1
|
Devine SE. Emerging Opportunities to Study Mobile Element Insertions and Their Source Elements in an Expanding Universe of Sequenced Human Genomes. Genes (Basel) 2023; 14:1923. [PMID: 37895272 PMCID: PMC10606232 DOI: 10.3390/genes14101923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Three mobile element classes, namely Alu, LINE-1 (L1), and SVA elements, remain actively mobile in human genomes and continue to produce new mobile element insertions (MEIs). Historically, MEIs have been discovered and studied using several methods, including: (1) Southern blots, (2) PCR (including PCR display), and (3) the detection of MEI copies from young subfamilies. We are now entering a new phase of MEI discovery where these methods are being replaced by whole genome sequencing and bioinformatics analysis to discover novel MEIs. We expect that the universe of sequenced human genomes will continue to expand rapidly over the next several years, both with short-read and long-read technologies. These resources will provide unprecedented opportunities to discover MEIs and study their impact on human traits and diseases. They also will allow the MEI community to discover and study the source elements that produce these new MEIs, which will facilitate our ability to study source element regulation in various tissue contexts and disease states. This, in turn, will allow us to better understand MEI mutagenesis in humans and the impact of this mutagenesis on human biology.
Collapse
Affiliation(s)
- Scott E Devine
- Institute for Genome Sciences, Department of Medicine, and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Romero MA, Mumford PW, Roberson PA, Osburn SC, Young KC, Sedivy JM, Roberts MD. Translational Significance of the LINE-1 Jumping Gene in Skeletal Muscle. Exerc Sport Sci Rev 2022; 50:185-193. [PMID: 35749745 PMCID: PMC9651911 DOI: 10.1249/jes.0000000000000301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Retrotransposons are gene segments that proliferate in the genome, and the Long INterspersed Element 1 (LINE-1 or L1) retrotransposon is active in humans. Although older mammals show enhanced skeletal muscle L1 expression, exercise generally reverses this trend. We hypothesize skeletal muscle L1 expression influences muscle physiology, and additional innovative investigations are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Matthew A. Romero
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California USA
| | - Petey W. Mumford
- Department of Exercise Science, Lindenwood University, St. Charles, Missouri USA
| | - Paul A. Roberson
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania USA
| | | | - Kaelin C. Young
- School of Kinesiology, Auburn University, Auburn, Alabama USA
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn, Auburn, Alabama, USA
| | - John M. Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Center on the Biology of Aging, Brown University, Providence, Rhode Island, USA
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama USA
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn, Auburn, Alabama, USA
| |
Collapse
|
3
|
Filipenko ML, Boyarskikh UA, Leskov LS, Subbotina KV, Khrapov EA, Sokolov AV, Stilidi IS, Kushlinskii NE. The Level of LINE-1 mRNA Is Increased in Extracellular Circulating Plasma RNA in Patients with Colorectal Cancer. Bull Exp Biol Med 2022; 173:261-264. [DOI: 10.1007/s10517-022-05530-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 10/17/2022]
|
4
|
Domazet-Lošo T. mRNA Vaccines: Why Is the Biology of Retroposition Ignored? Genes (Basel) 2022; 13:719. [PMID: 35627104 PMCID: PMC9141755 DOI: 10.3390/genes13050719] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
The major advantage of mRNA vaccines over more conventional approaches is their potential for rapid development and large-scale deployment in pandemic situations. In the current COVID-19 crisis, two mRNA COVID-19 vaccines have been conditionally approved and broadly applied, while others are still in clinical trials. However, there is no previous experience with the use of mRNA vaccines on a large scale in the general population. This warrants a careful evaluation of mRNA vaccine safety properties by considering all available knowledge about mRNA molecular biology and evolution. Here, I discuss the pervasive claim that mRNA-based vaccines cannot alter genomes. Surprisingly, this notion is widely stated in the mRNA vaccine literature but never supported by referencing any primary scientific papers that would specifically address this question. This discrepancy becomes even more puzzling if one considers previous work on the molecular and evolutionary aspects of retroposition in murine and human populations that clearly documents the frequent integration of mRNA molecules into genomes, including clinical contexts. By performing basic comparisons, I show that the sequence features of mRNA vaccines meet all known requirements for retroposition using L1 elements-the most abundant autonomously active retrotransposons in the human genome. In fact, many factors associated with mRNA vaccines increase the possibility of their L1-mediated retroposition. I conclude that is unfounded to a priori assume that mRNA-based therapeutics do not impact genomes and that the route to genome integration of vaccine mRNAs via endogenous L1 retroelements is easily conceivable. This implies that we urgently need experimental studies that would rigorously test for the potential retroposition of vaccine mRNAs. At present, the insertional mutagenesis safety of mRNA-based vaccines should be considered unresolved.
