1
|
Kurien BT, Scofield RH. Current Trends in Validating Antibody Specificities for ELISpot by Western Blotting. Methods Mol Biol 2024; 2768:15-27. [PMID: 38502385 DOI: 10.1007/978-1-0716-3690-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The enzyme-linked immunospot (ELISpot) assay is a highly useful and sensitive method to detect total immunoglobulin and antigen-specific antibody-secreting cells. In addition, this method can measure biological activity and immunological secretions from immune cells. In general, membrane-bound antigen allows binding of antibody secreted by B cells, or a membrane-bound analyte-specific antibody binds to the specific analyte (e.g., cytokines) elicited from cells added to the well containing the bound antibody. The response from added cells is then detected by using an anti-Ig antibody and a colorimetric substrate, while in the case of non-B cells, the elicited antigen is detected with appropriate antibodies and enzyme-conjugated antibodies. Specificity of antibodies binding the protein of interest is necessary to achieve correct results. Western blotting can be used for this with/without siRNA knockdown of proteins of interest or with the use of peptide inhibitors to inhibit the binding of specific antibodies to the target protein. Despite its general simplicity, western blotting is a powerful technique for immunodetection of proteins (notably low abundance proteins) as it provides simultaneous resolution of multiple immunogenic antigens within a sample for detection by specific antibodies. Now, we have plethora of immunoblotting methods to validate antibodies for ELISpot.
Collapse
Affiliation(s)
- Biji T Kurien
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA.
- Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma, OK, USA.
| | - R Hal Scofield
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma, OK, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| |
Collapse
|
2
|
Kurien BT, Scofield RH. Validating Antibody Specificities for Immunohistochemistry by Protein Blotting. Methods Mol Biol 2022; 2593:21-33. [PMID: 36513922 DOI: 10.1007/978-1-0716-2811-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Optimized antibody reagents are important in research, and erratic antibody performance leads to variability in immunoassays. Specificity of antibodies binding the protein of interest is vital to obtain accurate results. Recommendations for validation and use of primary antibodies are unique to each type of immunoassay as the antibodies' performance is greatly affected by the assay context. Immunoblotting procedures have been used along with other important antibody-based detection methods like enzyme-linked immunosorbent assay and immunohistochemistry to confirm results in research and diagnostic testing. Specificity of antibodies employed for immunohistochemical studies is of critical importance. Therefore, the use of western blotting is imperative to address the specificity of antibodies with/without siRNA knockdown of proteins of interest or with the use of peptide inhibitors to inhibit the binding of specific antibodies to the target protein. In spite of its overall simplicity, western blotting or protein blotting is a powerful procedure for immunodetection of proteins, especially those that are of low abundance, following electrophoretic separation. The usefulness of this procedure stems from its ability to provide simultaneous resolution of multiple immunogenic antigens within a sample for detection by specific antibodies. Protein blotting has evolved greatly over the last few decades, and researchers have a variety of ways and means to carry out this procedure to validate antibodies for immunohistochemistry.
Collapse
Affiliation(s)
- Biji T Kurien
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| | - R Hal Scofield
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
3
|
Mahani M, Taheri M, Divsar F, Khakbaz F, Nomani A, Ju H. Label-free triplex DNA-based biosensing of transcription factor using fluorescence resonance energy transfer between N-doped carbon dot and gold nanoparticle. Anal Chim Acta 2021; 1181:338919. [PMID: 34556210 DOI: 10.1016/j.aca.2021.338919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/21/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Herein, a new turn-on fluorescent assay was established as a platform for the sensing of transcription factor NF-kB p50 based on triplex DNA labeled with N-doped carbon dots (NCDs) and gold nanoparticles (AuNPs) as donors and acceptors, respectively in the fluorescence resonance energy transfer (FRET) system. The synthetized nanoparticles were studied by different characterization techniques. A labeled DNA molecule was designed to form a triplex when no target protein existence and reported its formation by the change in FRET efficiency. While the triplex DNA was formed, the fluorescence of carbon dots at 503 nm (excitation at 460 nm) was quenched by FRET between NCD and AuNP. However, presence of NF-kB p50 followed by the considerable enhancement in the fluorescence intensity caused by the release of AuNPs labeled single stranded DNA from the triplex DNA structure, used for sensitive determination of the transcription factor. This technique showed a linearity (R2 = 0.9943) in the range of 20-150 pM with a limit of detection of 9 pM for the determination of NF-kB p50. Moreover, the sequence-specific triplex-based biosensor could discriminate NF-kB p50 from the other proteins with high selectively. Our results suggest that the biosensor provides a generalizable platform for rapid detection of NF-kB p50 in synthetic medium, promising in prevention and early diagnosis of cancer.
Collapse
Affiliation(s)
- Mohamad Mahani
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, 7631818356, Iran.
| | - Maryam Taheri
- Department of Nanotechnology, Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, 7631818356, Iran
| | - Faten Divsar
- Department of Chemistry, Payame Noor Universtiy (PNU), P. O. BOX 19395-3697, Tehran, Iran
| | - Faeze Khakbaz
- Department of NanoChemistry, Faculty of Chemistry, Shahid Bahonar University, Kerman, Iran
| | - Alireza Nomani
- Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
4
|
Huang C, Xu X, Jiang D, Jiang W. Binding mediated MNAzyme signal amplification strategy for enzyme-free and label-free detection of DNA-binding proteins. Anal Chim Acta 2021; 1166:338560. [PMID: 34022996 DOI: 10.1016/j.aca.2021.338560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
A novel MNAzyme signal amplification strategy was developed for enzyme-free and label-free detection of DNA-binding proteins. This strategy relied on the binding-mediated MNAzyme cleavage and G-quadruplex-based light-up fluorescence switch. Three DNA sequences were designed to construct the MNAzyme in which DNA1 (including half binding site of the target protein and a toehold sequence) and DNA2 (including another half binding site of the target protein and one MNAzyme partzyme) firstly hybridized. The target protein recognized the binding sites on DNA1-DNA2 hybrid to form a stable protein-DNA1-DNA2 conjugates. Then, the MNAzyme was assembled with the presence of DNA3 which contained another MNAzyme partzyme and the complementary sequence of DNA1. The active MNAzyme cleaved DNA4 to release the G-quadruplex that was locked in the stem of DNA4. Finally, N-methyl mesoporphyrin IX (NMM) was inserted into the released G-quadruplex structure and the fluorescence signal was turned on. Taking nuclear factor-κB p50 (NF-κB p50) as the model, the limit of detection was low to 0.14 nM. Furthermore, the sequence-specific recognition of NF-κB p50 with DNA displayed excellent selectivity and specificity. The results in present work showed that this strategy will be a promising tool for DNA-binding proteins analysis in biomedical exploration and clinical diagnosis.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xiaowen Xu
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China
| | - Dafeng Jiang
- Department of Physical and Chemical Testing, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014, Jinan, PR China.
| | - Wei Jiang
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China; School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China.
| |
Collapse
|
5
|
Li D, Li Y, Luo F, Qiu B, Lin Z. Ultrasensitive Homogeneous Electrochemiluminescence Biosensor for a Transcription Factor Based on Target-Modulated Proximity Hybridization and Exonuclease III-Powered Recycling Amplification. Anal Chem 2020; 92:12686-12692. [DOI: 10.1021/acs.analchem.0c03086] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dan Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ya Li
- Department of Ultrasound, Fourth People’s Hospital of Taizhou City, Jianshu, 225300, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
6
|
Hammam E, Ananda G, Sinha A, Scheidig-Benatar C, Bohec M, Preiser PR, Dedon PC, Scherf A, Vembar SS. Discovery of a new predominant cytosine DNA modification that is linked to gene expression in malaria parasites. Nucleic Acids Res 2020; 48:184-199. [PMID: 31777939 PMCID: PMC6943133 DOI: 10.1093/nar/gkz1093] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022] Open
Abstract
DNA cytosine modifications are key epigenetic regulators of cellular processes in mammalian cells, with their misregulation leading to varied disease states. In the human malaria parasite Plasmodium falciparum, a unicellular eukaryotic pathogen, little is known about the predominant cytosine modifications, cytosine methylation (5mC) and hydroxymethylation (5hmC). Here, we report the first identification of a hydroxymethylcytosine-like (5hmC-like) modification in P. falciparum asexual blood stages using a suite of biochemical methods. In contrast to mammalian cells, we report 5hmC-like levels in the P. falciparum genome of 0.2–0.4%, which are significantly higher than the methylated cytosine (mC) levels of 0.01–0.05%. Immunoprecipitation of hydroxymethylated DNA followed by next generation sequencing (hmeDIP-seq) revealed that 5hmC-like modifications are enriched in gene bodies with minimal dynamic changes during asexual development. Moreover, levels of the 5hmC-like base in gene bodies positively correlated to transcript levels, with more than 2000 genes stably marked with this modification throughout asexual development. Our work highlights the existence of a new predominant cytosine DNA modification pathway in P. falciparum and opens up exciting avenues for gene regulation research and the development of antimalarials.
