1
|
Jolley EA, Yakhnin H, Tack DC, Babitzke P, Bevilacqua PC. Transcriptome-wide probing reveals RNA thermometers that regulate translation of glycerol permease genes in Bacillus subtilis. RNA (NEW YORK, N.Y.) 2023; 29:1365-1378. [PMID: 37217261 PMCID: PMC10573289 DOI: 10.1261/rna.079652.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
RNA structure regulates bacterial gene expression by several distinct mechanisms via environmental and cellular stimuli, one of which is temperature. While some genome-wide studies have focused on heat shock treatments and the subsequent transcriptomic changes, soil bacteria are less likely to experience such rapid and extreme temperature changes. Though RNA thermometers (RNATs) have been found in 5' untranslated leader regions (5' UTRs) of heat shock and virulence-associated genes, this RNA-controlled mechanism could regulate other genes as well. Using Structure-seq2 and the chemical probe dimethyl sulfate (DMS) at four growth temperatures ranging from 23°C to 42°C, we captured a dynamic response of the Bacillus subtilis transcriptome to temperature. Our transcriptome-wide results show RNA structural changes across all four temperatures and reveal nonmonotonic reactivity trends with increasing temperature. Then, focusing on subregions likely to contain regulatory RNAs, we examined 5' UTRs to identify large, local reactivity changes. This approach led to the discovery of RNATs that control the expression of glpF (glycerol permease) and glpT (glycerol-3-phosphate permease); expression of both genes increased with increased temperature. Results with mutant RNATs indicate that both genes are controlled at the translational level. Increased import of glycerols at high temperatures could provide thermoprotection to proteins.
Collapse
Affiliation(s)
- Elizabeth A Jolley
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Helen Yakhnin
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David C Tack
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Paul Babitzke
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
2
|
Li S, Su Z, Lehmann J, Stamatopoulou V, Giarimoglou N, Henderson FE, Fan L, Pintilie GD, Zhang K, Chen M, Ludtke SJ, Wang YX, Stathopoulos C, Chiu W, Zhang J. Structural basis of amino acid surveillance by higher-order tRNA-mRNA interactions. Nat Struct Mol Biol 2019; 26:1094-1105. [PMID: 31740854 PMCID: PMC6899168 DOI: 10.1038/s41594-019-0326-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Amino acid availability in Gram-positive bacteria is monitored by T-box riboswitches. T-boxes directly bind tRNAs, assess their aminoacylation state, and regulate the transcription or translation of downstream genes to maintain nutritional homeostasis. Here, we report cocrystal and cryo-EM structures of Geobacillus kaustophilus and Bacillus subtilis T-box-tRNA complexes, detailing their multivalent, exquisitely selective interactions. The T-box forms a U-shaped molecular vise that clamps the tRNA, captures its 3' end using an elaborate 'discriminator' structure, and interrogates its aminoacylation state using a steric filter fashioned from a wobble base pair. In the absence of aminoacylation, T-boxes clutch tRNAs and form a continuously stacked central spine, permitting transcriptional readthrough or translation initiation. A modeled aminoacyl disrupts tRNA-T-box stacking, severing the central spine and blocking gene expression. Our data establish a universal mechanism of amino acid sensing on tRNAs and gene regulation by T-box riboswitches and exemplify how higher-order RNA-RNA interactions achieve multivalency and specificity.
Collapse
Affiliation(s)
- Shuang Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Zhaoming Su
- Department of Bioengineering and Department of Microbiology and Immunology, James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Jean Lehmann
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Campus Paris-Saclay, Gif-sur-Yvette, France
| | | | - Nikoleta Giarimoglou
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
| | - Frances E Henderson
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Lixin Fan
- Small-Angle X-ray Scattering Core Facility, Center for Cancer Research of the National Cancer Institute, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Grigore D Pintilie
- Department of Bioengineering and Department of Microbiology and Immunology, James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Kaiming Zhang
- Department of Bioengineering and Department of Microbiology and Immunology, James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Muyuan Chen
- Verna Marrs and McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Steven J Ludtke
- Verna Marrs and McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yun-Xing Wang
- Small-Angle X-ray Scattering Core Facility, Center for Cancer Research of the National Cancer Institute, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA.,Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | | | - Wah Chiu
- Department of Bioengineering and Department of Microbiology and Immunology, James H. Clark Center, Stanford University, Stanford, CA, USA. .,Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, Stanford University, Stanford, CA, USA.
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
3
|
Zhang J, Chetnani B, Cormack ED, Alonso D, Liu W, Mondragón A, Fei J. Specific structural elements of the T-box riboswitch drive the two-step binding of the tRNA ligand. eLife 2018; 7:39518. [PMID: 30251626 PMCID: PMC6197855 DOI: 10.7554/elife.39518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/24/2018] [Indexed: 12/29/2022] Open
Abstract
T-box riboswitches are cis-regulatory RNA elements that regulate the expression of proteins involved in amino acid biosynthesis and transport by binding to specific tRNAs and sensing their aminoacylation state. While the T-box modular structural elements that recognize different parts of a tRNA have been identified, the kinetic trajectory describing how these interactions are established temporally remains unclear. Using smFRET, we demonstrate that tRNA binds to the riboswitch in two steps, first anticodon recognition followed by the sensing of the 3’ NCCA end, with the second step accompanied by a T-box riboswitch conformational change. Studies on site-specific mutants highlight that specific T-box structural elements drive the two-step binding process in a modular fashion. Our results set up a kinetic framework describing tRNA binding by T-box riboswitches, and suggest such binding mechanism is kinetically beneficial for efficient, co-transcriptional recognition of the cognate tRNA ligand. Living organisms depend upon a group of chemicals called amino acids to survive. Amino acids are the building blocks of proteins, and proteins have many important roles within and around cells. Bacteria regulate certain genes to ensure they have the right balance of different amino acids to survive. By controlling the availability of certain proteins that help them to make or collect certain amino acids, bacteria can control their overall amino acid balance. Before a protein is made, a molecular machine called RNA polymerase must first copy the information in a gene to make a molecule called a messenger RNA (mRNA). The mRNA is then translated to make the protein from individual amino acids. In this process, each amino acid needs to be first attached to another molecule called a transfer RNA (tRNA). In many bacteria species, the mRNAs involved in making or transporting amino acids contain structures called T-boxes. These structures guide the RNA polymerase to make more of the mRNAs when the levels of the amino acid become too low. A T-box, however, does not sense the level of the amino acid directly. Instead it senses the number of tRNA molecules that do not carry an amino acid. Zhang, Chetnani et al. examined a particular T-box interacting with tRNA using pairs of fluorescent dyes to detect distances between molecules. The T-box first recognizes a part of the tRNA called the anticodon to make sure it binds the correct type of tRNA. It then changes its shape to detect whether the tRNA is attached to an amino acid. This two-step process is driven by multiple structural elements within the T-box, and the flexibility of the T-box plays a critical role. A cell’s survival depends on it keeping amino acid levels under control. Understanding how bacteria do this could lead to new antibiotic drugs that target the T-box to kill cells. This study also provides insights into the workings of mRNA components like T-boxes – a type of riboswitch – which is an unusual means of controlling gene activity.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Institute for Biophysical Dynamics, University of Chicago, Chicago, United States
| | - Bhaskar Chetnani
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | | | - Dulce Alonso
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Wei Liu
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Jingyi Fei
- Institute for Biophysical Dynamics, University of Chicago, Chicago, United States.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| |
Collapse
|
4
|
Chetnani B, Mondragón A. Molecular envelope and atomic model of an anti-terminated glyQS T-box regulator in complex with tRNAGly. Nucleic Acids Res 2017; 45:8079-8090. [PMID: 28531275 PMCID: PMC5570125 DOI: 10.1093/nar/gkx451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 11/26/2022] Open
Abstract
A T-box regulator or riboswitch actively monitors the levels of charged/uncharged tRNA and participates in amino acid homeostasis by regulating genes involved in their utilization or biosynthesis. It has an aptamer domain for cognate tRNA recognition and an expression platform to sense the charge state and modulate gene expression. These two conserved domains are connected by a variable linker that harbors additional secondary structural elements, such as Stem III. The structural basis for specific tRNA binding is known, but the structural basis for charge sensing and the role of other elements remains elusive. To gain new structural insights on the T-box mechanism, a molecular envelope was calculated from small angle X-ray scattering data for the Bacillus subtilis glyQS T-box riboswitch in complex with an uncharged tRNAGly. A structural model of an anti-terminated glyQS T-box in complex with its cognate tRNAGly was derived based on the molecular envelope. It shows the location and relative orientation of various secondary structural elements. The model was validated by comparing the envelopes of the wild-type complex and two variants. The structural model suggests that in addition to a possible regulatory role, Stem III could aid in preferential stabilization of the T-box anti-terminated state allowing read-through of regulated genes.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- Base Sequence
- Models, Molecular
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Gly/chemistry
- RNA, Transfer, Gly/genetics
- RNA, Transfer, Gly/metabolism
- Riboswitch/genetics
- Scattering, Small Angle
- X-Ray Diffraction
Collapse
Affiliation(s)
- Bhaskar Chetnani
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| |
Collapse
|
5
|
Willson BJ, Kovács K, Wilding-Steele T, Markus R, Winzer K, Minton NP. Production of a functional cell wall-anchored minicellulosome by recombinant Clostridium acetobutylicum ATCC 824. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:109. [PMID: 27222664 PMCID: PMC4877998 DOI: 10.1186/s13068-016-0526-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND The use of fossil fuels is no longer tenable. Not only are they a finite resource, their use is damaging the environment through pollution and global warming. Alternative, environmentally friendly, renewable sources of chemicals and fuels are required. To date, the focus has been on using lignocellulose as a feedstock for microbial fermentation. However, its recalcitrance to deconstruction is making the development of economic processes extremely challenging. One solution is the generation of an organism suitable for use in consolidated bioprocessing (CBP), i.e. one able to both hydrolyse lignocellulose and ferment the released sugars, and this represents an important goal for synthetic biology. We aim to use synthetic biology to develop the solventogenic bacterium C. acetobutylicum as a CBP organism through the introduction of a cellulosome, a complex of cellulolytic enzymes bound to a scaffold protein called a scaffoldin. In previous work, we were able to demonstrate the in vivo production of a C. thermocellum-derived minicellulosome by recombinant strains of C. acetobutylicum, and aim to develop on this success, addressing potential issues with the previous strategy. RESULTS The genes for the cellulosomal enzymes Cel9G, Cel48F, and Xyn10A from C. cellulolyticum were integrated into the C. acetobutylicum genome using Allele-Coupled Exchange (ACE) technology, along with a miniscaffoldin derived from C. cellulolyticum CipC. The possibility of anchoring the recombinant cellulosome to the cell surface using the native sortase system was assessed, and the cellulolytic properties of the recombinant strains were assayed via plate growth, batch fermentation and sugar release assays. CONCLUSIONS We have been able to demonstrate the synthesis and in vivo assembly of a four-component minicellulosome by recombinant C. acetobutylicum strains. Furthermore, we have been able to anchor a minicellulosome to the C. acetobutylicum cell wall by the use of the native sortase system. The recombinant strains display an improved growth phenotype on xylan and an increase in released reducing sugar from several substrates including untreated powdered wheat straw. This constitutes an important milestone towards the development of a truly cellulolytic strain suitable for CBP.