Collapse
Affiliation(s)
- Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
5
|
Zhao X, Zhao Y, Du J, Gao P, Zhao K. The Interplay Among HIV, LINE-1, and the Interferon Signaling System. Front Immunol 2021; 12:732775. [PMID: 34566998 PMCID: PMC8459832 DOI: 10.3389/fimmu.2021.732775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Human immunodeficiency viruses (HIVs) are retroviruses that replicate effectively in human CD4+ cells and cause the development of acquired immune deficiency syndrome (AIDS). On the other hand, type 1 long interspersed elements (LINE-1s or L1s) are the only active retroelements that can replicate autonomously in human cells. They, along with other active yet nonautonomous retroelements, have been associated with autoimmune diseases. There are many similarities between HIV and LINE-1. Being derived (or evolved) from ancient retroviruses, both HIV and LINE-1 replicate through a process termed reverse transcription, activate endogenous DNA and RNA sensors, trigger innate immune activation to promote interferon (IFN) expression, and are suppressed by protein products of interferon-stimulated genes (ISGs). However, these similarities make it difficult to decipher or even speculate the relationship between HIV and LINE-1, especially regarding the involvement of the IFN signaling system. In this review, we summarize previous findings on the relationships between HIV and innate immune activation as well as between LINE-1 and IFN upregulation. We also attempt to elucidate the interplay among HIV, LINE-1, and the IFN signaling system in hopes of guiding future research directions for viral suppression and immune regulation.
Collapse
Affiliation(s)
- Xu Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China.,Department of Hepatology, First Hospital of Jilin University, Changchun, China
| | - Yifei Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Juan Du
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, China
| | - Pujun Gao
- Department of Hepatology, First Hospital of Jilin University, Changchun, China
| | - Ke Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Qing R, Tao F, Chatterjee P, Yang G, Han Q, Chung H, Ni J, Suter BP, Kubicek J, Maertens B, Schubert T, Blackburn C, Zhang S. Non-full-length Water-Soluble CXCR4 QTY and CCR5 QTY Chemokine Receptors: Implication for Overlooked Truncated but Functional Membrane Receptors. iScience 2020; 23:101670. [PMID: 33376963 PMCID: PMC7756140 DOI: 10.1016/j.isci.2020.101670] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/12/2020] [Accepted: 10/08/2020] [Indexed: 01/06/2023] Open
Abstract
It was posited that functionalities of GPCRs require full-length sequences that are negated by residue deletions. Here we report that significantly truncated nfCCR5QTY and nfCXCR4QTY still bind native ligands. Receptor-ligand interactions were discovered from yeast 2-hybrid screening and confirmed by mating selection. Two nfCCR5QTY (SZ218a, SZ190b) and two nfCXCR4QTY (SZ158a, SZ146a) were expressed in E. coli. Synthesized receptors exhibited α-helical structures and bound respective ligands with reduced affinities. SZ190b and SZ158a were reconverted into non-QTY forms and expressed in HEK293T cells. Reconverted receptors localized on cell membranes and functioned as negative regulators for ligand-induced signaling when co-expressed with full-length receptors. CCR5-SZ190b individually can perform signaling at a reduced level with higher ligand concentration. Our findings provide insight into essential structural components for CCR5 and CXCR4 functionality, while raising the possibility that non-full-length receptors may be resulted from alternative splicing and that pseudo-genes in genomes may be present and functional in living organisms. Y2H screening reveals ligand interaction from truncated CXCR4 and CCR5 in QTY form Truncated CCR5QTY and CXCR4QTY can be produced in E. coli and bind native ligands Reconverted receptors localize on membranes and regulate cell signaling in HEK293 Our finding indicates potential presence and function for truncated receptors
Collapse
Affiliation(s)
- Rui Qing
- Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Fei Tao
- Laboratory of Food Microbial Technology, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Pranam Chatterjee
- Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,The Center for Bits and Atoms, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Gaojie Yang
- Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Qiuyi Han
- Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Haeyoon Chung
- Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jun Ni
- Laboratory of Food Microbial Technology, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Bernhard P Suter
- Next Interactions, Inc., 2600 Hilltop Drive, Building B, C332, Richmond, CA 94806, USA
| | - Jan Kubicek
- Cube Biotech, GmbH, Creative Campus, Alfred-Nobel Strasse 10, 40789 Monheim, Germany
| | - Barbara Maertens
- Cube Biotech, GmbH, Creative Campus, Alfred-Nobel Strasse 10, 40789 Monheim, Germany
| | | | - Camron Blackburn
- The Center for Bits and Atoms, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Shuguang Zhang
- Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Alekseeva LA, Sen'kova AV, Zenkova MA, Mironova NL. Targeting Circulating SINEs and LINEs with DNase I Provides Metastases Inhibition in Experimental Tumor Models. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:50-61. [PMID: 32146418 PMCID: PMC7058713 DOI: 10.1016/j.omtn.2020.01.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/16/2019] [Accepted: 01/23/2020] [Indexed: 12/22/2022]
Abstract
Tumor-associated cell-free DNAs (cfDNAs) are found to play some important roles at different stages of tumor progression; they are involved in the transformation of normal cells and contribute to tumor migration and invasion. DNase I is considered a promising cancer cure, due to its ability to degrade cfDNAs. Previous studies using murine tumor models have proved the high anti-metastatic potential of DNase I. Later circulating cfDNAs, especially tandem repeats associated with short-interspersed nuclear elements (SINEs) and long-interspersed nuclear elements (LINEs), have been found to be the enzyme's main molecular targets. Here, using Lewis lung carcinoma, melanoma B16, and lymphosarcoma RLS40 murine tumor models, we reveal that tumor progression is accompanied by an increase in the level of SINE and LINEs in the pool of circulating cfDNAs. Treatment with DNase I decreased in the number and area of metastases by factor 3-10, and the size of the primary tumor node by factor 1.5-2, which correlated with 5- to 10-fold decreasing SINEs and LINEs. We demonstrated that SINEs and LINEs from cfDNA of tumor-bearing mice are able to penetrate human cells. The results show that SINEs and LINEs could be important players in metastasis, and this allows them to be considered as attractive new targets for anticancer therapy.
Collapse
Affiliation(s)
- Ludmila A Alekseeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue, 8, Novosibirsk 630090, Russia
| | - Aleksandra V Sen'kova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue, 8, Novosibirsk 630090, Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue, 8, Novosibirsk 630090, Russia
| | - Nadezhda L Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Avenue, 8, Novosibirsk 630090, Russia.
| |
Collapse
|
8
|
The Role of Somatic L1 Retrotransposition in Human Cancers. Viruses 2017; 9:v9060131. [PMID: 28561751 PMCID: PMC5490808 DOI: 10.3390/v9060131] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/09/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023] Open
Abstract
The human LINE-1 (or L1) element is a non-LTR retrotransposon that is mobilized through an RNA intermediate by an L1-encoded reverse transcriptase and other L1-encoded proteins. L1 elements remain actively mobile today and continue to mutagenize human genomes. Importantly, when new insertions disrupt gene function, they can cause diseases. Historically, L1s were thought to be active in the germline but silenced in adult somatic tissues. However, recent studies now show that L1 is active in at least some somatic tissues, including epithelial cancers. In this review, we provide an overview of these recent developments, and examine evidence that somatic L1 retrotransposition can initiate and drive tumorigenesis in humans. Recent studies have: (i) cataloged somatic L1 activity in many epithelial tumor types; (ii) identified specific full-length L1 source elements that give rise to somatic L1 insertions; and (iii) determined that L1 promoter hypomethylation likely plays an early role in the derepression of L1s in somatic tissues. A central challenge moving forward is to determine the extent to which L1 driver mutations can promote tumor initiation, evolution, and metastasis in humans.