Collapse
Affiliation(s)
- Elie Hammam
- Institut Pasteur, 75015 Paris, France.,CNRS ERL9195, 75015 Paris, France.,INSERM U1201, 75015 Paris, France.,Sorbonne Université, Ecole doctorale Complexité du Vivant ED515, F-75005 Paris, France
| | - Guruprasad Ananda
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Ameya Sinha
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Christine Scheidig-Benatar
- Institut Pasteur, 75015 Paris, France.,CNRS ERL9195, 75015 Paris, France.,INSERM U1201, 75015 Paris, France
| | - Mylene Bohec
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, 75005 Paris, France
| | - Peter R Preiser
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Peter C Dedon
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Artur Scherf
- Institut Pasteur, 75015 Paris, France.,CNRS ERL9195, 75015 Paris, France.,INSERM U1201, 75015 Paris, France
| | - Shruthi S Vembar
- Institut Pasteur, 75015 Paris, France.,CNRS ERL9195, 75015 Paris, France.,INSERM U1201, 75015 Paris, France
| |
Collapse
|
7
|
Zhang Y, Li QN, Xiang DX, Zhou K, Xu Q, Zhang CY. Development of a bidirectional isothermal amplification strategy for the sensitive detection of transcription factors in cancer cells. Chem Commun (Camb) 2020; 56:8952-8955. [DOI: 10.1039/d0cc03134h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We develop a bidirectional isothermal amplification strategy for the sensitive detection of transcription factors in cancer cells.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Qing-nan Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Dong-xue Xiang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Kaiyue Zhou
- School of Food and Biological Engineering
- Shanxi University of Science and Technology
- Xi’an 710021
- P. R. China
| | - Qinfeng Xu
- School of Food and Biological Engineering
- Shanxi University of Science and Technology
- Xi’an 710021
- P. R. China
| | - Chun-yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
8
|
Hu S, Ma R, Wang H. An improved deep learning method for predicting DNA-binding proteins based on contextual features in amino acid sequences. PLoS One 2019; 14:e0225317. [PMID: 31725778 PMCID: PMC6855455 DOI: 10.1371/journal.pone.0225317] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 11/02/2019] [Indexed: 11/23/2022] Open
Abstract
As the number of known proteins has expanded, how to accurately identify DNA binding proteins has become a significant biological challenge. At present, various computational methods have been proposed to recognize DNA-binding proteins from only amino acid sequences, such as SVM, DNABP and CNN-RNN. However, these methods do not consider the context in amino acid sequences, which makes it difficult for them to adequately capture sequence features. In this study, a new method that coordinates a bidirectional long-term memory recurrent neural network and a convolutional neural network, called CNN-BiLSTM, is proposed to identify DNA binding proteins. The CNN-BiLSTM model can explore the potential contextual relationships of amino acid sequences and obtain more features than can traditional models. The experimental results show that the CNN-BiLSTM achieves a validation set prediction accuracy of 96.5%—7.8% higher than that of SVM, 9.6% higher than that of DNABP and 3.7% higher than that of CNN-RNN. After testing on 20,000 independent samples provided by UniProt that were not involved in model training, the accuracy of CNN-BiLSTM reached 94.5%—12% higher than that of SVM, 4.9% higher than that of DNABP and 4% higher than that of CNN-RNN. We visualized and compared the model training process of CNN-BiLSTM with that of CNN-RNN and found that the former is capable of better generalization from the training dataset, showing that CNN-BiLSTM has a wider range of adaptations to protein sequences. On the test set, CNN-BiLSTM has better credibility because its predicted scores are closer to the sample labels than are those of CNN-RNN. Therefore, the proposed CNN-BiLSTM is a more powerful method for identifying DNA-binding proteins.
Collapse
Affiliation(s)
- Siquan Hu
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
- Sichuan Jiuzhou Video Technology Co., Ltd, Mianyang, China
- * E-mail:
| | - Ruixiong Ma
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
| | - Haiou Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
9
|
Urekar C, Acharya KK, Chhabra P, Reddi PP. A 50-bp enhancer of the mouse acrosomal vesicle protein 1 gene activates round spermatid-specific transcription in vivo†. Biol Reprod 2019; 101:842-853. [PMID: 31290539 PMCID: PMC6863968 DOI: 10.1093/biolre/ioz115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/04/2019] [Accepted: 07/03/2019] [Indexed: 11/12/2022] Open
Abstract
Enhancers are cis-elements that activate transcription and play critical roles in tissue- and cell type-specific gene expression. During spermatogenesis, genes coding for specialized sperm structures are expressed in a developmental stage- and cell type-specific manner, but the enhancers responsible for their expression have not been identified. Using the mouse acrosomal vesicle protein (Acrv1) gene that codes for the acrosomal protein SP-10 as a model, our previous studies have shown that Acrv1 proximal promoter activates transcription in spermatids; and the goal of the present study was to separate the enhancer responsible. Transgenic mice showed that three copies of the -186/-135 fragment (50 bp enhancer) placed upstream of the Acrv1 core promoter (-91/+28) activated reporter expression in testis but not somatic tissues (n = 4). Immunohistochemistry showed that enhancer activity was restricted to the round spermatids. The Acrv1 enhancer failed to activate transcription in the context of a heterologous core promoter (n = 4), indicating a likely requirement for enhancer-core promoter compatibility. Chromatin accessibility assays showed that the Acrv1 enhancer assumes a nucleosome-free state in male germ cells (but not liver), indicating occupancy by transcription factors. Southwestern assays (SWA) identified specific binding of the enhancer to a testis nuclear protein of 47 kDa (TNP47). TNP47 was predominantly nuclear and becomes abundant during the haploid phase of spermatogenesis. Two-dimensional SWA revealed the isoelectric point of TNP47 to be 5.2. Taken together, this study delineated a 50-bp enhancer of the Acrv1 gene for round spermatid-specific transcription and identified a putative cognate factor. The 50-bp enhancer could become useful for delivery of proteins into spermatids.
Collapse
Affiliation(s)
- Craig Urekar
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kshitish K Acharya
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Preeti Chhabra
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Prabhakara P Reddi
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana Champaign, Champaign, Illinois, USA
| |
Collapse
|
10
|
Kim JJ, Chan PPY, Vlassakis J, Geldert A, Herr AE. Microparticle Delivery of Protein Markers for Single-Cell Western Blotting from Microwells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802865. [PMID: 30334351 PMCID: PMC6272123 DOI: 10.1002/smll.201802865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/12/2018] [Indexed: 05/04/2023]
Abstract
Immunoblotting confers protein identification specificity beyond that of immunoassays by prepending protein electrophoresis (sizing) to immunoprobing. To accurately size protein targets, sample analysis includes concurrent analysis of protein markers with known molecular masses. To incorporate protein markers in single-cell western blotting, microwells are used to isolate individual cells and protein marker-coated microparticles. A magnetic field directs protein-coated microparticles to >75% of microwells, so as to 1) deliver a quantum of protein marker to each cell-laden microwell and 2) synchronize protein marker solubilization with cell lysis. Nickel-coated microparticles are designed, fabricated, and characterized, each conjugated with a mixture of histidine-tagged proteins (42.3-100 kDa). Imidazole in the cell lysis buffer solubilizes protein markers during a 30 s cell lysis step, with an observed protein marker release half-life of 4.46 s. Across hundreds of individual microwells and different microdevices, robust log-linear regression fits (R2 > 0.97) of protein molecular mass and electrophoretic mobility are observed. The protein marker and microparticle system is applied to determine the molecular masses of five endogenous proteins in breast cancer cells (GAPDH, β-TUB, CK8, STAT3, ER-α), with <20% mass error. Microparticle-delivered protein standards underpin robust, reproducible electrophoretic cytometry that complements single-cell genomics and transcriptomics.