Collapse
Affiliation(s)
- Benjamin J. Willson
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Katalin Kovács
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Tom Wilding-Steele
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Robert Markus
- />SLIM Imaging Unit, Faculty of Medicine and Health Sciences, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Klaus Winzer
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Nigel P. Minton
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| |
Collapse
|
6
|
Liu J, Zeng C, Hogan V, Zhou S, Monwar MM, Hines JV. Identification of Spermidine Binding Site in T-box Riboswitch Antiterminator RNA. Chem Biol Drug Des 2015; 87:182-9. [PMID: 26348362 DOI: 10.1111/cbdd.12660] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/24/2015] [Accepted: 08/14/2015] [Indexed: 01/08/2023]
Abstract
The T-box transcription antitermination riboswitch controls bacterial gene expression by structurally responding to uncharged, cognate tRNA. Previous studies indicated that cofactors, such as the polyamine spermidine, might serve a specific functional role in enhancing riboswitch efficacy. As riboswitch function depends on key RNA structural changes involving the antiterminator element, the interaction of spermidine with the T-box riboswitch antiterminator element was investigated. Spermidine binds antiterminator model RNA with high affinity (micromolar Kd ) based on isothermal titration calorimetry and fluorescence-monitored binding assays. NMR titration studies, molecular modeling, and inline and enzymatic probing studies indicate that spermidine binds at the 3' portion of the highly conserved seven-nucleotide bulge in the antiterminator. Together, these results support the conclusion that spermidine binds the T-box antiterminator RNA preferentially in a location important for antiterminator function. The implications of these findings are significant both for better understanding of the T-box riboswitch mechanism and for antiterminator-targeted drug discovery efforts.
Collapse
Affiliation(s)
- Jia Liu
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Chunxi Zeng
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Vivian Hogan
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Shu Zhou
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Md Masud Monwar
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Jennifer V Hines
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
7
|
Apostolidi M, Saad NY, Drainas D, Pournaras S, Becker HD, Stathopoulos C. A glyS T-box riboswitch with species-specific structural features responding to both proteinogenic and nonproteinogenic tRNAGly isoacceptors. RNA (NEW YORK, N.Y.) 2015; 21:1790-806. [PMID: 26276802 PMCID: PMC4574755 DOI: 10.1261/rna.052712.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/13/2015] [Indexed: 06/04/2023]
Abstract
In Staphylococcus aureus, a T-box riboswitch exists upstream of the glyS gene to regulate transcription of the sole glycyl-tRNA synthetase, which aminoacylates five tRNA(Gly) isoacceptors bearing GCC or UCC anticodons. Subsequently, the glycylated tRNAs serve as substrates for decoding glycine codons during translation, and also as glycine donors for exoribosomal synthesis of pentaglycine peptides during cell wall formation. Probing of the predicted T-box structure revealed a long stem I, lacking features previously described for similar T-boxes. Moreover, the antiterminator stem includes a 42-nt long intervening sequence, which is staphylococci-specific. Finally, the terminator conformation adopts a rigid two-stem structure, where the intervening sequence forms the first stem followed by the second stem, which includes the more conserved residues. Interestingly, all five tRNA(Gly) isoacceptors interact with S. aureus glyS T-box with different binding affinities and they all induce transcription readthrough at different levels. The ability of both GCC and UCC anticodons to interact with the specifier loop indicates ambiguity during the specifier triplet reading, similar to the unconventional reading of glycine codons during protein synthesis. The S. aureus glyS T-box structure is consistent with the recent crystallographic and NMR studies, despite apparent differences, and highlights the phylogenetic variability of T-boxes when studied in a genome-dependent context. Our data suggest that the S. aureus glyS T-box exhibits differential tRNA selectivity, which possibly contributes toward the regulation and synchronization of ribosomal and exoribosomal peptide synthesis, two essential but metabolically unrelated pathways.
Collapse
Affiliation(s)
- Maria Apostolidi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Nizar Y Saad
- Unité Mixte de Recherche 7156 Génétique Moléculaire, Génomique, Microbiologie, CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | - Denis Drainas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Spyros Pournaras
- Department of Microbiology, School of Medicine, University of Athens, 11527 Athens, Greece
| | - Hubert D Becker
- Unité Mixte de Recherche 7156 Génétique Moléculaire, Génomique, Microbiologie, CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | | |
Collapse
|
8
|
Liu LC, Grundy FJ, Henkin TM. Non-Conserved Residues in Clostridium acetobutylicum tRNA(Ala) Contribute to tRNA Tuning for Efficient Antitermination of the alaS T Box Riboswitch. Life (Basel) 2015; 5:1567-82. [PMID: 26426057 PMCID: PMC4695836 DOI: 10.3390/life5041567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 11/16/2022] Open
Abstract
The T box riboswitch regulates expression of amino acid-related genes in Gram-positive bacteria by monitoring the aminoacylation status of a specific tRNA, the binding of which affects the folding of the riboswitch into mutually exclusive terminator or antiterminator structures. Two main pairing interactions between the tRNA and the leader RNA have been demonstrated to be necessary, but not sufficient, for efficient antitermination. In this study, we used the Clostridium acetobutylicum alaS gene, which encodes alanyl-tRNA synthetase, to investigate the specificity of the tRNA response. We show that the homologous C. acetobutylicum tRNAAla directs antitermination of the C. acetobutylicum alaS gene in vitro, but the heterologous Bacillus subtilis tRNAAla (with the same anticodon and acceptor end) does not. Base substitutions at positions that vary between these two tRNAs revealed synergistic and antagonistic effects. Variation occurs primarily at positions that are not conserved in tRNAAla species, which indicates that these non-conserved residues contribute to optimal antitermination of the homologous alaS gene. This study suggests that elements in tRNAAla may have coevolved with the homologous alaS T box leader RNA for efficient antitermination.
Collapse
Affiliation(s)
- Liang-Chun Liu
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Frank J Grundy
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Tina M Henkin
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Abstract
The T box riboswitch is an intriguing potential target for antibacterial drug discovery. Found primarily in Gram-positive bacteria, the riboswitch regulates gene expression by selectively responding to uncharged tRNA to control transcription readthrough. Polyamines and molecular crowding are known to specifically affect RNA function, but their effect on T box riboswitch efficacy and tRNA affinity have not been fully characterized. A fluorescence-monitored in vitro transcription assay was developed to readily quantify these molecular interactions and to provide a moderate-throughput functional assay for a comprehensive drug discovery screening cascade. The polyamine spermidine specifically enhanced T box riboswitch readthrough efficacy with an EC50 = 0.58 mM independent of tRNA binding. Molecular crowding, simulated by the addition of polyethylene glycol, had no effect on tRNA affinity for the riboswitch, but did reduce the efficacy of tRNA-induced readthrough. These results indicate that the T box riboswitch tRNA affinity and readthrough efficacy are intricately modulated by environmental factors.