Collapse
|
9
|
Horizontal transfers of transposable elements in eukaryotes: The flying genes. C R Biol 2016; 339:296-9. [PMID: 27234293 DOI: 10.1016/j.crvi.2016.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 04/14/2016] [Indexed: 12/31/2022]
Abstract
Transposable elements (TEs) are the major components of eukaryotic genomes. Their propensity to densely populate and in some cases invade the genomes of plants and animals is in contradiction with the fact that transposition is strictly controlled by several molecular pathways acting at either transcriptional or post-transcriptional levels. Horizontal transfers, defined as the transmission of genetic material between sexually isolated species, have long been considered as rare phenomena. Here, we show that the horizontal transfers of transposable elements (HTTs) are very frequent in ecosystems. The exact mechanisms of such transfers are not well understood, but species involved in close biotic interactions, like parasitism, show a propensity to exchange genetic material horizontally. We propose that HTTs allow TEs to escape the silencing machinery of their host genome and may therefore be an important mechanism for their survival and their dissemination in eukaryotes.
Collapse
|
10
|
Abstract
Long interspersed element-1 (LINE-1 or L1) is a repetitive DNA retrotransposon capable of duplication by a copy-and-paste genetic mechanism. Scattered throughout mammalian genomes, L1 is typically quiescent in most somatic cell types. In developing neurons, however, L1 can express and retrotranspose at high frequency. The L1 element can insert into various genomic locations including intragenic regions. These insertions can alter the dynamic of the neuronal transcriptome by changing the expression pattern of several nearby genes. The consequences of L1 genomic alterations in somatic cells are still under investigation, but the high level of mutagenesis within neurons suggests that each neuron is genetically unique. Furthermore, some neurological diseases, such as Rett syndrome and ataxia telangiectasia, misregulate L1 retrotransposition, which could contribute to some pathological aspects. In this review, we survey the literature related to neurodevelopmental retrotransposition and discuss possible relevance to neuronal function, evolution, and neurological disease.
Collapse
Affiliation(s)
- Charles A Thomas
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
11
|
Abstract
This appendix contains brief descriptions of the most abundant classes of repetitive DNA in the human genome. The chromosomal distribution of these classes of repeats are shown for human chromosome 16.
Collapse
Affiliation(s)
- N A Doggett
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| |
Collapse
|
12
|
Kale SP, Moore L, Deininger PL, Roy-Engel AM. Heavy metals stimulate human LINE-1 retrotransposition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2006; 2:14-23. [PMID: 16705797 PMCID: PMC3814692 DOI: 10.3390/ijerph2005010014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
L1 and Alu elements are among the most active retroposons (mobile elements) in the human genome. Several human diseases, including certain forms of breast cancer and leukemia, are associated with L1 and Alu insertions in functionally important areas of the genome. We present data demonstrating that environmental pollutants, such as heavy metals, can stimulate L1 retrotransposition in a tissue culture system using two different types of assays. The response to these agents was equivalent when using a cell line with a stably integrated L1 vector (genomic) or a by introducing the L1 vector by transient transfection (episomal) of the cell. Reproducible results showed that mercury (HgS), cadmium (CdS), and nickel (NiO) increase the activity of L1 by an average of three (3) fold p<0.001. This observation is the first to link several carcinogenic agents with the increased retrotransposition activity of L1 as an alternate mechanism of generating genomic instability contributing to the process of carcinogenesis. Our results demonstrate that mobile element activation must be considered as one of the mechanisms when evaluating genomic damage/instability in response to environmental agents.