Collapse
Affiliation(s)
- John J. Kim
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA; UCB-UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Peggy P. Y. Chan
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA; Faculty of Science Engineering & Technology, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Julea Vlassakis
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA; UCB-UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Alisha Geldert
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA; UCB-UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Amy E. Herr
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA, ; UCB-UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
11
|
Litovchick L. Immunoblotting: Transfer of Proteins from Gels to Membranes. Cold Spring Harb Protoc 2018; 2018:2018/10/pdb.prot098442. [PMID: 30275079 DOI: 10.1101/pdb.prot098442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electrophoretic transfer of proteins from gels to membranes can be achieved either by complete immersion of a gel-membrane sandwich in a buffer (wet transfer) or by placing the gel-membrane sandwich between absorbent paper soaked in transfer buffer (semidry transfer). For the wet transfer, the sandwich is placed in a buffer tank with platinum wire electrodes. For the semidry transfer, the gel-membrane sandwich is placed between carbon plate or stainless steel electrodes. Both methods are described here and generally work well, although semidry transfer is quicker and often more complete.
Collapse
|
12
|
Zhang Y, Xiang D, Tang B, Zhang CY. Sensitive Detection of Transcription Factor in Nuclear Extracts by Target-Actuated Isothermal Amplification-Mediated Fluorescence Enhancement. Anal Chem 2017; 89:10439-10445. [DOI: 10.1021/acs.analchem.7b02451] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan Zhang
- Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Shandong Provincial
Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Dongxue Xiang
- Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Shandong Provincial
Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Bo Tang
- Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Shandong Provincial
Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-yang Zhang
- Collaborative Innovation Center of Functionalized
Probes for Chemical Imaging in Universities of Shandong, Key Laboratory
of Molecular and Nano Probes, Ministry of Education, Shandong Provincial
Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
13
|
Abstract
Edwin M. Southern is a professor emeritus at the University of Oxford. He is perhaps best known for development of the "Southern blot" (Dr. Southern was at the University of Edinburgh when he wrote his landmark paper). The Southern blot provided a scientific breakthrough by allowing scientists to detect a particular DNA sequence without first purifying it from the rest of the genome; the basic method involves the transfer of the DNA to a membrane, followed by detection with a specific probe. Although few people perform Southern blots as originally carried out by Southern, due in part to the more recent technique of the polymerase chain reaction, the basic concept continues to play an important role in molecular biology.
Collapse
Affiliation(s)
- Daniel J Klionsky
- a Life Sciences Institute and Department of Molecular , Cellular and Developmental Biology; University of Michigan ; Ann Arbor , MI , USA
| |
Collapse
|
14
|
Kurien BT, Scofield RH. Validating Antibody Specificities for Immunohistochemistry by Protein Blotting Methods. Methods Mol Biol 2017; 1554:61-73. [PMID: 28185183 DOI: 10.1007/978-1-4939-6759-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Immunoblotting has been used in conjunction with other important antibody based detection methods like enzyme linked immunosorbent assay and immunohistochemistry to provide confirmation of results both in research and diagnostic testing. Specificity of antibodies employed for immunohistochemical studies is of critical importance and therefore the use of western blotting is imperative to address specificity of antibodies. In spite of its overall simplicity, western blotting or protein blotting is a powerful procedure for immunodetection of proteins, especially those that are of low abundance, following electrophoretic separation. The usefulness of this procedure stems from its ability to provide simultaneous resolution of multiple immunogenic antigens within a sample for detection by specific antibodies. Protein blotting has evolved greatly over the last few decades and researchers have a variety of ways and means to carry out this procedure to validate antibodies for immunohistochemistry.
Collapse
Affiliation(s)
- Biji T Kurien
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA.
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Veterans Affairs Medical Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - R Hal Scofield
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Veterans Affairs Medical Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
15
|
Abstract
Northwestern assays detect a direct binding of a given RNA molecule to a protein immobilized on a nitrocellulose membrane. Here, we describe protocols to prepare (32)P-labeled RNA probes and to use them to assay for RNA-protein interactions after partially purified protein preparations are resolved on denaturing SDS-polyacrylamide gels. The method can unambiguously determine whether the protein of interest can directly and independently bind RNA even in the presence of contaminating bacterial proteins or degradation products that at times may hinder interpretation of results obtained from gel mobility shift or RNP immunoprecipitation assays.
Collapse
|
16
|
Günther T, Theiss JM, Fischer N, Grundhoff A. Investigation of Viral and Host Chromatin by ChIP-PCR or ChIP-Seq Analysis. ACTA ACUST UNITED AC 2016; 40:1E.10.1-1E.10.21. [PMID: 26855283 DOI: 10.1002/9780471729259.mc01e10s40] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Complex regulation of viral transcription patterns and DNA replication levels is a feature of many DNA viruses. This is especially true for those viruses which establish latent or persistent infections (e.g., herpesviruses, papillomaviruses, polyomaviruses, or adenovirus), as long-term persistence often requires adaptation of gene expression programs and/or replication levels to the cellular milieu. A key factor in the control of such processes is the establishment of a specific chromatin state on promoters or replication origins, which in turn will determine whether or not the underlying DNA is accessible for other factors that mediate downstream processes. Chromatin immunoprecipitation (ChIP) is a powerful technique to investigate viral chromatin, in particular to study binding patterns of modified histones, transcription factors or other DNA-/chromatin-binding proteins that regulate the viral lifecycle. Here, we provide protocols that are suitable for performing ChIP-PCR and ChIP-Seq studies on chromatin of large and small viral genomes.
Collapse
Affiliation(s)
- Thomas Günther
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Juliane M Theiss
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,Institute for Medical Microbiology, Virology and Hygiene; University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene; University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adam Grundhoff
- Heinrich-Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
17
|
Zhang Y, Ma F, Tang B, Zhang CY. Recent advances in transcription factor assays in vitro. Chem Commun (Camb) 2016; 52:4739-48. [DOI: 10.1039/c5cc09891b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We review the recent advances in transcription factor assaysin vitroand highlight the emerging trends as well.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Fei Ma
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Chun-yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
18
|
Abstract
tRNA modifications are crucial for efficient and accurate protein translation, with defects often linked to disease. There are 7 cytoplasmic tRNA modifications in the yeast Saccharomyces cerevisiae that are formed by an enzyme consisting of a catalytic subunit and an auxiliary protein, 5 of which require only a single subunit in bacteria, and 2 of which are not found in bacteria. These enzymes include the deaminase Tad2-Tad3, and the methyltransferases Trm6-Trm61, Trm8-Trm82, Trm7-Trm732, and Trm7-Trm734, Trm9-Trm112, and Trm11-Trm112. We describe the occurrence and biological role of each modification, evidence for a required partner protein in S. cerevisiae and other eukaryotes, evidence for a single subunit in bacteria, and evidence for the role of the non-catalytic binding partner. Although it is unclear why these eukaryotic enzymes require partner proteins, studies of some 2-subunit modification enzymes suggest that the partner proteins help expand substrate range or allow integration of cellular activities.
