will be discussed which suggests that p53 and/or p53-regulated gene products also contribute to nucleotide excision, base excision, and mismatch repair.
Collapse
Affiliation(s)
- S A Gatz
- Universitätsklinik für Kinder- und Jugendmedizin, Eythstr. 24, 89075 Ulm, Germany
| | | |
Collapse
|
16
|
Giono LE, Manfredi JJ. The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol 2006; 209:13-20. [PMID: 16741928 DOI: 10.1002/jcp.20689] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The process of cell division is highly ordered and regulated. Checkpoints exist to delay progression into the next cell cycle phase only when the previous step is fully completed. The ultimate goal is to guarantee that the two daughter cells inherit a complete and faithful copy of the genome. Checkpoints can become activated due to DNA damage, exogenous stress signals, defects during the replication of DNA, or failure of chromosomes to attach to the mitotic spindle. Abrogation of cell cycle checkpoints can result in death for a unicellular organism or uncontrolled proliferation and tumorigenesis in metazoans (Nyberg et al., 2002). The tumor suppressor p53 plays a critical role in each of these cell cycle checkpoints and is reviewed here.
Collapse
Affiliation(s)
- Luciana E Giono
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
17
|
Nasheuer HP, Pospiech H, Syväoja J. Progress Towards the Anatomy of the Eukaryotic DNA Replication Fork. Genome Integr 2006. [DOI: 10.1007/7050_016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
18
|
Bakhanashvili M, Novitsky E, Rubinstein E, Levy I, Rahav G. Excision of nucleoside analogs from DNA by p53 protein, a potential cellular mechanism of resistance to inhibitors of human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother 2005; 49:1576-9. [PMID: 15793143 PMCID: PMC1068624 DOI: 10.1128/aac.49.4.1576-1579.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2004] [Revised: 10/12/2004] [Accepted: 12/28/2004] [Indexed: 11/20/2022] Open
Abstract
We investigated the ability of p53 in cytoplasm to excise nucleoside analogs (NAs). A decrease in incorporation of NAs by human immunodeficiency virus type 1 reverse transcriptase and their excision from DNA by p53, provided by the cytoplasmic fraction of LCC2 cells, suggest that p53 in cytoplasm may act as an external proofreader for NA incorporation.
Collapse
Affiliation(s)
- Mary Bakhanashvili
- Infectious Diseases Unit, Chaim Sheba Medical Center, Tel-Hashomer 52621, Israel.
| | | | | | | | | |
Collapse
|
19
|
Bakhanashvili M, Novitsky E, Lilling G, Rahav G. P53 in cytoplasm may enhance the accuracy of DNA synthesis by human immunodeficiency virus type 1 reverse transcriptase. Oncogene 2004; 23:6890-9. [PMID: 15286711 DOI: 10.1038/sj.onc.1207846] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tumor suppressor protein p53 displays 3' --> 5' exonuclease activity and can provide a proofreading function for DNA polymerases. Reverse transcriptase (RT) of human immunodeficiency virus (HIV)-1 is responsible for the conversion of the viral genomic ssRNA into the proviral DNA in the cytoplasm. The relatively low fidelity of HIV-1 RT was implicated as a dominant factor contributing to the genetic variability of the virus. The lack of intrinsic 3' --> 5' exonuclease activity, the formation of 3'-mispaired DNA and the subsequent extension of this DNA were shown to be determinants for the low fidelity of HIV-1 RT. It was of interest to analyse whether the cytoplasmic proteins may affect the accuracy of DNA synthesis by RT. We investigated the fidelity of DNA synthesis by HIV-1 RT with and without exonucleolytic proofreading provided by cytoplasmic fraction of LCC2 cells expressing high level of wild-type functional p53. Two basic features related to fidelity of DNA synthesis were studied: the misinsertion and mispair extension. The misincorporation of noncomplementary deoxynucleotides into nascent DNA and subsequent mispair extension by HIV-1 RT were substantially decreased in the presence of cytoplasmic fraction of LCC2 cells with both RNA/DNA and DNA/DNA template-primers with the same target sequence. The mispair extension frequencies obtained with the HIV-1 RT in the presence of cytoplasmic fraction of LCC2 cells were significantly lower (about 2.8-15-fold) than those detected with the purified enzyme. In addition, the productive interaction between polymerization (by HIV-1 RT) and exonuclease (by p53 in cytoplasm) activities was observed; p53 preferentially hydrolyses mispaired 3'-termini, permitting subsequent extension of the correctly paired 3'-terminus by HIV-1 RT. The data suggest that p53 in cytoplasm may affect the accuracy of DNA replication and the mutation spectra of HIV-1 RT by acting as an external proofreader. Furthermore, the decrease in error-prone DNA synthesis with RT in the presence of external exonuclease, provided by cytoplasmic p53, may partially account for lower mutation rate of HIV-1 observed in vivo.