Collapse
Affiliation(s)
- Shubha P. Kale
- Dept. of Biology, Xavier University of Louisiana, 1 Drexel Dr. New Orleans, LA 70125, USA
| | - Lakisha Moore
- Dept. of Biology, Xavier University of Louisiana, 1 Drexel Dr. New Orleans, LA 70125, USA
| | - Prescott L. Deininger
- Tulane Cancer Center SL-66, Dept. of Epidemiology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Astrid M. Roy-Engel
- Tulane Cancer Center SL-66, Dept. of Epidemiology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Correspondence to Dr. Astrid M. Engel.
| |
Collapse
|
13
|
Abstract
The human Y chromosome contains over 60 million nucleotides, but least number of genes compared to any other chromosome and acts as a genetic determinant of the male characteristic features. The male specific region, MSY, comprising 95% of the Y chromosome represents a mosaic of heterochromatic and three classes of euchromatic (X-transposed, X-degenerate and ampliconic) sequences. Thus far, 156 transcription units, 78 protein-coding genes and 27 distinct proteins of the Y chromosome have been identified. The MSY euchromatic sequences show frequent gene conversion. Of the eight massive palindromes identified on the human Y chromosome, six harbor vital testis specific genes. The human male infertility has been attributed to mutations in the genes on Y chromosome and autosomes and failures of several physical and physiological attributes including paracrine controls. In addition, deletion of any one or all the three azoospermia (AZFa, AZFb or AZFc) factor(s) and some still unidentified regulatory elements located elsewhere in the genome result in infertility. Characterization of palindromic complexes on the long arm of Y chromosome encompassing AZFb and AZFc regions and identification of HERV15 class of endogenous retroviruses close to AZFa region have facilitated our understanding on the organization of azoospermia factors. Considerable overlap of the AZFb and AZFc regions encompassing a number of genes and transcripts has been shown to exist. However, barring details on AZF, information on the exact number of genes or the types of mutations prevalent in the infertile male is not available. Similarly, roles of sizable body of repetitive DNA present in close association with transcribing sequences on the Y chromosome are yet not clear. In a clinical setting with known cases of infertility, systematic search for loss or gain of these repeat elements would help understand their biological role(s). We present a brief overview on the genetic complexity of the human Y chromosome in the context of human male infertility.
Collapse
Affiliation(s)
- Sher Ali
- National Institute of Immunology, Molecular Genetics Laboratory, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| | | |
Collapse
|
14
|
Nigumann P, Redik K, Mätlik K, Speek M. Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 2002; 79:628-34. [PMID: 11991712 DOI: 10.1006/geno.2002.6758] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human L1 retrotransposon has two transcription-regulatory regions: an internal or sense promoter driving transcription of the full-length L1, and an antisense promoter (ASP) driving transcription in the opposite direction into adjacent cellular sequences yielding chimeric transcripts. Both promoters are located in the 5'-untranslated region (5'-UTR) of L1. Chimeric transcripts derived from the L1 ASP are highly represented in expressed-sequence tag (EST) databases. Using a bioinformatics approach, we have characterized 10 chimeric ESTs (cESTs) derived from the EST division of GenBank. These cESTs contained 3' regions similar or identical to known cellular mRNA sequences. They were accurately spliced and preferentially expressed in tumor cell lines. Analysis of the hundreds of cESTs suggests that the L1 ASP-driven transcription is a common phenomenon not only for tumor cells but also for normal ones and may involve transcriptional interference or epigenetic control of different cellular genes.