Collapse
Affiliation(s)
- Michael P Guy
- a Department of Biochemistry and Biophysics; Center for RNA Biology ; University of Rochester School of Medicine ; Rochester , NY USA
| | | |
Collapse
|
19
|
Jiang B, Wang M, Li F, Yu L, Xie J. Multiplexed electrochemical coding of DNA–protein bindings. Biosens Bioelectron 2015; 64:429-33. [DOI: 10.1016/j.bios.2014.09.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/16/2014] [Accepted: 09/22/2014] [Indexed: 01/06/2023]
|
20
|
Abstract
Southwestern blotting is a technique used to study DNA-protein interactions. This method detects specific DNA-binding proteins by incubating radiolabeled DNA with a gel blot, washing, and visualizing through autoradiography. A blot resulting from 1-dimensional SDS-PAGE reveals the molecular weight of the binding proteins. To increase separation and determine isoelectric point a 2-dimensional gel can be blotted. Additional dimensions of electrophoresis, such as a gel shift (EMSA), can precede isoelectric focusing and SDS-PAGE to further improve separation. Combined with other techniques, such as mass spectrometry, the DNA-binding protein can be identified.
Collapse
|
21
|
Abstract
Western blotting is an important procedure for the immunodetection of proteins, particularly proteins that are of low abundance. This process involves the transfer of protein patterns from gel to microporous membrane. Electrophoretic as well as non-electrophoretic transfer of proteins to membranes was first described in 1979. Protein blotting has evolved greatly since the inception of this protocol, allowing protein transfer to be accomplished in a variety of ways.
Collapse
Affiliation(s)
- Biji T Kurien
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK, 73104, USA,
| | | |
Collapse
|
22
|
Szeberényi J. Problem-solving test: Southwestern blotting. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 42:443-445. [PMID: 25099485 DOI: 10.1002/bmb.20816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/15/2014] [Indexed: 06/03/2023]
Abstract
Terms to be familiar with before you start to solve the test: Southern blotting, Western blotting, restriction endonucleases, agarose gel electrophoresis, nitrocellulose filter, molecular hybridization, polyacrylamide gel electrophoresis, proto-oncogene, c-abl, Src-homology domains, tyrosine protein kinase, nuclear localization signal, cDNA, deletion mutants, expression plasmid, transfection, RNA polymerase II, promoter, Shine-Dalgarno sequence, polyadenylation element, affinity chromatography, Northern blotting, immunoprecipitation, sodium dodecylsulfate, autoradiography, tandem repeats.
Collapse
Affiliation(s)
- József Szeberényi
- Department of Medical Biology, Medical School, University of Pécs, H-7624, Pécs, Hungary
| |
Collapse
|
23
|
Zhang Y, Liu F, Nie J, Jiang F, Zhou C, Yang J, Fan J, Li J. An electrochemical sensing platform based on local repression of electrolyte diffusion for single-step, reagentless, sensitive detection of a sequence-specific DNA-binding protein. Analyst 2014; 139:2193-8. [PMID: 24647581 DOI: 10.1039/c4an00096j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we report for the first time an electrochemical biosensor for single-step, reagentless, and picomolar detection of a sequence-specific DNA-binding protein using a double-stranded, electrode-bound DNA probe terminally modified with a redox active label close to the electrode surface. This new methodology is based upon local repression of electrolyte diffusion associated with protein-DNA binding that leads to reduction of the electrochemical response of the label. In the proof-of-concept study, the resulting electrochemical biosensor was quantitatively sensitive to the concentrations of the TATA binding protein (TBP, a model analyte) ranging from 40 pM to 25.4 nM with an estimated detection limit of ∼10.6 pM (∼80 to 400-fold improvement on the detection limit over previous electrochemical analytical systems).
Collapse
Affiliation(s)
- Yun Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Casado-Vela J, Fuentes M, Franco-Zorrilla JM. Screening of Protein–Protein and Protein–DNA Interactions Using Microarrays. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 95:231-81. [DOI: 10.1016/b978-0-12-800453-1.00008-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Ye Z, Zhang B, Yang Y, Wang Z, Zhu X, Li G. Electrochemical biosensor for the nuclear factor kappa B using a gold nanoparticle-assisted dual signal amplification method. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1080-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Liu X, Ouyang L, Cai X, Huang Y, Feng X, Fan Q, Huang W. An ultrasensitive label-free biosensor for assaying of sequence-specific DNA-binding protein based on amplifying fluorescent conjugated polymer. Biosens Bioelectron 2013; 41:218-24. [DOI: 10.1016/j.bios.2012.08.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/08/2012] [Accepted: 08/09/2012] [Indexed: 11/15/2022]
|
27
|
Dey B, Thukral S, Krishnan S, Chakrobarty M, Gupta S, Manghani C, Rani V. DNA-protein interactions: methods for detection and analysis. Mol Cell Biochem 2012; 365:279-99. [PMID: 22399265 DOI: 10.1007/s11010-012-1269-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 02/16/2012] [Indexed: 12/18/2022]
Abstract
DNA-binding proteins control various cellular processes such as recombination, replication and transcription. This review is aimed to summarize some of the most commonly used techniques to determine DNA-protein interactions. In vitro techniques such as footprinting assays, electrophoretic mobility shift assay, southwestern blotting, yeast one-hybrid assay, phage display and proximity ligation assay have been discussed. The highly versatile in vivo techniques such as chromatin immunoprecipitation and its variants, DNA adenine methyl transferase identification as well as 3C and chip-loop assay have also been summarized. In addition, some in silico tools have been reviewed to provide computational basis for determining DNA-protein interactions. Biophysical techniques like fluorescence resonance energy transfer (FRET) techniques, FRET-FLIM, circular dichroism, atomic force microscopy, nuclear magnetic resonance, surface plasmon resonance, etc. have also been highlighted.
Collapse
Affiliation(s)
- Bipasha Dey
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10 Sector-62, Noida 201307, Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
28
|
Liu X, Ouyang L, Huang Y, Feng X, Fan Q, Huang W. Highly sensitive detection of DNA-binding proteins based on a cationic conjugated polymer via a target-mediated fluorescence resonance energy transfer (TMFRET) strategy. Polym Chem 2012. [DOI: 10.1039/c2py00499b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Kurien BT, Dorri Y, Dillon S, Dsouza A, Scofield RH. An overview of Western blotting for determining antibody specificities for immunohistochemistry. Methods Mol Biol 2011; 717:55-67. [PMID: 21370024 DOI: 10.1007/978-1-61779-024-9_3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Despite its overall simplicity, protein blotting or Western blotting has been proven to be a powerful procedure for the immunodetection of proteins, especially those that are of low abundance, following electrophoresis. The usefulness of this procedure stems from its ability to provide simultaneous resolution of multiple immunogenic antigens within a sample for detection by specific antibodies. Protein blotting has evolved greatly since its inception and researchers have a variety of ways and means to carry out this transfer. This procedure is used in combination with other important antibody-based detection methods such as enzyme-linked immunosorbant assay and immunohistochemistry to provide confirmation of results both in research and diagnostic testing. Specificity of antibodies used for immunohistochemistry is of critical importance and therefore Western blot is a "must" to address antibodies' specificity.
Collapse
Affiliation(s)
- Biji T Kurien
- Arthritis and Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | | | | | | | | |
Collapse
|
30
|
Roman-Blas J, Dion AS, Seghatoleslami MR, Giunta K, Oca P, Jimenez SA, Williams CJ. MED and PSACH COMP mutations affect chondrogenesis in chicken limb bud micromass cultures. J Cell Physiol 2010; 224:817-26. [PMID: 20578249 DOI: 10.1002/jcp.22185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mutations in cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). We studied the effects of over-expression of wild type and mutant COMP on early stages of chondrogenesis in chicken limb bud micromass cultures. Cells were transduced with RCAS virus harboring wild type or mutant (C328R, PSACH; T585R, MED) COMP cDNAs and cultured for 3, 4, and 5 days. The effect of COMP constructs on chondrogenesis was assessed by analyzing mRNA and protein expression of several COMP binding partners. Cell viability was assayed, and evaluation of apoptosis was performed by monitoring caspase 3 processing. Over-expression of COMP, and especially expression of COMP mutants, had a profound affect on the expression of syndecan 3 and tenascin C, early markers of chondrogenesis. Over-expression of COMP did not affect levels of type II collagen or matrilin-3; however, there were increases in type IX collagen expression and sulfated proteoglycan synthesis, particularly at day 5 of harvest. In contrast to cells over-expressing COMP, cells with mutant COMP showed reduction in type IX collagen expression and increased matrilin 3 expression. Finally, reduction in cell viability, and increased activity of caspase 3, at days 4 and 5, were observed in cultures expressing either wild type or mutant COMP. MED, and PSACH mutations, despite displaying phenotypic differences, demonstrated only subtle differences in their cellular viability and mRNA and protein expression of components of the extracellular matrix, including those that interact with COMP. These results suggest that COMP mutations, by disrupting normal interactions between COMP and its binding partners, significantly affect chondrogenesis.