Collapse
|
10
|
T box riboswitches in Actinobacteria: translational regulation via novel tRNA interactions. Proc Natl Acad Sci U S A 2015; 112:1113-8. [PMID: 25583497 DOI: 10.1073/pnas.1424175112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The T box riboswitch regulates many amino acid-related genes in Gram-positive bacteria. T box riboswitch-mediated gene regulation was shown previously to occur at the level of transcription attenuation via structural rearrangements in the 5' untranslated (leader) region of the mRNA in response to binding of a specific uncharged tRNA. In this study, a novel group of isoleucyl-tRNA synthetase gene (ileS) T box leader sequences found in organisms of the phylum Actinobacteria was investigated. The Stem I domains of these RNAs lack several highly conserved elements that are essential for interaction with the tRNA ligand in other T box RNAs. Many of these RNAs were predicted to regulate gene expression at the level of translation initiation through tRNA-dependent stabilization of a helix that sequesters a sequence complementary to the Shine-Dalgarno (SD) sequence, thus freeing the SD sequence for ribosome binding and translation initiation. We demonstrated specific binding to the cognate tRNA(Ile) and tRNA(Ile)-dependent structural rearrangements consistent with regulation at the level of translation initiation, providing the first biochemical demonstration, to our knowledge, of translational regulation in a T box riboswitch.
Collapse
|
11
|
Fluorescence assays for monitoring RNA-ligand interactions and riboswitch-targeted drug discovery screening. Methods Enzymol 2014; 550:363-83. [PMID: 25605395 DOI: 10.1016/bs.mie.2014.10.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Riboswitches and other noncoding regulatory RNA are intriguing targets for the development of therapeutic agents. A significant challenge in the drug discovery process, however, is the identification of potent compounds that bind the target RNA specifically and disrupt its function. Essential to this process is an effectively designed cascade of screening assays. A screening cascade for identifying compounds that target the T box riboswitch antiterminator element is described. In the primary assays, moderate to higher throughput screening of compound libraries is achieved by combining the sensitivity of fluorescence techniques with functionally relevant assays. Active compounds are then validated and the binding to target RNA further characterized in secondary assays. The cascade of assays monitor ligand-induced changes in the steady-state fluorescence of an attached dye or internally incorporated 2-aminopurine; the fluorescence anisotropy of an RNA complex; and, the thermal denaturation fluorescence profile of a fluorophore-quencher labeled RNA. While the assays described have been developed for T box riboswitch-targeted drug discovery, the fluorescence methods and screening cascade design principles can be applied to drug discovery efforts targeted toward other medicinally relevant noncoding RNA.
Collapse
|
12
|
Tyramine biosynthesis is transcriptionally induced at low pH and improves the fitness of Enterococcus faecalis in acidic environments. Appl Microbiol Biotechnol 2014; 99:3547-58. [DOI: 10.1007/s00253-014-6301-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/04/2014] [Accepted: 12/06/2014] [Indexed: 10/24/2022]
|
13
|
Zhang J, Ferré-D'Amaré AR. Direct evaluation of tRNA aminoacylation status by the T-box riboswitch using tRNA-mRNA stacking and steric readout. Mol Cell 2014; 55:148-55. [PMID: 24954903 DOI: 10.1016/j.molcel.2014.05.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/28/2014] [Accepted: 04/08/2014] [Indexed: 01/01/2023]
Abstract
T-boxes are gene-regulatory mRNA elements with which Gram-positive bacteria sense amino acid availability. T-boxes have two functional domains. Stem I recognizes the overall shape and anticodon of tRNA, while a 3' domain evaluates its aminoacylation status, overcoming an otherwise stable transcriptional terminator if the bound tRNA is uncharged. Although T-boxes are believed to evaluate tRNA charge status without using any proteins, this has not been demonstrated experimentally because of the instability of aminoacyl-tRNA. Using a simple method to prepare homogeneous aminoacyl-tRNA, we show that the Bacillus subtilis glyQS T-box functions independently of any tRNA-binding protein. Comparison of aminoacyl-tRNA analogs demonstrates that the T-box detects the molecular volume of tRNA 3'-substituents. Calorimetry and fluorescence lifetime analysis of labeled RNAs shows that the tRNA acceptor end coaxially stacks on a helix in the T-box 3' domain. This intimate intermolecular association, selective for uncharged tRNA, stabilizes the antiterminator conformation of the T-box.
Collapse
Affiliation(s)
- Jinwei Zhang
- National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892-8012, USA
| | - Adrian R Ferré-D'Amaré
- National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892-8012, USA.
| |
Collapse
|
14
|
Henkin TM. The T box riboswitch: A novel regulatory RNA that utilizes tRNA as its ligand. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:959-963. [PMID: 24816551 DOI: 10.1016/j.bbagrm.2014.04.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 12/23/2022]
Abstract
The T box riboswitch is a cis-acting regulatory RNA that controls expression of amino acid-related genes in response to the aminoacylation state of a specific tRNA. Multiple genes in the same organism can utilize this mechanism, with each gene responding independently to its cognate tRNA. The uncharged tRNA interacts directly with the regulatory RNA element, and this interaction promotes readthrough of an intrinsic transcriptional termination site upstream of the regulated coding sequence. A second class of T box elements uses a similar tRNA-dependent response to regulate translation initiation. This review will describe the current state of our knowledge about this regulatory system. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Tina M Henkin
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Grigg JC, Ke A. Structural determinants for geometry and information decoding of tRNA by T box leader RNA. Structure 2013; 21:2025-32. [PMID: 24095061 PMCID: PMC3879790 DOI: 10.1016/j.str.2013.09.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 01/07/2023]
Abstract
T box riboswitches are cis-acting RNA elements that bind to tRNA and sense its aminoacylation state to influence gene expression. Here, we present the 3.2 Å resolution X-ray crystal structures of the T box Stem I-tRNA complex and tRNA, in isolation. T box Stem I forms an arched conformation with extensive intermolecular contacts to two key points of tRNA, the anticodon and D/T-loops. Free and complexed tRNA exist in significantly different conformations, with the contacts stabilizing flexible D/T-loops and a rearrangement of the D-loop. Using a designed T box RNA/tRNA system, we demonstrate that the T box riboswitch monitors the length and orientation of two essential contacts. Length or orientation mismatches engineered into the T box riboswitch and tRNA disrupt the complex, whereas simultaneous insertion of full helical turns realigns the interfaces and restores interaction between artificially elongated T box riboswitch and tRNA molecules.
Collapse
Affiliation(s)
- Jason C. Grigg
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14850, USA
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14850, USA,Correspondence:
| |
Collapse
|
16
|
Chang AT, Nikonowicz EP. Solution NMR determination of hydrogen bonding and base pairing between the glyQS T box riboswitch Specifier domain and the anticodon loop of tRNA(Gly). FEBS Lett 2013; 587:3495-9. [PMID: 24036450 DOI: 10.1016/j.febslet.2013.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022]
Abstract
In Gram-positive bacteria the tRNA-dependent T box riboswitch regulates the expression of many amino acid biosynthetic and aminoacyl-tRNA synthetase genes through a transcription attenuation mechanism. The Specifier domain of the T box riboswitch contains the Specifier sequence that is complementary to the tRNA anticodon and is flanked by a highly conserved purine nucleotide that could result in a fourth base pair involving the invariant U33 of tRNA. We show that the interaction between the T box Specifier domain and tRNA consists of three Watson-Crick base pairs and that U33 confers stability to the complex through intramolecular hydrogen bonding. Enhanced packing within the Specifier domain loop E motif may stabilize the complex and contribute to cognate tRNA selection.