Collapse
Affiliation(s)
- Mary Bakhanashvili
- Infectious Diseases Unit, Sheba Medical Center, Tel Hashomer 52621, Israel.
| | | | | | | |
Collapse
|
20
|
Wilson DM. Properties of and substrate determinants for the exonuclease activity of human apurinic endonuclease Ape1. J Mol Biol 2003; 330:1027-37. [PMID: 12860125 DOI: 10.1016/s0022-2836(03)00712-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ape1 is the major human abasic endonuclease, initiating repair of this common DNA lesion by incising the phosphodiester backbone 5' to the damage site. This enzyme also functions in specific contexts to excise 3'-blocking termini, e.g. phosphate and phosphoglycolate residues, from DNA. Recently, the comparatively "minor" 3' to 5' exonuclease activity of Ape1 was found to contribute to the excision of certain 3'-mismatched nucleotides. In this study, I characterize more thoroughly the 3'-nuclease properties of Ape1 and define the effects of specific DNA determinants on this function. Data within shows that Ape1 is a non- or poorly processive exonuclease, which degrades one nucleotide gap, 3'-recessed, and nicked DNAs, but exhibits no detectable activity on blunt end or single-stranded DNA. A 5'-phosphate, compared to a 5'-hydroxyl group, reduced Ape1 degradation activity roughly tenfold, suggesting that the biological impact of certain DNA single strand breaks may be influenced by the terminal chemistry. In the context of a base excision repair-like DNA intermediate, a 5'-abasic residue exerted an about tenfold attenuation on the 3' to 5' exonuclease efficiency of Ape1. A 3'-phosphate group had little impact on Ape1 exonuclease activity, and oligonucleotides harboring these blocking termini were activated by Ape1 for DNA polymerase beta extension. Ape1 was also found to remove 3'-tyrosyl residues from 3'-recessed and nicked DNAs, suggesting a potential role in processing covalent topoisomerase I-DNA intermediates formed during chromosome relaxation. While exhibiting preferential excision of thymine in a T:G mismatch context, Ape1 was unable to degrade a triple 3'-thymine mispair. However, Ape1 was able to excise double nucleotide mispairs, apparently through a novel 3'-flap-type endonuclease activity, again activating these substrates for polymerase beta extension.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, GRC, National Institute on Aging, IRP/NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825, USA
| |
Collapse
|
21
|
Boehden GS, Akyüz N, Roemer K, Wiesmüller L. p53 mutated in the transactivation domain retains regulatory functions in homology-directed double-strand break repair. Oncogene 2003; 22:4111-7. [PMID: 12821945 DOI: 10.1038/sj.onc.1206632] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tumor suppressor p53 transcriptionally transactivates cellular target genes that are implicated in growth control, apoptosis, and DNA repair. However, several studies involving p53 core domain mutants suggested that regulatory functions in recombinative repair do not require transcriptional transactivation and are separable from growth-regulation and apoptosis. Leu22 and Trp23 within the transactivation domain of human p53 play a critical role in binding basal components of the transcription machinery and, therefore, in the transactivation activity of p53. To further delineate whether p53 target genes are involved in recombination regulation, we ectopically expressed p53(22Q,23S) in p53-negative cell lines, which carry reporter systems for different homology-directed double-strand break (DSB) repair events. Like wild-type p53, p53(22Q,23S) efficiently downregulated homologous recombination on two chromosomally integrated substrates without affecting exchange on a substrate for the compound pathway of gene conversion and nonhomologous end joining. Only upon lowering the p53 protein to DNA substrate ratio by several orders of magnitude, we noticed a weak defect of a p53 transactivation domain mutant in DSB repair assays. In conclusion, molecular interactions of p53 within the N-terminal domain are not required to restrain DNA recombination, but might contribute to this genome stabilizing function.