Collapse
Affiliation(s)
- J Roman-Blas
- Division of Rheumatology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Schaltmann K, Pongs O. Identification and characterization of the ecdysterone receptor in Drosophila melanogaster by photoaffinity labeling. Proc Natl Acad Sci U S A 2010; 79:6-10. [PMID: 16593141 PMCID: PMC345650 DOI: 10.1073/pnas.79.1.6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salivary glands of third-instar larvae of Drosophila melanogaster as well as Drosophila K(c) tissue culture cells have been irradiated in the presence of ecdysterone. Irradiation covalently links ecdysterone to a single cellular protein, which is similar, if not identical, in salivary glands and in K(c) cells. This protein has a molecular weight of 130,000 and it has the characteristics of a typical hormone-receptor molecule in terms of hormone-binding properties, translocation into the nucleus, and sedimentation characteristics. The yield of the photoinduced bonding of ecdysterone to receptor protein is around 15%. Ponasterone A competed with ecdysterone for the bonding. Also, ponasterone A itself reacted upon photoactivation with the beta-ecdysterone receptor protein in Drosophila tissue culture cells. We have previously shown that ecdysterone can be bonded upon irradiation to specific hormone-controlled puffs of polytene chromosomes of D. melanogaster third-instar larvae [Gronemeyer, H. & Pongs, O. (1980) Proc. Natl. Acad. Sci. USA 77, 2108-2112]. Because we have now identified the molecular target of the ecdysterone photoreaction, these data show that a hormone-receptor complex translocates to the nucleus and directly binds to the genes, which are under hormonal control. A quantitative assay of hormone-receptor complex in K(c) cells before and after hormone stimulation showed that ecdysterone does not regulate the synthesis and the available amount of its receptor. It was also observed that the translocated hormone-receptor complex resides in the nucleus as long as the hormone is present in the tissue culture medium.
Collapse
Affiliation(s)
- K Schaltmann
- Lehrstuhl für Biochemie, Universität Bochum, 4630 Bochum, Federal Republic of Germany
| | | |
Collapse
|
32
|
Franssen H, Goldbach R, Broekhuijsen M, Moerman M, van Kammen A. Expression of Middle-Component RNA of Cowpea Mosaic Virus: In Vitro Generation of a Precursor to Both Capsid Proteins by a Bottom-Component RNA-Encoded Protease from Infected Cells. J Virol 2010; 41:8-17. [PMID: 16789216 PMCID: PMC256721 DOI: 10.1128/jvi.41.1.8-17.1982] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of the middle-component (M) RNA of cowpea mosaic virus was studied by means of in vitro translation. In both the wheat germ extract and the rabbit reticulocyte lysate, M RNA was translated into two overlapping polypeptides of 95 and 105 kilodaltons. Incubation of these polypeptides with 30,000 x g supernatant fractions from cowpea mesophyll protoplasts inoculated with complete virus or with separate bottom (B) components alone resulted in extensive processing, yielding polypeptides of 60, 58, 48, and 47 kilodaltons. Similar proteolytic activity was found associated with the in vitro translation products from the bottom-component RNA, demonstrating that the protease present in infected cells is encoded by B RNA. Using antisera raised against the separate capsid proteins VP23 and VP37, it was shown that the 60-kilodalton cleavage product is the precursor to both capsid proteins. Cleavage of nascent 95- and 105- kilodalton polypeptides by the in vivo protease demonstrated that this capsid protein precursor is located C terminally within both polypeptides and that the synthesis of these two overlapping polypeptides is the result of two initiation sites on middle-component RNA. In addition, a second virus-induced proteolytic activity, capable of releasing VP23 from the 95- and 105-kilodalton polypeptides, was detected in leaves of infected plants, but not in infected mesophyll protoplasts. A model for the expression of the middle-component RNA is presented.
Collapse
Affiliation(s)
- H Franssen
- Department of Molecular Biology, Agricultural University, 6703 BC Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
33
|
Rozier C, Mache R. Binding of 16S rRNA to chloroplast 30S ribosomal proteins blotted on nitrocellulose. Nucleic Acids Res 2010; 12:7293-304. [PMID: 16617474 PMCID: PMC320162 DOI: 10.1093/nar/12.19.7293] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Protein-RNA associations were studied by a method using proteins blotted on a nitrocellulose sheet. This method was assayed with Escherichia Coli 30S ribosomal components. In stringent conditions (300 mM NaCl or 20 degrees C) only 9 E. coli ribosomal proteins strongly bound to the 16S rRNA: S4, S5, S7, S9, S12, S13, S14, S19, S20. 8 of these proteins have been previously found to bind independently to the 16S rRNA. The same method was applied to determine protein-RNA interactions in spinach chloroplast 30S ribosomal subunits. A set of only 7 proteins was bound to chloroplast rRNA in stringent conditions: chloroplast S6, S10, S11, S14, S15, S17 and S22. They also bound to E. coli 16S rRNA. This set includes 4 chloroplast-synthesized proteins: S6, S11, S15 and S22. The core particles obtained after treatment by LiCl of chloroplast 30S ribosomal subunit contained 3 proteins (S6, S10 and S14) which are included in the set of 7 binding proteins. This set of proteins probably play a part in the early steps of the assembly of the chloroplast 30S ribosomal subunit.
Collapse
Affiliation(s)
- C Rozier
- Laboratoire de Physiologie Cellulaire Végétale, CNRS-UA 571,. Université de Grenoble I, 38402 St Martin d'Hères Cedex, France
| | | |
Collapse
|
34
|
Peeples TL, Kelly RM. Bioenergetic Response of the Extreme Thermoacidophile Metallosphaera sedula to Thermal and Nutritional Stresses. Appl Environ Microbiol 2010; 61:2314-21. [PMID: 16535051 PMCID: PMC1388469 DOI: 10.1128/aem.61.6.2314-2321.1995] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bioenergetic response of the extremely thermoacidophilic archaeon Metallosphaera sedula to thermal and nutritional stresses was examined. Continuous cultures (pH 2.0, 70(deg)C, and dilution rate of 0.05 h(sup-1)) in which the levels of Casamino Acids and ferrous iron in growth media were reduced by a step change of 25 to 50% resulted in higher levels of several proteins, including a 62-kDa protein immunologically related to the molecular chaperone designated thermophilic factor 55 in Sulfolobus shibatae (J. D. Trent, J. Osipiuk, and T. Pinkau, J. Bacteriol. 172:1478-1484, 1990), on sodium dodecyl sulfate-polyacrylamide gels. The 62-kDa protein was also noted at elevated levels in cells that had been shifted from 70 to either 80 or 85(deg)C. The proton motive force ((Delta)p), transmembrane pH ((Delta)pH), and membrane potential ((Delta)(psi)) were determined for samples obtained from continuous cultures (pH 2.0, 70(deg)C, and dilution rate of 0.05 h(sup-1)) and incubated under nutritionally and/or thermally stressed and unstressed conditions. At 70(deg)C under optimal growth conditions, M. sedula was typically found to have a (Delta)p of approximately -190 to -200 mV, the result of an intracellular pH of 5.4 (extracellular pH, 2.0) and a (Delta)(psi) of +40 to +50 mV (positive inside). After cells had been shifted to either 80 or 85(deg)C, (Delta)(psi) decreased to nearly 0 mV and internal pH approached 4.0 within 4 h of the shift; respiratory activity, as evidenced by iron speciation in parallel temperature-shifted cultures on iron pyrite, had ceased by this point. If cultures shifted from 70 to 80(deg)C were shifted back to 70(deg)C after 4 h, cells were able to regain pyrite oxidation capacity and internal pH increased to nearly normal levels after 13 h. However, (Delta)(psi) remained close to 0 mV, possibly the result of enhanced ionic exchange with media upon thermal damage to cell membranes. Further, when M. sedula was subjected to an intermediate temperature shift from 73 to 79(deg)C, an increase in pyrite dissolution (ferric iron levels doubled) over that of the unshifted control at 73(deg)C was noted. The improvement in leaching was attributed to the synergistic effect of chemical and biological factors. As such, periodic exposure to higher temperatures, followed by a suitable recovery period, may provide a basis for improving bioleaching rates of acidophilic chemolithotrophs.