Collapse
Affiliation(s)
- Andrew T Chang
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005-1892, United States
| | | |
Collapse
|
17
|
Saad NY, Stamatopoulou V, Brayé M, Drainas D, Stathopoulos C, Becker HD. Two-codon T-box riboswitch binding two tRNAs. Proc Natl Acad Sci U S A 2013; 110:12756-61. [PMID: 23858450 PMCID: PMC3732954 DOI: 10.1073/pnas.1304307110] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
T-box riboswitches control transcription of downstream genes through the tRNA-binding formation of terminator or antiterminator structures. Previously reported T-boxes were described as single-specificity riboswitches that can bind specific tRNA anticodons through codon-anticodon interactions with the nucleotide triplet of their specifier loop (SL). However, the possibility that T-boxes might exhibit specificity beyond a single tRNA had been overlooked. In Clostridium acetobutylicum, the T-box that regulates the operon for the essential tRNA-dependent transamidation pathway harbors a SL with two potential overlapping codon positions for tRNA(Asn) and tRNA(Glu). To test its specificity, we performed extensive mutagenic, biochemical, and chemical probing analyses. Surprisingly, both tRNAs can efficiently bind the SL in vitro and in vivo. The dual specificity of the T-box is allowed by a single base shift on the SL from one overlapping codon to the next. This feature allows the riboswitch to sense two tRNAs and balance the biosynthesis of two amino acids. Detailed genomic comparisons support our observations and suggest that "flexible" T-box riboswitches are widespread among bacteria, and, moreover, their specificity is dictated by the metabolic interconnection of the pathways under control. Taken together, our results support the notion of a genome-dependent codon ambiguity of the SLs. Furthermore, the existence of two overlapping codons imposes a unique example of tRNA-dependent regulation at the transcriptional level.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Asparagine/biosynthesis
- Asparagine/genetics
- Clostridium acetobutylicum/chemistry
- Clostridium acetobutylicum/genetics
- Clostridium acetobutylicum/metabolism
- Glutamic Acid/biosynthesis
- Glutamic Acid/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Asn/chemistry
- RNA, Transfer, Asn/genetics
- RNA, Transfer, Asn/metabolism
- RNA, Transfer, Glu/chemistry
- RNA, Transfer, Glu/genetics
- RNA, Transfer, Glu/metabolism
- Riboswitch/physiology
Collapse
Affiliation(s)
- Nizar Y. Saad
- Unité Mixte de Recherche 7156 Génétique Moléculaire, Génomique, Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
- Unité Propre de Recherche Architecture et Réactivité de l’ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, F-67084 Strasbourg, France; and
| | | | - Mélanie Brayé
- Unité Propre de Recherche Architecture et Réactivité de l’ARN, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, F-67084 Strasbourg, France; and
| | - Denis Drainas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | - Hubert Dominique Becker
- Unité Mixte de Recherche 7156 Génétique Moléculaire, Génomique, Microbiologie, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
18
|
T box RNA decodes both the information content and geometry of tRNA to affect gene expression. Proc Natl Acad Sci U S A 2013; 110:7240-5. [PMID: 23589841 PMCID: PMC3645572 DOI: 10.1073/pnas.1222214110] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The T box leader sequence is an RNA element that controls gene expression by binding directly to a specific tRNA and sensing its aminoacylation state. This interaction controls expression of amino acid-related genes in a negative feedback loop. The T box RNA structure is highly conserved, but its tRNA binding mechanism is only partially understood. Known sequence elements are the specifier sequence, which recognizes the tRNA anticodon, and the antiterminator bulge, which base pairs with the tRNA acceptor end. Here, we reveal the crucial function of the highly conserved stem I distal region in tRNA recognition and report its 2.65-Å crystal structure. The apex of this region contains an intricately woven loop-loop interaction between two conserved motifs, the Adenine-guanine (AG) bulge and the distal loop. This loop-loop structure presents a base triple on its surface that is optimally positioned for base-stacking interactions. Mutagenesis, cross-linking, and small-angle X-ray scattering data demonstrate that the apical base triple serves as a binding platform to dock the tRNA D- and T-loops. Strikingly, the binding platform strongly resembles the D- and T-loop binding elements from RNase P and the ribosome exit site, suggesting that this loop-loop structure may represent a widespread tRNA recognition platform. We propose a two-checkpoint molecular ruler model for tRNA decoding in which the information content of tRNA is first examined through specifier sequence-anticodon interaction, and the length of the tRNA anticodon arm is then measured by the distal loop-loop platform. When both conditions are met, tRNA is secured, and its aminoacylation state is sensed.
Collapse
|
19
|
Jentzsch F, Hines JV. Interfacing medicinal chemistry with structural bioinformatics: implications for T box riboswitch RNA drug discovery. BMC Bioinformatics 2012; 13 Suppl 2:S5. [PMID: 22536868 PMCID: PMC3375634 DOI: 10.1186/1471-2105-13-s2-s5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background The T box riboswitch controls bacterial transcription by structurally responding to tRNA aminoacylation charging ratios. Knowledge of the thermodynamic stability difference between two competing structural elements within the riboswitch, the terminator and the antiterminator, is critical for effective T box-targeted drug discovery. Methods The ΔG of aminoacyl tRNA synthetase (aaRS) T box riboswitch terminators and antiterminators was predicted using DINAMelt and the resulting ΔΔG (ΔGTerminator - ΔGAntiterminator) values were compared. Results Average ΔΔG values did not differ significantly between the bacterial species analyzed, but there were significant differences based on the type of aaRS. Conclusions The data indicate that, of the bacteria studied, there is little potential for drug targeting based on overall bacteria-specific thermodynamic differences of the T box antiterminator vs. terminator stability, but that aaRS-specific thermodynamic differences could possibly be exploited for designing drug specificity.
Collapse
|
20
|
Linares DM, Fernández M, Del-Río B, Ladero V, Martin MC, Alvarez MA. The tyrosyl-tRNA synthetase like gene located in the tyramine biosynthesis cluster of Enterococcus durans is transcriptionally regulated by tyrosine concentration and extracellular pH. BMC Microbiol 2012; 12:23. [PMID: 22333391 PMCID: PMC3315439 DOI: 10.1186/1471-2180-12-23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 02/14/2012] [Indexed: 02/02/2023] Open
Abstract
Background The tyramine producer Enterococcus durans IPLA655 contains all the necessary genes for tyramine biosynthesis, grouped in the TDC cluster. This cluster includes tyrS, an aminoacyl-tRNA synthetase like gene. Results This work shows that tyrS was maximally transcribed in absence of tyrosine at acidic pH, showing a greater than 10-fold induction in mRNA levels over levels occurring in presence of tyrosine. Mapping of the tyrS transcriptional start site revealed an unusually long untranslated leader region of 322 bp, which displays the typical features of the T box transcriptional attenuation mechanism. The tyrosine concentration regulation of tyrS was found to be mediated by a transcription antitermination system, whereas the specific induction at acidic pH was regulated at transcription initiation level. Conclusions The expression of the tyrS gene present in the TDC cluster of E. durans is transcriptionally regulated by tyrosine concentration and extracelular pH. The regulation is mediated by both an antitermination system and the promoter itself.
Collapse
|
21
|
Orac CM, Zhou S, Means JA, Boehm D, Bergmeier SC, Hines JV. Synthesis and stereospecificity of 4,5-disubstituted oxazolidinone ligands binding to T-box riboswitch RNA. J Med Chem 2011; 54:6786-95. [PMID: 21812425 DOI: 10.1021/jm2006904] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The enantiomers and the cis isomers of two previously studied 4,5-disubstituted oxazolidinones have been synthesized, and their binding to the T-box riboswitch antiterminator model RNA has been investigated in detail. Characterization of ligand affinities and binding site localization indicates that there is little stereospecific discrimination for binding antiterminator RNA alone. This binding similarity between enantiomers is likely due to surface binding, which accommodates ligand conformations that result in comparable ligand-antiterminator contacts. These results have significant implications for T-box antiterminator-targeted drug discovery and, in general, for targeting other medicinally relevant RNA that do not present deep binding pockets.
Collapse
Affiliation(s)
- Crina M Orac
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | | | | | | | | | | |
Collapse
|
22
|
Maciagiewicz I, Zhou S, Bergmeier SC, Hines JV. Structure-activity studies of RNA-binding oxazolidinone derivatives. Bioorg Med Chem Lett 2011; 21:4524-7. [PMID: 21733684 DOI: 10.1016/j.bmcl.2011.05.130] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 05/27/2011] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
Abstract
The structure-activity relationship of a series of oxazolidinones binding to T-box riboswitch antiterminator RNA has been investigated. Oxazolidinones differentially substituted at C-5 were prepared and the ligand-induced fluorescence resonance energy transfer (FRET) changes in FRET-labeled antiterminator model RNA were assayed. Both qualitative and quantitative analysis of the structure-activity relationship indicate that hydrogen bonding and hydrophobic properties play a significant role in ligand binding.
Collapse
Affiliation(s)
- Iwona Maciagiewicz
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | | | | |
Collapse
|
23
|
Solution structure of the K-turn and Specifier Loop domains from the Bacillus subtilis tyrS T-box leader RNA. J Mol Biol 2011; 408:99-117. [PMID: 21333656 DOI: 10.1016/j.jmb.2011.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 01/28/2023]
Abstract
In Gram-positive bacteria, the RNA transcripts of many amino acid biosynthetic and aminoacyl tRNA synthetase genes contain 5' untranslated regions, or leader RNAs, that function as riboswitches. These T-box riboswitches bind cognate tRNA molecules and regulate gene expression by a transcription attenuation mechanism. The Specifier Loop domain of the leader RNA contains nucleotides that pair with nucleotides in the tRNA anticodon loop and is flanked on one side by a kink-turn (K-turn), or GA, sequence motif. We have determined the solution NMR structure of the K-turn sequence element within the context of the Specifier Loop domain. The K-turn sequence motif has several noncanonical base pairs typical of K-turn structures but adopts an extended conformation. The Specifier Loop domain contains a loop E structural motif, and the single-strand Specifier nucleotides stack with their Watson-Crick edges displaced toward the minor groove. Mg(2+) leads to a significant bending of the helix axis at the base of the Specifier Loop domain, but does not alter the K-turn. Isothermal titration calorimetry indicates that the K-turn sequence causes a small enhancement of the interaction between the tRNA anticodon arm and the Specifier Loop domain. One possibility is that the K-turn structure is formed and stabilized when tRNA binds the T-box riboswitch and interacts with Stem I and the antiterminator helix. This motif in turn anchors the orientation of Stem I relative to the 3' half of the leader RNA, further stabilizing the tRNA-T box complex.