Collapse
Affiliation(s)
- Gisa S Boehden
- Gynaecological Oncology, Universitätsfrauenklinik, D-89075 Ulm, Germany
| | | | | | | |
Collapse
|
22
|
Lilling G, Elena N, Sidi Y, Bakhanashvili M. p53-associated 3'-->5' exonuclease activity in nuclear and cytoplasmic compartments of cells. Oncogene 2003; 22:233-45. [PMID: 12527892 DOI: 10.1038/sj.onc.1206111] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tumor suppressor protein p53 plays an important role in maintenance of the genomic integrity of cells. p53 possesses an intrinsic 3'-->5' exonuclease activity. p53 was found in the nucleus and in the cytoplasm of the cell. In order to evaluate the subcellular location and extent of p53-associated 3'--> 5' exonuclease activity, we established an in vitro experimental system of cell lines with different nuclear/cytoplasmic distribution of p53. Nuclear and cytoplasmic extracts obtained from LCC2 cells (expressing a high level of cytoplasmic wild-type p53), MCF-7 cells (expressing a high level of wild-type nuclear p53), MDA cells (expressing mutant p53) and H1299 cells (p53-null) were subjected to the analysis of exonuclease activity. Interestingly, 3'-->5' exonuclease was predominantly cytoplasmic; the nuclear extracts derived from all cell lines tested, exerted a low level of exonuclease activity. Cytoplasmic extracts of LCC2 cells, with a high level of wild-type p53, showed an enhanced exonuclease activity in comparison to those expressing either a low level of wild-type p53 (in MCF-7 cells) or the mutant p53 (in MDA cells). Evidence that exonuclease function detected in cytoplasmic extracts is attributed to the p53 is supported by several facts: First, this activity closely parallels with levels and status of endogenous cytoplasmic p53. Second, immunoprecipitation of p53 from cytoplasmic extracts of LCC2 cells markedly reduced the exonuclease activity. Third, the observed 3'-->5' exonuclease in cytoplasmic fraction of LCC2 cells displays identical biochemical properties characteristic of recombinant wild-type p53. The biochemical functions include: (a) substrate specificity; exonuclease hydrolyzes single-stranded DNA in preference to double-stranded DNA and RNA/DNA template-primers, (b) efficient excision of 3'-terminal mispairs from DNA/DNA and RNA/DNA substrates, (c) the preferential excision of purine-purine mispairs over purine-pyrimidine mispairs and (d) functional interaction with exonuclease-deficient DNA polymerase, for example, murine leukemia virus reverse transcriptase (representing a relatively low fidelity enzyme), thus enhancing the fidelity of DNA synthesis by excision of mismatched nucleotides from the nascent DNA strand. Taken together, the data demonstrate that wild-type p53 in cytoplasm, in its noninduced state, is functional; it displays intrinsic 3'-->5' exonuclease activity. The possible role of p53-associated 3'-->5' exonuclease activity in DNA repair in nucleus and cytoplasm is discussed.
Collapse
Affiliation(s)
- Gila Lilling
- Department of Medicine C, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | |
Collapse
|