Collapse
|
35
|
Identification of Scaffold/Matrix Attachment (S/MAR) like DNA element from the gastrointestinal protozoan parasite Giardia lamblia. BMC Genomics 2010; 11:386. [PMID: 20565887 PMCID: PMC3017767 DOI: 10.1186/1471-2164-11-386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromatin in the nucleus of all eukaryotes is organized into a system of loops and domains. These loops remain fastened at their bases to the fundamental framework of the nucleus, the matrix or the scaffold. The DNA sequences which anchor the bases of the chromatin loops to the matrix are known as Scaffold/Matrix Attachment Regions or S/MARs. Though S/MARs have been studied in yeast and higher eukaryotes and they have been found to be associated with gene organization and regulation of gene expression, they have not been reported in protists like Giardia. Several tools have been discovered and formulated to predict S/MARs from a genome of a higher eukaryote which take into account a number of features. However, the lack of a definitive consensus sequence in S/MARs and the randomness of the protozoan genome in general, make it a challenge to predict and identify such sequences from protists. RESULTS Here, we have analysed the Giardia genome for the probable S/MARs predicted by the available computational tools; and then shown these sequences to be physically associated with the nuclear matrix. Our study also reflects that while no single computational tool is competent to predict such complex elements from protist genomes, a combination of tools followed by experimental verification is the only way to confirm the presence of these elements from these organisms. CONCLUSION This is the first report of S/MAR elements from the protozoan parasite Giardia lamblia. This initial work is expected to lay a framework for future studies relating to genome organization as well as gene regulatory elements in this parasite.
Collapse
|
36
|
Oca P, Zaka R, Dion AS, Freeman TA, Williams CJ. Phosphate and calcium are required for TGFβ-mediated stimulation of ANK expression and function during chondrogenesis. J Cell Physiol 2010; 224:540-8. [DOI: 10.1002/jcp.22155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
37
|
Establishing and maintaining sequestration of Dam target sites for phase variation of agn43 in Escherichia coli. J Bacteriol 2010; 192:1937-45. [PMID: 20118257 DOI: 10.1128/jb.01629-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phase variation of the outer membrane protein Ag43 encoded by agn43 in Escherichia coli is controlled by an epigenetic mechanism. Sequestration of the regulatory region from Dam-dependent methylation has to be established and maintained throughout a generation to obtain and maintain the OFF phase. This work shows that hemimethylated DNA, which is formed by the passage of the DNA replication fork in an ON-phase cell, can be sequestered from methylation by OxyR binding, which is thus a key event for the switch from ON to OFF. No evidence was found that the protein SeqA, which also binds to the region, is involved in sequestration. To facilitate the dissection of this process further, a novel approach was introduced that does not alter the sequence of the regulatory region or the cellular concentration of Dam or OxyR, which consists of inserting auxiliary OxyR binding sites upstream of the regulatory region. Using this strategy, it was shown that the ON-to-OFF switch frequency can be modulated without changing the OFF-to-ON frequency. The data support a model in which in an ON-phase cell, the subcellular OxyR availability at the replication fork as it passes through the agn43 regulatory region is key for initiating an ON-to-OFF switch. In contrast, this availability is not a determining factor for the switch from OFF to ON. This finding shows that different variables affect these two stochastic events. This provides new insight into the events determining the stochastic nature of epigenetic phase variation.
Collapse
|
38
|
Vidaković M, Dinić S, Grdović N, Mihailović M, Uskoković A, Quesada P, Poznanović G. Regulation of rat haptoglobin gene expression is coordinated by the nuclear matrix. J Cell Biochem 2009; 107:1205-21. [PMID: 19521970 DOI: 10.1002/jcb.22225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Using computer stress-induced duplex destabilization (SIDD) analysis and binding experiments, we identified a S/MAR element (-599/-200 bp) (Hp-S/MAR) adjacent to the cis-element (-165/-56 bp) in the rat haptoglobin gene. We examined its functional interactions with the lamins and lamin-associated proteins in the basal state and during acute-phase (AP) response-induced increased transcription. Colocalization, electrophoretic mobility shift assay (EMSA), and re-electrophoresis of nucleoprotein complexes, South-Western and Western blot analysis and coimmunoprecipitation experiments revealed that the lamins, PARP-1, C/EBP beta, and Hp-S/MAR assembled higher order complexes through direct lamin-Hp-S/MAR and probably PARP-1-Hp-S/MAR interactions although C/EBP beta did not bind to the Hp-S/MAR but established direct interaction with PARP-1. The transition from constitutive to increased haptoglobin gene transcription during the AP response was associated with quantitative and qualitative changes in Hp-S/MAR-protein interactions, respectively, observed as increased association of the lamin(s) with the Hp-S/MAR and as the appearance of a 90 kDa Hp-S/MAR-binding protein. Also, during the AP response the contact between C/EBP beta and PARP-1 established in the basal state was lost. DNA chromatography with the haptoglobin cis-element and Western blot analysis suggests that PARP-1 was a coactivator during constitutive and elevated transcription. The results show that the lamin components of the nuclear matrix form a network of functional, dynamic protein-protein and protein-Hp-S/MAR associations with multiple partners, and underline the involvement of PARP-1 in the regulation of haptoglobin gene transcription. We concluded that the interplay of these interactions fine tunes haptoglobin gene expression to meet the changing requirements of liver cells.
Collapse
Affiliation(s)
- Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
39
|
Jiang D, Jarrett HW, Haskins WE. Methods for proteomic analysis of transcription factors. J Chromatogr A 2009; 1216:6881-9. [PMID: 19726046 PMCID: PMC2778203 DOI: 10.1016/j.chroma.2009.08.044] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 08/12/2009] [Accepted: 08/17/2009] [Indexed: 02/08/2023]
Abstract
Investigation of the transcription factor (TF) proteome presents challenges including the large number of low abundance and post-translationally modified proteins involved. Specialized purification and analysis methods have been developed over the last decades which facilitate the study of the TF proteome and these are reviewed here. Generally applicable proteomics methods that have been successfully applied are also discussed. TFs are selectively purified by affinity techniques using the DNA response element (RE) as the basis for highly specific binding, and several agents have been discovered that either enhance binding or diminish non-specific binding. One such affinity method called "trapping" enables purification of TFs bound to nM concentrations and recovery of TF complexes in a highly purified state. The electrophoretic mobility shift assay (EMSA) is the most important assay of TFs because it provides both measures of the affinity and amount of the TF present. Southwestern (SW) blotting and DNA-protein crosslinking (DPC) allow in vitro estimates of DNA-binding-protein mass, while chromatin immunoprecipitation (ChIP) allows confirmation of promoter binding in vivo. Two-dimensional gel electrophoresis methods (2-DE), and 3-DE methods which combines EMSA with 2-DE, allow further resolution of TFs. The synergy of highly selective purification and analytical strategies has led to an explosion of knowledge about the TF proteome and the proteomes of other DNA- and RNA-binding proteins.