Collapse
|
24
|
Wang J, Henkin TM, Nikonowicz EP. NMR structure and dynamics of the Specifier Loop domain from the Bacillus subtilis tyrS T box leader RNA. Nucleic Acids Res 2010; 38:3388-98. [PMID: 20110252 PMCID: PMC2879506 DOI: 10.1093/nar/gkq020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gram-positive bacteria utilize a tRNA-responsive transcription antitermination mechanism, designated the T box system, to regulate expression of many amino acid biosynthetic and aminoacyl-tRNA synthetase genes. The RNA transcripts of genes controlled by this mechanism contain 5′ untranslated regions, or leader RNAs, that specifically bind cognate tRNA molecules through pairing of nucleotides in the tRNA anticodon loop with nucleotides in the Specifier Loop domain of the leader RNA. We have determined the solution structure of the Specifier Loop domain of the tyrS leader RNA from Bacillus subtilis. Fifty percent of the nucleotides in the Specifier Loop domain adopt a loop E motif. The Specifier Sequence nucleotides, which pair with the tRNA anticodon, stack with their Watson–Crick edges rotated toward the minor groove and exhibit only modest flexibility. We also show that a Specifier Loop domain mutation that impairs the function of the B. subtilis glyQS T box RNA disrupts the tyrS loop E motif. Our results suggest a mechanism for tRNA–Specifier Loop binding in which the phosphate backbone kink created by the loop E motif causes the Specifier Sequence bases to rotate toward the minor groove, which increases accessibility for pairing with bases in the anticodon loop of tRNA.
Collapse
Affiliation(s)
- Jiachen Wang
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA
| | | | | |
Collapse
|
25
|
Green NJ, Grundy FJ, Henkin TM. The T box mechanism: tRNA as a regulatory molecule. FEBS Lett 2009; 584:318-24. [PMID: 19932103 DOI: 10.1016/j.febslet.2009.11.056] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 11/18/2022]
Abstract
The T box mechanism is widely used in Gram-positive bacteria to regulate expression of aminoacyl-tRNA synthetase genes and genes involved in amino acid biosynthesis and uptake. Binding of a specific uncharged tRNA to a riboswitch element in the nascent transcript causes a structural change in the transcript that promotes expression of the downstream coding sequence. In most cases, this occurs by stabilization of an antiterminator element that competes with formation of a terminator helix. Specific tRNA recognition by the nascent transcript results in increased expression of genes important for tRNA aminoacylation in response to decreased pools of charged tRNA.
Collapse
Affiliation(s)
- Nicholas J Green
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
26
|
The vitamin B1 metabolism of Staphylococcus aureus is controlled at enzymatic and transcriptional levels. PLoS One 2009; 4:e7656. [PMID: 19888457 PMCID: PMC2766623 DOI: 10.1371/journal.pone.0007656] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/07/2009] [Indexed: 12/03/2022] Open
Abstract
Vitamin B1 is in its active form thiamine pyrophosphate (TPP), an essential cofactor for several key enzymes in the carbohydrate metabolism. Mammals must salvage this crucial nutrient from their diet in order to complement the deficiency of de novo synthesis. In the human pathogenic bacterium Staphylococcus aureus, two operons were identified which are involved in vitamin B1 metabolism. The first operon encodes for the thiaminase type II (TenA), 4-amino-5-hydroxymethyl-2-methylpyrimidine kinase (ThiD), 5-(2-hydroxyethyl)-4-methylthiazole kinase (ThiM) and thiamine phosphate synthase (ThiE). The second operon encodes a phosphatase, an epimerase and the thiamine pyrophosphokinase (TPK). The open reading frames of the individual operons were cloned, their corresponding proteins were recombinantly expressed and biochemically analysed. The kinetic properties of the enzymes as well as the binding of TPP to the in vitro transcribed RNA of the proposed operons suggest that the vitamin B1 homeostasis in S. aureus is strongly regulated at transcriptional as well as enzymatic levels.
Collapse
|
27
|
Biochemical features and functional implications of the RNA-based T-box regulatory mechanism. Microbiol Mol Biol Rev 2009; 73:36-61. [PMID: 19258532 DOI: 10.1128/mmbr.00026-08] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The T-box mechanism is a common regulatory strategy used for modulating the expression of genes of amino acid metabolism-related operons in gram-positive bacteria, especially members of the Firmicutes. T-box regulation is usually based on a transcription attenuation mechanism in which an interaction between a specific uncharged tRNA and the 5' region of the transcript stabilizes an antiterminator structure in preference to a terminator structure, thereby preventing transcription termination. Although single T-box regulatory elements are common, double or triple T-box arrangements are also observed, expanding the regulatory range of these elements. In the present study, we predict the functional implications of T-box regulation in genes encoding aminoacyl-tRNA synthetases, proteins of amino acid biosynthetic pathways, transporters, and regulatory proteins. We also consider the global impact of the use of this regulatory mechanism on cell physiology. Novel biochemical relationships between regulated genes and their corresponding metabolic pathways were revealed. Some of the genes identified, such as the quorum-sensing gene luxS, in members of the Lactobacillaceae were not previously predicted to be regulated by the T-box mechanism. Our analyses also predict an imbalance in tRNA sensing during the regulation of operons containing multiple aminoacyl-tRNA synthetase genes or biosynthetic genes involved in pathways common to more than one amino acid. Based on the distribution of T-box regulatory elements, we propose that this regulatory mechanism originated in a common ancestor of members of the Firmicutes, Chloroflexi, Deinococcus-Thermus group, and Actinobacteria and was transferred into the Deltaproteobacteria by horizontal gene transfer.
Collapse
|
28
|
Fauzi H, Agyeman A, Hines JV. T box transcription antitermination riboswitch: influence of nucleotide sequence and orientation on tRNA binding by the antiterminator element. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:185-91. [PMID: 19152843 PMCID: PMC2656570 DOI: 10.1016/j.bbagrm.2008.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 12/09/2008] [Accepted: 12/09/2008] [Indexed: 11/18/2022]
Abstract
Many bacteria utilize riboswitch transcription regulation to monitor and appropriately respond to cellular levels of important metabolites or effector molecules. The T box transcription antitermination riboswitch responds to cognate uncharged tRNA by specifically stabilizing an antiterminator element in the 5'-untranslated mRNA leader region and precluding formation of a thermodynamically more stable terminator element. Stabilization occurs when the tRNA acceptor end base pairs with the first four nucleotides in the seven nucleotide bulge of the highly conserved antiterminator element. The significance of the conservation of the antiterminator bulge nucleotides that do not base pair with the tRNA is unknown, but they are required for optimal function. In vitro selection was used to determine if the isolated antiterminator bulge context alone dictates the mode in which the tRNA acceptor end binds the bulge nucleotides. No sequence conservation beyond complementarity was observed and the location was not constrained to the first four bases of the bulge. The results indicate that formation of a structure that recognizes the tRNA acceptor end in isolation is not the determinant driving force for the high phylogenetic sequence conservation observed within the antiterminator bulge. Additional factors or T box leader features more likely influenced the phylogenetic sequence conservation.
Collapse
Affiliation(s)
- Hamid Fauzi
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Akwasi Agyeman
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| | - Jennifer V. Hines
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
29
|
Artsimovitch I, Henkin TM. In vitro approaches to analysis of transcription termination. Methods 2008; 47:37-43. [PMID: 18948199 DOI: 10.1016/j.ymeth.2008.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/08/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022] Open
Abstract
Transcription termination is an important event in the transcription cycle that has been exploited in a variety of genetic regulatory mechanisms. Analysis of transcription termination is greatly facilitated by in vitro approaches. We describe a basic protocol for analysis of transcription termination in vitro, and include descriptions of parameters that can be modified for specific types of experimental questions.
Collapse
Affiliation(s)
- Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, 484 W. 12th Avenue, Columbus, OH 43210, USA.
| | | |
Collapse
|
30
|
André G, Even S, Putzer H, Burguière P, Croux C, Danchin A, Martin-Verstraete I, Soutourina O. S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum. Nucleic Acids Res 2008; 36:5955-69. [PMID: 18812398 PMCID: PMC2566862 DOI: 10.1093/nar/gkn601] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ubiGmccBA operon of Clostridium acetobutylicum is involved in methionine to cysteine conversion. We showed that its expression is controlled by a complex regulatory system combining several RNA-based mechanisms. Two functional convergent promoters associated with transcriptional antitermination systems, a cysteine-specific T-box and an S-box riboswitch, are located upstream of and downstream from the ubiG operon, respectively. Several antisense RNAs were synthesized from the downstream S-box-dependent promoter, resulting in modulation of the level of ubiG transcript and of MccB activity. In contrast, the upstream T-box system did not appear to play a major role in regulation, leaving antisense transcription as the major regulatory mechanism for the ubiG operon. The abundance of sense and antisense transcripts was inversely correlated with the sulfur source availability. Deletion of the downstream promoter region completely abolished the sulfur-dependent control of the ubiG operon, and the expression of antisense transcripts in trans did not restore the regulation of the operon. Our data revealed important insights into the molecular mechanism of cis-antisense-mediated regulation, a control system only rarely observed in prokaryotes. We proposed a regulatory model in which the antisense RNA controlled the expression of the ubiG operon in cis via transcriptional interference at the ubiG locus.