Collapse
Affiliation(s)
- Daifeng Jiang
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249 USA
| | - Harry W. Jarrett
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249 USA
| | - William E. Haskins
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249 USA
- RCMI Proteomics, University of Texas at San Antonio, San Antonio, TX, 78249 USA
- Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249 USA
- Department of Medicine, Division of Hematology & Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229 USA
| |
Collapse
|
40
|
Jiang D, Jia Y, Zhou Y, Jarrett HW. Two-dimensional southwestern blotting and characterization of transcription factors on-blot. J Proteome Res 2009; 8:3693-701. [PMID: 19388704 DOI: 10.1021/pr900214p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two-dimensional Southwestern blotting (2D-SW) described here combines several steps. Proteins are separated by two-dimensional gel electrophoresis and transferred to nitrocellulose (NC) or polyvinylidene fluoride (PVDF) membrane. The blotted proteins are then partially renatured and probed with a specific radiolabeled oligonucleotide for Southwestern blotting (SW) analysis. The detected proteins are then processed by on-blot digestion and identified by LC-MS/MS analysis. A transcription factor, bound by a specific radiolabeled element, is thus characterized without aligning with protein spots on a gel. In this study, we systematically optimize conditions for 2D-SW and on-blot digestion. By quantifying the SW signal using a scintillation counter, the optimal conditions for SW were determined to be PVDF membrane, 0.5% PVP40 for membrane blocking, serial dilution of guanidine HCl for denaturing and renaturing proteins on the blot, and an SDS stripping buffer to remove radiation from the blot. By the quantification of the peptide yields using nano-ESI-MS analysis, the optimized conditions for on-blot digestions were found to be 0.5% Zwittergent 3-16 and 30% acetonitrile in trypsin digestion buffer. With the use of the optimized 2D-SW technique and on-blot digestion combined with HPLC-nano-ESI-MS/MS, a GFP-C/EBP model protein was successfully characterized from a bacterial extract, and native C/EBP beta was identified from 100 microg of HEK293 nuclear extract without any previous purification.
Collapse
Affiliation(s)
- Daifeng Jiang
- Department of Chemistry, University of Texas San Antonio, San Antonio, Texas 78249, USA
| | | | | | | |
Collapse
|
41
|
Abstract
Protein blotting is a powerful and important procedure for the immunodetection of proteins following electrophoresis, particularly proteins that are of low abundance. Since the inception of the protocol for protein transfer from an electrophoresed gel to a membrane in 1979, protein blotting has evolved greatly. The scientific community is now confronted with a variety of ways and means to carry out this transfer.
Collapse
|
42
|
Berger MF, Bulyk ML. Universal protein-binding microarrays for the comprehensive characterization of the DNA-binding specificities of transcription factors. Nat Protoc 2009; 4:393-411. [PMID: 19265799 DOI: 10.1038/nprot.2008.195] [Citation(s) in RCA: 288] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein-binding microarray (PBM) technology provides a rapid, high-throughput means of characterizing the in vitro DNA-binding specificities of transcription factors (TFs). Using high-density, custom-designed microarrays containing all 10-mer sequence variants, one can obtain comprehensive binding-site measurements for any TF, regardless of its structural class or species of origin. Here, we present a protocol for the examination and analysis of TF-binding specificities at high resolution using such 'all 10-mer' universal PBMs. This procedure involves double-stranding a commercially synthesized DNA oligonucleotide array, binding a TF directly to the double-stranded DNA microarray and labeling the protein-bound microarray with a fluorophore-conjugated antibody. We describe how to computationally extract the relative binding preferences of the examined TF for all possible contiguous and gapped 8-mers over the full range of affinities, from highest affinity sites to nonspecific sites. Multiple proteins can be tested in parallel in separate chambers on a single microarray, enabling the processing of a dozen or more TFs in a single day.
Collapse
Affiliation(s)
- Michael F Berger
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
43
|
Seidel P, Merfort I, Hughes JM, Oliver BGG, Tamm M, Roth M. Dimethylfumarate inhibits NF-{kappa}B function at multiple levels to limit airway smooth muscle cell cytokine secretion. Am J Physiol Lung Cell Mol Physiol 2009; 297:L326-39. [PMID: 19465513 DOI: 10.1152/ajplung.90624.2008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The antipsoriatic dimethylfumarate (DMF) has been anecdotically reported to reduce asthma symptoms and to improve quality of life of asthma patients. DMF decreases the expression of proinflammatory mediators by inhibiting the transcription factor NF-kappaB and might therefore be of interest for the therapy of inflammatory lung diseases. In this study, we determined the effect of DMF on platelet-derived growth factor (PDGF)-BB- and TNFalpha-induced asthma-relevant cytokines and NF-kappaB activation by primary human asthmatic and nonasthmatic airway smooth muscle cells (ASMC). Confluent nonasthmatic and asthmatic ASMC were incubated with DMF (0.1-100 microM) and/or dexamethasone (0.0001-0.1 microM), NF-kappaB p65 siRNA (100 nM), the NF-kappaB inhibitor helenalin (1 microM) before stimulation with PDGF-BB or TNFalpha (10 ng/ml). Cytokine release was measured by ELISA. NF-kappaB, mitogen and stress-activated kinase (MSK-1), and CREB activation was determined by immunoblotting and EMSA. TNFalpha-induced eotaxin, RANTES, and IL-6 as well as PDGF-BB-induced IL-6 expression was inhibited by DMF and by dexamethasone from asthmatic and nonasthmatic ASMC, but the combination of both drugs showed no glucocorticoid sparing effect in either of the two groups. NF-kappaB p65 siRNA and/or the NF-kappaB inhibitor helenalin reduced PDGF-BB- and TNFalpha-induced cytokine expression, suggesting the involvement of NF-kappaB signaling. DMF inhibited TNFalpha-induced NF-kappaB p65 phosphorylation, NF-kappaB nuclear entry, and NF-kappaB-DNA complex formation, whereas PDGF-BB appeared not to activate NF-kappaB within 60 min. Both stimuli induced the phosphorylation of MSK-1, NF-kappaB p65 at Ser276, and CREB, and all were inhibited by DMF. These data suggest that DMF downregulates cytokine secretion not only by inhibiting NF-kappaB but a wider range of NF-kappaB-linked signaling proteins, which may explain its potential beneficial effect in asthma.
Collapse
Affiliation(s)
- P Seidel
- Department of Research and Pneumology, University Hospital Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
44
|
Zhang JB, Pan ZX, Lin F, Ma XS, Liu HL. [Biochemical methods for the analysis of DNA-protein interactions]. YI CHUAN = HEREDITAS 2009; 31:325-336. [PMID: 19273448 DOI: 10.3724/sp.j.1005.2009.00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Investigation of DNA-protein interactions is fundamental to understand the mechanism underlying a variety of life processes. In this article, various types of biochemical methods in DNA-protein interaction study in vivo and in vitro at the level of DNA, protein, and the complex, respectively were briefly reviewed. Traditional assays including Nitrocellulose filter-binding assay, Footprinting, EMSA, and Southwestern blotting were summarized. In addition, chromatin immunoprecipitation techniques including nChIP, xChIP, and ChIP-on-chip, which were widely used in epigenetics, were particularly introduced.
Collapse
Affiliation(s)
- Jin-Bi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | | | | | | | | |
Collapse
|
45
|
P64, a novel major virion DNA-binding protein potentially involved in condensing the Spodoptera frugiperda Ascovirus 1a genome. J Virol 2009; 83:2708-14. [PMID: 19129454 DOI: 10.1128/jvi.01610-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently identified 21 structural proteins in the virion of Spodoptera frugiperda ascovirus 1a (SfAV1a), a virus with a large, double-stranded DNA genome of 157 kbp, which attacks species of the lepidopteran family Noctuidae. The two most abundant virion proteins were the major capsid protein and a novel protein (P64) of 64 kDa that contained two distinct domains not known previously to occur together. The amino-terminal half of P64 (residues 1 to 263) contained four repeats (a recently recognized motif with an unknown function) of a virus-specific two-cysteine adaptor. Adjoined to this, the carboxy-terminal half of P64 (residues 279 to 455) contained 14 copies of a highly basic, tandemly repeated motif rich in arginine and serine, having an 11- to 13-amino-acid consensus sequence, SPSQRRSTS(V/K)(A/S)RR, yielding a predicted isoelectric point of 12.2 for this protein. In the present study, we demonstrate by Southwestern analysis that SfAV1a P64 was the only virion structural protein that bound DNA. Additional electrophoretic mobility shift assays showed that P64 bound SfAV1a as well as non-SfAV1a DNA. Furthermore, we show through immunogold labeling of ultrathin sections that P64 is a component of virogenic stroma and appears to be progressively incorporated into the SfAV1a DNA core during virion assembly. As no other virion structural protein bound DNA and no basic DNA-binding proteins of lower mass are encoded by the SfAV1a genome or were identified by proteomic analysis, our results suggest that P64's function is to condense the large genome of this virus and assist in packaging this genome into its virion.
Collapse
|
46
|
Tan SC, Yiap BC. DNA, RNA, and protein extraction: the past and the present. J Biomed Biotechnol 2009; 2009:574398. [PMID: 20011662 PMCID: PMC2789530 DOI: 10.1155/2009/574398] [Citation(s) in RCA: 337] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 11/05/2009] [Indexed: 12/30/2022] Open
Abstract
Extraction of DNA, RNA, and protein is the basic method used in molecular biology. These biomolecules can be isolated from any biological material for subsequent downstream processes, analytical, or preparative purposes. In the past, the process of extraction and purification of nucleic acids used to be complicated, time-consuming, labor-intensive, and limited in terms of overall throughput. Currently, there are many specialized methods that can be used to extract pure biomolecules, such as solution-based and column-based protocols. Manual method has certainly come a long way over time with various commercial offerings which included complete kits containing most of the components needed to isolate nucleic acid, but most of them require repeated centrifugation steps, followed by removal of supernatants depending on the type of specimen and additional mechanical treatment. Automated systems designed for medium-to-large laboratories have grown in demand over recent years. It is an alternative to labor-intensive manual methods. The technology should allow a high throughput of samples; the yield, purity, reproducibility, and scalability of the biomolecules as well as the speed, accuracy, and reliability of the assay should be maximal, while minimizing the risk of cross-contamination.
Collapse
Affiliation(s)
- Siun Chee Tan
- School of Postgraduate Studies & Research, Division of Pharmacy, International Medical University, No. 126, Jalan 19/155B, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | | |
Collapse
|
47
|
Labbé S, Harrisson JF, Séguin C. Identification of sequence-specific DNA-binding proteins by southwestern blotting. Methods Mol Biol 2009; 543:151-61. [PMID: 19378166 DOI: 10.1007/978-1-60327-015-1_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe a Southwestern blotting method for characterization of both DNA-binding proteins and their specific sites. Proteins are first separated on a sodium dodecyl sulfate (SDS) polyacrylamide gel, then renatured in SDS-free buffer and transferred by electroblotting to an immobilizing membrane, and detected by their ability to bind radiolabeled DNA. The protein(s) interacting with the labeled DNA is visualized by autoradiography. This technique was used in our laboratory to visualize the metal regulatory consensus sequence-binding protein MTF-1 in L cell crude nuclear extracts.
Collapse
Affiliation(s)
- Simon Labbé
- Centre de Recherche en Cancérologie de l'Université Laval, CHUQ, Pavillon l'Hôtel-Dieu de Québec, 11, côte de Palais, Québec, QC, G1R 2J6, Canada
| | | | | |
Collapse
|
48
|
Cerutti M, Devauchelle G. Characterization and localization of CIV polypeptides. Virology 2008; 145:123-31. [PMID: 18640546 PMCID: PMC7131272 DOI: 10.1016/0042-6822(85)90207-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/1984] [Accepted: 04/25/1985] [Indexed: 11/12/2022]
Abstract
In order to detect the structural proteins linked with disulfide bonds, CIV was solubilized and electrophoresed under nonreducing conditions in the first dimension and then under reducing conditions in the second dimension. The viral polypeptides linked originally with disulfide bonds were separated into subunits. The complexes were trimers (P′50) or dimers (P60 and P10). The apparent molecular weights of P81, P53, and P49 changed significantly according to the composition of the lysis buffer used, suggesting that the differences in their molecular weights were due to conformational changes produced by reduction of their intramolecular disulfide bonds. Sulfhydryl-containing polypeptides (P′50-P50, P60, P100, and P33) were detected by N-[14C]ethylmaleimide, and the accessibility of these residues was analyzed after successive stripping of the CIV particle. Radioiodination of external polypeptides by [125I]iodosulfanilic acid shows only one intensively labeled spot corresponding to the P50 polypeptide, whereas P′50 was only slightly labeled. Six viral polypeptides P81, P60, P31, P17, P13, and P10 were revealed to possess high affinity for CIV DNA. A structural model of CIV is proposed and discussed.
Collapse
Affiliation(s)
- M Cerutti
- Centre de Recherches de Biochimie et Physiologie cellulaires, Equipe de Virologie, UA 203, Université de Rouen, Mont Saint Aignan, France
| | | |
Collapse
|
49
|
Wilson ME, Consigli RA. Functions of a protein kinase activity associated with purified capsids of the granulosis virus infecting Plodia interpunctella. Virology 2008; 143:526-35. [PMID: 18639856 DOI: 10.1016/0042-6822(85)90391-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/1984] [Accepted: 02/20/1985] [Indexed: 10/26/2022]
Abstract
Activation of a protein kinase associated with purified capsids of the granulosis virus of Plodia interpunctella resulted in release of the DNA from the nucleocapsid as determined by electron microscopy. Heat treatment of the virions (65 degrees for 10 min) inactivated the kinase and prevented this uncoating event. The basic viral core protein, VP12, is the predominant phosphate acceptor for the protein kinase and was the only DNA-binding protein present in nucleocapsids. VP12 binding to 32P-nick-translated granulosis virus DNA was determined by the hybridization of the nick-translated DNA to nucleocapsid proteins transferred electrophoretically to nitrocellolose after separation by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Profiles obtained when nick-translated DNA was added to sucrose gradients in the absence and presence of VP12 substantiated the DNA-binding capability of VP12. Comparison of the DNA-binding capability of phosphorylated and nonphosphorylated VP12 using sucrose gradient sedimentation provided evidence that phosphorylation of the basic protein reduced its capability to bind DNA. We propose the endogenous protein kinase activity of the granulosis virus may function in two ways: release of the DNA from the nucleocapsid (uncoating), and decondensation of the DNA due to phosphorylation of the basic core protein, VP12.
Collapse
Affiliation(s)
- M E Wilson
- Division of Biology, Section of Virology and Oncology, Kansas State University, Manhattan, Kansas 66506, USA
| | | |
Collapse
|
50
|
Turnip yellow mosaic virus RNA-replicase contains host and virus-encoded subunits. Virology 2008; 134:78-90. [PMID: 18639811 DOI: 10.1016/0042-6822(84)90274-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/1983] [Accepted: 12/17/1983] [Indexed: 11/20/2022]
Abstract
The enzyme (RNA-replicase) involved in the synthesis of viral RNA has been purified from turnip yellow mosaic virus (TYMV)-infected chinese cabbage leaves. The RNA-replicaset contains two major subunits: one of apparent molecular weight 115,000 (115K) and the other of 45K. We have raised antisera against the purified TYMV-RNA-replicase and have demonstrated by immunoaffinity chromatography and immunoblotting that the 115K polypeptide is coded by the viral RNA but that the 45K protein is of host origin. Furthermore the TYMV RNA-replicase is clearly different from the RNA-dependent RNA polymerase that occurs in healthy as well as in infected plants.
Collapse
|