Collapse
Affiliation(s)
- Gaëlle André
- Genetics of Bacterial Genomes, Pasteur Institute, CNRS URA2171, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lu C, Smith AM, Fuchs RT, Ding F, Rajashankar K, Henkin TM, Ke A. Crystal structures of the SAM-III/S(MK) riboswitch reveal the SAM-dependent translation inhibition mechanism. Nat Struct Mol Biol 2008; 15:1076-83. [PMID: 18806797 DOI: 10.1038/nsmb.1494] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 08/29/2008] [Indexed: 12/28/2022]
Abstract
Three distinct classes of S-adenosyl-L-methionine (SAM)-responsive riboswitches have been identified that regulate bacterial gene expression at the levels of transcription attenuation or translation inhibition. The S(MK) box (SAM-III) translational riboswitch has been identified in the SAM synthetase gene in members of the Lactobacillales. Here we report the 2.2-A crystal structure of the Enterococcus faecalis S(MK) box riboswitch. The Y-shaped riboswitch organizes its conserved nucleotides around a three-way junction for SAM recognition. The Shine-Dalgarno sequence, which is sequestered by base-pairing with the anti-Shine-Dalgarno sequence in response to SAM binding, also directly participates in SAM recognition. The riboswitch makes extensive interactions with the adenosine and sulfonium moieties of SAM but does not appear to recognize the tail of the methionine moiety. We captured a structural snapshot of the S(MK) box riboswitch sampling the near-cognate ligand S-adenosyl-L-homocysteine (SAH) in which SAH was found to adopt an alternative conformation and fails to make several key interactions.
Collapse
Affiliation(s)
- Changrui Lu
- Department of Molecular Biology and Genetics, Cornell University, 251 Biotechnology Building, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Wels M, Groot Kormelink T, Kleerebezem M, Siezen RJ, Francke C. An in silico analysis of T-box regulated genes and T-box evolution in prokaryotes, with emphasis on prediction of substrate specificity of transporters. BMC Genomics 2008; 9:330. [PMID: 18625071 PMCID: PMC2494555 DOI: 10.1186/1471-2164-9-330] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 07/14/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND T-box anti-termination is an elegant and sensitive mechanism by which many bacteria maintain constant levels of amino acid-charged tRNAs. The amino acid specificity of the regulatory element is related to a so-called specifier codon and can in principle be used to guide the functional annotation of the genes controlled via the T-box anti-termination mechanism. RESULTS Hidden Markov Models were defined to search the T-box regulatory element and were applied to all completed prokaryotic genomes. The vast majority of the genes found downstream of the retrieved elements encoded functionalities related to transport and synthesis of amino acids and the charging of tRNA. This is completely in line with findings reported in literature and with the proposed biological role of the regulatory element. For several species, the functional annotation of a large number of genes encoding proteins involved in amino acid transport could be improved significantly on basis of the amino acid specificity of the identified T-boxes. In addition, these annotations could be extrapolated to a larger number of orthologous systems in other species. Analysis of T-box distribution confirmed that the element is restricted predominantly to species of the phylum Firmicutes. Furthermore, it appeared that the distribution was highly species specific and that in the case of amino acid transport some boxes seemed to "pop-up" only recently. CONCLUSION We have demonstrated that the identification of the molecular specificity of a regulatory element can be of great help in solving notoriously difficult annotation issues, e.g. by defining the substrate specificity of genes encoding amino acid transporters on basis of the amino acid specificity of the regulatory T-box. Furthermore, our analysis of the species-dependency of the occurrence of specific T-boxes indicated that these regulatory elements propagate in a semi-independent way from the genes that they control.
Collapse
Affiliation(s)
- Michiel Wels
- TI Food and Nutrition, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
Jack K, Means JA, Hines JV. Characterizing riboswitch function: identification of Mg2+ binding site in T box antiterminator RNA. Biochem Biophys Res Commun 2008; 370:306-10. [PMID: 18371302 PMCID: PMC2526249 DOI: 10.1016/j.bbrc.2008.03.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 03/19/2008] [Indexed: 11/19/2022]
Abstract
T box bacterial genes utilize a riboswitch mechanism to regulate gene expression at the transcriptional level. Complementary base pairing of the 5'-untranslated mRNA with uncharged cognate tRNA stabilizes formation of an antiterminator element and permits complete transcription. In the absence of tRNA, a mutually exclusive RNA terminator element forms and results in transcription termination. This regulatory mechanism requires divalent metal ions at the antitermination event. The structural effects of Mg(2+) binding to antiterminator model RNA were investigated to ascertain if this requirement is due to the presence of a specific metal ion binding site in the antiterminator. Spectroscopic analysis identified the presence of a hydrated, diffuse Mg(2+) binding site. The results indicate that the mechanistic requirement for divalent metal ions is not due to Mg(2+)-induced pre-formation of a functional antiterminator receptor; rather, Mg(2+) binds in a helical region of high phylogenetic sequence conservation adjacent to the tRNA binding site.
Collapse
Affiliation(s)
- K.D. Jack
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701
| | - J. A. Means
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701
| | - J. V. Hines
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701
| |
Collapse
|
34
|
Anupam R, Nayek A, Green NJ, Grundy FJ, Henkin TM, Means JA, Bergmeier SC, Hines JV. 4,5-Disubstituted oxazolidinones: High affinity molecular effectors of RNA function. Bioorg Med Chem Lett 2008; 18:3541-4. [PMID: 18502126 DOI: 10.1016/j.bmcl.2008.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 04/24/2008] [Accepted: 05/02/2008] [Indexed: 10/22/2022]
Abstract
The T box transcription antitermination system is a riboswitch found primarily in Gram-positive bacteria which monitors the aminoacylation of the cognate tRNA and regulates a variety of amino acid-related genes. Novel 4,5-disubstituted oxazolidinones were identified as high affinity RNA molecular effectors that modulate the transcription antitermination function of the T box riboswitch.
Collapse
Affiliation(s)
- Rajaneesh Anupam
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Vitreschak AG, Mironov AA, Lyubetsky VA, Gelfand MS. Comparative genomic analysis of T-box regulatory systems in bacteria. RNA (NEW YORK, N.Y.) 2008; 14:717-35. [PMID: 18359782 PMCID: PMC2271356 DOI: 10.1261/rna.819308] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 12/31/2007] [Indexed: 05/26/2023]
Abstract
T-box antitermination is one of the main mechanisms of regulation of genes involved in amino acid metabolism in Gram-positive bacteria. T-box regulatory sites consist of conserved sequence and RNA secondary structure elements. Using a set of known T-box sites, we constructed the common pattern and used it to scan available bacterial genomes. New T-boxes were found in various Gram-positive bacteria, some Gram-negative bacteria (delta-proteobacteria), and some other bacterial groups (Deinococcales/Thermales, Chloroflexi, Dictyoglomi). The majority of T-box-regulated genes encode aminoacyl-tRNA synthetases. Two other groups of T-box-regulated genes are amino acid biosynthetic genes and transporters, as well as genes with unknown function. Analysis of candidate T-box sites resulted in new functional annotations. We assigned the amino acid specificity to a large number of candidate amino acid transporters and a possible function to amino acid biosynthesis genes. We then studied the evolution of the T-boxes. Analysis of the constructed phylogenetic trees demonstrated that in addition to the normal evolution consistent with the evolution of regulated genes, T-boxes may be duplicated, transferred to other genes, and change specificity. We observed several cases of recent T-box regulon expansion following the loss of a previously existing regulatory system, in particular, arginine regulon in Clostridium difficile and methionine regulon in Lactobacillaceae. Finally, we described a new structural class of T-boxes containing duplicated terminator-antiterminator elements and unusual reduced T-boxes regulating initiation of translation in the Actinobacteria.
Collapse
MESH Headings
- 5' Untranslated Regions
- Amino Acid Transport Systems/genetics
- Amino Acid Transport Systems/metabolism
- Amino Acids/metabolism
- Bacteria/genetics
- Bacteria/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- DNA, Bacterial/genetics
- Evolution, Molecular
- Gene Expression Regulation, Bacterial
- Genome, Bacterial
- Genomics
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- Regulon
- Sequence Homology, Nucleic Acid
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
Collapse
Affiliation(s)
- Alexey G Vitreschak
- Institute for Information Transmission Problems (The Kharkevich Institute), Russian Academy of Sciences, Moscow 127994, Russia.
| | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Jason R Thomas
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61822, USA
| | | |
Collapse
|
37
|
Anupam R, Denapoli L, Muchenditsi A, Hines JV. Identification of neomycin B-binding site in T box antiterminator model RNA. Bioorg Med Chem 2008; 16:4466-70. [PMID: 18329274 DOI: 10.1016/j.bmc.2008.02.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/12/2008] [Accepted: 02/19/2008] [Indexed: 11/30/2022]
Abstract
The T box transcription antitermination mechanism regulates the expression of unique genes in many Gram-positive bacteria by responding, in a magnesium-dependent manner, to uncharged cognate tRNA base pairing with an antiterminator RNA element and other regions of the 5'-untranslated region. Model T box antiterminator RNA is known to bind aminoglycosides, ligands that typically bind RNA in divalent metal ion-binding sites. In this study, enzymatic footprinting and spectroscopic assays were used to identify and characterize the binding site of neomycin B to an antiterminator model RNA. Neomycin B binds the antiterminator bulge nucleotides in an electrostatic-dependent manner and displaces 3-4 monovalent cations, indicating that the antiterminator likely contains a divalent metal ion-binding site. Neomycin B facilitates rather than inhibits tRNA binding indicating that bulge-targeted inhibitors that bind the antiterminator via non-electrostatic interactions may be the more optimal candidates for antiterminator-targeted ligand design.
Collapse
Affiliation(s)
- Rajaneesh Anupam
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | | | | |
Collapse
|
38
|
Ontiveros-Palacios N, Smith AM, Grundy FJ, Soberon M, Henkin TM, Miranda-Ríos J. Molecular basis of gene regulation by the THI-box riboswitch. Mol Microbiol 2007; 67:793-803. [PMID: 18179415 DOI: 10.1111/j.1365-2958.2007.06088.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Riboswitches are genetic control elements located mainly within the 5' untranslated regions of messenger RNAs. These RNA elements undergo conformational changes that modulate gene expression upon binding of regulatory signals including vitamins, amino acids, nucleobases and uncharged tRNA. The thiamin pyrophosphate (TPP)-binding riboswitch (THI-box) is found in all three kingdoms of life and can regulate gene expression at the levels of premature termination of transcription, initiation of translation and mRNA splicing. The THI-box is composed of two parallel stacked helices bound by another helix in a three-way junction. We performed an in vivo expression analysis of mutants with substitutions in conserved bases located at the interior and terminal loops of the Escherichia coli thiM THI-box, which is translationally regulated, and observed two different phenotypic classes. One class exhibited high expression during growth in the presence or absence of thiamin, while the second class exhibited low expression regardless of the presence of thiamin. Accessibility of the Shine-Dalgarno region of the RNA following the addition of TPP was monitored by means of an oligonucleotide-dependent RNase H cleavage assay, and binding of 30S ribosomal subunits. These studies showed that high- and low-expression mutant RNAs are locked in the non-repressive and repressive conformations respectively.
Collapse
Affiliation(s)
- Nancy Ontiveros-Palacios
- Depto. de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos 62250, México
| | | | | | | | | | | |
Collapse
|
39
|
Natural variability in S-adenosylmethionine (SAM)-dependent riboswitches: S-box elements in bacillus subtilis exhibit differential sensitivity to SAM In vivo and in vitro. J Bacteriol 2007; 190:823-33. [PMID: 18039762 DOI: 10.1128/jb.01034-07] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Riboswitches are regulatory systems in which changes in structural elements in the 5' region of the nascent RNA transcript (the "leader region") control expression of the downstream coding sequence in response to a regulatory signal in the absence of a trans-acting protein factor. The S-box riboswitch, found primarily in low-G+C gram-positive bacteria, is the paradigm for riboswitches that sense S-adenosylmethionine (SAM). Genes in the S-box family are involved in methionine metabolism, and their expression is induced in response to starvation for methionine. S-box genes exhibit conserved primary sequence and secondary structural elements in their leader regions. We previously demonstrated that SAM binds directly to S-box leader RNA, causing a structural rearrangement that results in premature termination of transcription at S-box leader region terminators. S-box genes have a variety of physiological roles, and natural variability in S-box structure and regulatory response could provide additional insight into the role of conserved S-box leader elements in SAM-directed transcription termination. In the current study, in vivo and in vitro assays were employed to analyze the differential regulation of S-box genes in response to SAM. A wide range of responses to SAM were observed for the 11 S-box-regulated transcriptional units in Bacillus subtilis, demonstrating that S-box riboswitches can be calibrated to different physiological requirements.
Collapse
|
40
|
Jensen-MacAllister IE, Meng Q, Switzer RL. Regulation of pyrG expression in Bacillus subtilis: CTP-regulated antitermination and reiterative transcription with pyrG templates in vitro. Mol Microbiol 2007; 63:1440-52. [PMID: 17302819 DOI: 10.1111/j.1365-2958.2007.05595.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The regulation of pyrG expression in a group of low GC Gram-positive bacteria was previously shown to be mediated by a novel form of transcription attenuation in which low levels of intracellular CTP induce reiterative addition of G residues at position +4 in the 5' end of the pyrG mRNA, which is encoded as pppGGGC. . . . The poly(G) sequences formed under these conditions act to prevent attenuation by base pairing with the C- and U-rich 5' strand of a downstream terminator stem-loop located in the pyrG leader. In this work we document the reconstitution of this regulatory system in vitro using only the native pyrG DNA template, RNA polymerase and appropriate concentrations of ribonucleotides. CTP-regulated reiterative transcription producing 5'-poly(G) tracts and regulation of transcription termination at the pyrG attenuator by CTP were demonstrated. Mutations in the native pyrG template that altered reiterative transcription and attenuation in vivo resulted in alternations in expression in the in vitro transcription system that were predicted by the mechanism described above. These findings provide strong experimental support for the proposed reiterative transcription/antitermination mechanism and confirm that no trans-acting regulatory protein is required for pyrG regulation.
Collapse
|
41
|
Henkin TM, Grundy FJ. Sensing metabolic signals with nascent RNA transcripts: the T box and S box riboswitches as paradigms. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:231-7. [PMID: 17381302 DOI: 10.1101/sqb.2006.71.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent studies in a variety of bacterial systems have revealed a number of regulatory systems in which the 5' region of a gene plays a key role in regulation of the downstream coding sequences. These RNA regions act in cis to determine if the full-length transcript will be synthesized or if the coding sequence(s) will be translated. Each class of system includes an RNA element whose structure is modulated in response to a specific regulatory signal, and the signals measured can include small molecules, small RNAs (including tRNA), and physical parameters such as temperature. Multiple sets of genes can be regulated by a particular mechanism, and multiple systems of this type, each of which responds to a specific signal, can be present in a single organism. In addition, different classes of RNA elements can be found that respond to a particular signal, indicating the existence of multiple alternate solutions to the same regulatory problem. The T box and S box systems, which respond to uncharged tRNA and S-adenosylmethionine (SAM), respectively, provide paradigms of two systems of this type.
Collapse
Affiliation(s)
- T M Henkin
- Department of Microbiology and The RNA Group, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
42
|
Means JA, Wolf S, Agyeman A, Burton JS, Simson CM, Hines JV. T box riboswitch antiterminator affinity modulated by tRNA structural elements. Chem Biol Drug Des 2007; 69:139-45. [PMID: 17381728 DOI: 10.1111/j.1747-0285.2007.00476.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A unique RNA-RNA interaction occurs between uncharged tRNA and the untranslated mRNA leader region of bacterial T box genes. The interaction results in activation of a transcriptional antitermination molecular switch (riboswitch) by stabilizing an antiterminator RNA element and precluding formation of a competing transcriptional terminator RNA element. The stabilization requires the base pairing of cognate tRNA acceptor end nucleotides with the antiterminator. To develop an appropriate model system for detailed structural studies and to screen for small molecule disruption of this important RNA-RNA interaction, steady-state fluorescence measurements of antiterminator model RNAs were used to determine the dissociation constant for model tRNA binding. The antiterminator-binding affinity for the full, minihelix, microhelix, and tetramer tRNA models differed by orders of magnitude. In addition, not all of the tRNA models exhibited functionally relevant binding specificity. The results from these experiments highlight the importance of looking beyond the level of known base pairing interactions when designing functionally relevant models of riboswitch systems.
Collapse
Affiliation(s)
- John A Means
- Department of Chemistry & Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | | | | | | | | |
Collapse
|
43
|
Fuchs RT, Grundy FJ, Henkin TM. S-adenosylmethionine directly inhibits binding of 30S ribosomal subunits to the SMK box translational riboswitch RNA. Proc Natl Acad Sci U S A 2007; 104:4876-80. [PMID: 17360376 PMCID: PMC1829232 DOI: 10.1073/pnas.0609956104] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The S(MK) box is a conserved riboswitch motif found in the 5' untranslated region of metK genes [encoding S-adenosylmethionine (SAM) synthetase] in lactic acid bacteria, including Enterococcus, Streptococcus, and Lactococcus sp. Previous studies showed that this RNA element binds SAM in vitro, and SAM binding causes a structural rearrangement that sequesters the Shine-Dalgarno (SD) sequence by pairing with an anti-SD (ASD) element. A model was proposed in which SAM binding inhibits metK translation by preventing binding of the ribosome to the SD region of the mRNA. In the current work, the addition of SAM was shown to inhibit binding of 30S ribosomal subunits to S(MK) box RNA; in contrast, the addition of S-adenosylhomocysteine (SAH) had no effect. A mutant RNA, which has a disrupted SD-ASD pairing, was defective in SAM binding and showed no reduction of ribosome binding in the presence of SAM, whereas a compensatory mutation that restored SD-ASD pairing restored the response to SAM. Primer extension inhibition assays provided further evidence for SD-ASD pairing in the presence of SAM. These results strongly support the model that S(MK) box translational repression operates through occlusion of the ribosome binding site and that SAM binding requires the SD-ASD pairing.
Collapse
Affiliation(s)
| | | | - Tina M. Henkin
- *Department of Microbiology and
- RNA Group, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Means J, Katz S, Nayek A, Anupam R, Hines JV, Bergmeier SC. Structure–activity studies of oxazolidinone analogs as RNA-binding agents. Bioorg Med Chem Lett 2006; 16:3600-4. [PMID: 16603349 DOI: 10.1016/j.bmcl.2006.03.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 03/20/2006] [Accepted: 03/21/2006] [Indexed: 11/26/2022]
Abstract
We have synthesized and tested a series of novel 3,4,5-tri- and 4,5-disubstituted oxazolidinones for their ability to bind two structurally related T box antiterminator model RNAs. We have found that optimal binding selectivity is found in a small group of 4,5-disubstituted oxazolidinones.
Collapse
Affiliation(s)
- John Means
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | | | | | | | | |
Collapse
|
45
|
Fuchs RT, Grundy FJ, Henkin TM. The S(MK) box is a new SAM-binding RNA for translational regulation of SAM synthetase. Nat Struct Mol Biol 2006; 13:226-33. [PMID: 16491091 DOI: 10.1038/nsmb1059] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 01/06/2006] [Indexed: 11/09/2022]
Abstract
We have identified the S(MK) box as a conserved RNA motif in the 5' untranslated leader region of metK (SAM synthetase) genes in lactic acid bacteria, including Enterococcus, Streptococcus and Lactococcus species. This RNA element bound SAM in vitro, and binding of SAM caused an RNA structural rearrangement that resulted in sequestration of the Shine-Dalgarno (SD) sequence. Mutations that disrupted pairing between the SD region and a sequence complementary to the SD blocked SAM binding, whereas compensatory mutations that restored pairing restored SAM binding. The Enterococcus faecalis S(MK) box conferred translational repression of a lacZ reporter when cells were grown under conditions where SAM pools are elevated, and mutations that blocked SAM binding resulted in loss of repression, demonstrating that the S(MK) box is functional in vivo. The S(MK) box therefore represents a new SAM-binding riboswitch distinct from the previously identified S box RNAs.
Collapse
Affiliation(s)
- Ryan T Fuchs
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
46
|
Ryckelynck M, Giegé R, Frugier M. tRNAs and tRNA mimics as cornerstones of aminoacyl-tRNA synthetase regulations. Biochimie 2006; 87:835-45. [PMID: 15925436 DOI: 10.1016/j.biochi.2005.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 12/31/2004] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
Structural plasticity of transfer RNA (tRNA) molecules is essential for interactions with their biological partners in aminoacylation reactions and during ribosome-dependent protein synthesis. This holds true when tRNAs are recruited for other functions than translation. Here we review regulation pathways where tRNAs and tRNA mimics play a pivotal role. We further discuss the importance of the identity signals used in aminoacylation that are also required to specify regulatory mechanisms. Such mechanisms are diverse and intervene in transcription, splicing and translation. Altogether, the review highlights the many manners architectural features of tRNA were selected by evolution to control biological key processes.
Collapse
Affiliation(s)
- Michaël Ryckelynck
- Département Mécanismes et Macromolécules de la Synthèse Protéique et Cristallogenèse, UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15, rue René Descartes, F-67084 Strasbourg cedex, France
| | | | | |
Collapse
|
47
|
McDaniel BA, Grundy FJ, Henkin TM. A tertiary structural element in S box leader RNAs is required for S-adenosylmethionine-directed transcription termination. Mol Microbiol 2005; 57:1008-21. [PMID: 16091040 DOI: 10.1111/j.1365-2958.2005.04740.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The S box transcription termination control system regulates expression of genes involved in methionine metabolism. Expression of the S box regulon, comprised of 11 transcriptional units in Bacillus subtilis, is induced in response to starvation for methionine. We previously demonstrated that S-adenosylmethionine (SAM) is the molecular effector sensed by the S box leader RNAs during transcription. A secondary structure model for S box leader RNAs was developed based on conservation of primary sequence elements and sequence covariation in helical domains. Covariation of nucleotides in two distantly spaced unpaired regions in the S box leader RNAs suggested that these two domains might interact in the RNA tertiary structure. In this study, site-directed mutagenesis of the covarying residues in two B. subtilis S box leader sequences was employed to test the hypothesis that base-pairing between these regions may be important. The effect of these mutations on in vivo expression, transcription termination in vitro, SAM binding, and leader RNA structure strongly supported the model that interaction between these two regions plays a key role in S box leader function. This provides the first insight into the three-dimensional arrangement of structural elements within the S box RNAs.
Collapse
Affiliation(s)
- Brooke A McDaniel
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
48
|
Gutierrez-Preciado A, Jensen RA, Yanofsky C, Merino E. New insights into regulation of the tryptophan biosynthetic operon in Gram-positive bacteria. Trends Genet 2005; 21:432-6. [PMID: 15953653 DOI: 10.1016/j.tig.2005.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 06/02/2005] [Indexed: 10/25/2022]
Abstract
The tryptophan operon of Bacillus subtilis serves as an excellent model for investigating transcription regulation in Gram-positive bacteria. In this article, we extend this knowledge by analyzing the predicted regulatory regions in the trp operons of other fully sequenced Gram-positive bacteria. Interestingly, it appears that in eight of the organisms examined, transcription of the trp operon appears to be regulated by tandem T-box elements. These regulatory elements have recently been described in the trp operons of two bacterial species. Single T-box elements are commonly found in Gram-positive bacteria in operons encoding aminoacyl tRNA synthetases and proteins performing other functions. Different regulatory mechanisms appear to be associated with variations of trp gene organization within the trp operon.
Collapse
Affiliation(s)
- A Gutierrez-Preciado
- Department of Molecular Microbiology, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos 62271, Mexico
| | | | | | | |
Collapse
|
49
|
Fauzi H, Jack KD, Hines JV. In vitro selection to identify determinants in tRNA for Bacillus subtilis tyrS T box antiterminator mRNA binding. Nucleic Acids Res 2005; 33:2595-602. [PMID: 15879350 PMCID: PMC1090546 DOI: 10.1093/nar/gki546] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The T box transcription antitermination regulatory system, found in Gram-positive bacteria, is dependent on a complex set of interactions between uncharged tRNA and the 5'-untranslated mRNA leader region of the regulated gene. One of these interactions involves the base pairing of the acceptor end of cognate tRNA with four bases in a 7 nt bulge of the antiterminator RNA. In vitro selection of randomized tRNA binding to Bacillus subtilis tyrS antiterminator model RNAs was used to determine what, if any, sequence trends there are for binding beyond the known base pair complementarity. The model antiterminator RNAs were selected for the wild-type tertiary fold of tRNA. While there were no obvious sequence correlations between the selected tRNAs, there were correlations between certain tertiary structural elements and binding efficiency to different antiterminator model RNAs. In addition, one antiterminator model selected primarily for a kissing tRNA T loop-antiterminator bulge interaction, while another antiterminator model resulted in no such selection. The selection results indicate that, at the level of tertiary structure, there are ideal matches between tRNAs and antiterminator model RNAs consistent with in vivo observations and that additional recognition features, beyond base pair complementarity, may play a role in the formation of the complex.
Collapse
Affiliation(s)
| | | | - Jennifer V. Hines
- To whom correspondence should be addressed. Tel: +1 740 517 8482; Fax: +1 740 593 0148;
| |
Collapse
|
50
|
Yousef MR, Grundy FJ, Henkin TM. Structural transitions induced by the interaction between tRNA(Gly) and the Bacillus subtilis glyQS T box leader RNA. J Mol Biol 2005; 349:273-87. [PMID: 15890195 DOI: 10.1016/j.jmb.2005.03.061] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/18/2005] [Accepted: 03/22/2005] [Indexed: 10/25/2022]
Abstract
The T box system regulates expression of amino acid-related genes in Gram-positive bacteria through premature termination of transcription. Synthesis of the full-length mRNA requires stabilization of an antiterminator element in the 5' untranslated leader RNA by the cognate uncharged tRNA. tRNA(Gly)-dependent antitermination of the Bacillus subtilis glyQS gene (encoding glycyl-tRNA synthetase) can be reproduced in a purified in vitro transcription system, indicating that the nascent transcript is sufficient for interaction with the tRNA. Genetic analyses previously demonstrated base pairing of a single codon in the leader RNA with the tRNA anticodon, and between the antiterminator and the tRNA acceptor end. In this study, we established conditions for specific binding of tRNA(Gly) to glyQS leader RNA generated by phage T7 RNA polymerase. Structural mapping studies revealed tRNA(Gly)-induced protection in the glyQS leader RNA at the two known sites of interaction with the tRNA, as well as at other regions between these sites. The proposed tRNA-dependent structural switch between the competing terminator and antiterminator forms of the leader RNA was demonstrated directly. Changes in tRNA(Gly) upon binding to glyQS leader RNA were detected in the anticodon loop, consistent with pairing with the specifier sequence, and in the highly conserved G19 in the D-loop, similar to effects induced by codon-anticodon interaction in the ribosome. This study provides biochemical evidence for direct interaction of tRNA(Gly) with full-length in vitro transcribed glyQS leader RNA, and an initial view of structural modulations of both RNA partners within the complex.
Collapse
MESH Headings
- 5' Untranslated Regions/chemistry
- 5' Untranslated Regions/genetics
- 5' Untranslated Regions/metabolism
- Bacillus subtilis/genetics
- Glycine-tRNA Ligase/genetics
- Magnesium/pharmacology
- Nucleic Acid Conformation
- Peptide Chain Termination, Translational/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Gly/chemistry
- RNA, Transfer, Gly/genetics
- RNA, Transfer, Gly/metabolism
- Ribonuclease H/metabolism
Collapse
Affiliation(s)
- Mary R Yousef
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|