Collapse
Affiliation(s)
- Pilvi Nigumann
- Center for Gene Technology, Tallinn Technical University and National Institute of Chemical Physics and Biophysics, Tallinn EE12618, Estonia
| | | | | | | |
Collapse
|
15
|
Ovchinnikov I, Troxel AB, Swergold GD. Genomic characterization of recent human LINE-1 insertions: evidence supporting random insertion. Genome Res 2001; 11:2050-8. [PMID: 11731495 PMCID: PMC311227 DOI: 10.1101/gr.194701] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
LINE-1 (L1) elements play an important creative role in genomic evolution by distributing both L1 and non-L1 DNA in a process called retrotransposition. A large percentage of the human genome consists of DNA that has been dispersed by the L1 transposition machinery. L1 elements are not randomly distributed in genomic DNA but are concentrated in regions with lower GC content. In an effort to understand the consequences of L1 insertions, we have begun an investigation of their genomic characteristics and the changes that occur to them over time. We compare human L1 insertions that were created either during recent human evolution or during the primate radiation. We report that L1 insertions are an important source for the creation of new microsatellites. We provide evidence that L1 first strand cDNA synthesis can occur from an internal priming event. We note that in contrast to older L1 insertions, recent L1s are distributed randomly in genomic DNA, and the shift in the L1 genomic distribution occurs relatively rapidly. Taken together, our data indicate that strong forces act on newly inserted L1 retrotransposons to alter their structure and distribution.
Collapse
Affiliation(s)
- I Ovchinnikov
- Division of Molecular Medicine, Department of Medicine, Mailman School of Public Health, Columbia University New York, New York 10032, USA
| | | | | |
Collapse
|
16
|
Speek M. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol 2001; 21:1973-85. [PMID: 11238933 PMCID: PMC86790 DOI: 10.1128/mcb.21.6.1973-1985.2001] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the human genome, retrotranspositionally competent long interspersed nuclear elements (L1Hs) are involved in the generation of processed pseudogenes and mobilization of unrelated sequences into existing genes. Transcription of each L1Hs is initiated from its internal promoter but may also be driven from the promoters of adjacent cellular genes. Here I show that a hitherto unknown L1Hs antisense promoter (ASP) drives the transcription of adjacent genes. The ASP is located in the L1Hs 5' untranslated region (5'UTR) and works in the opposite direction. Fifteen cDNAs, isolated from a human NTera2D1 cDNA library by a differential screening method, contained L1Hs 5'UTRs spliced to the sequences of known genes or non-proteincoding sequences. Four of these chimeric transcripts, selected for detailed analysis, were detected in total RNA of different cell lines. Their abundance accounted for roughly 1 to 500% of the transcripts of four known genes, suggesting a large variation in the efficiency of L1Hs ASP-driven transcription. ASP-directed transcription was also revealed from expressed sequence tag sequences and confirmed by using an RNA dot blot analysis. Nine of the 15 randomly selected genomic L1Hs 5'UTRs had ASP activities about 7- to 50-fold higher than background in transient transfection assays. ASP was assigned to the L1Hs 5'UTR between nucleotides 400 to 600 by deletion and mutation analysis. These results indicate that many L1Hs contain active ASPs which are capable of interfering with normal gene expression, and this type of transcriptional control may be widespread.
Collapse
Affiliation(s)
- M Speek
- Center for Gene Technology, Tallinn Technical University, and National Institute of Chemical Physics and Biophysics, Tallinn EE12618, Estonia.
| |
Collapse
|
17
|
Sheen FM, Sherry ST, Risch GM, Robichaux M, Nasidze I, Stoneking M, Batzer MA, Swergold GD. Reading between the LINEs: human genomic variation induced by LINE-1 retrotransposition. Genome Res 2000; 10:1496-508. [PMID: 11042149 PMCID: PMC310943 DOI: 10.1101/gr.149400] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2000] [Accepted: 08/11/2000] [Indexed: 11/25/2022]
Abstract
The insertion of mobile elements into the genome represents a new class of genetic markers for the study of human evolution. Long interspersed elements (LINEs) have amplified to a copy number of about 100,000 over the last 100 million years of mammalian evolution and comprise approximately 15% of the human genome. The majority of LINE-1 (L1) elements within the human genome are 5' truncated copies of a few active L1 elements that are capable of retrotransposition. Some of the young L1 elements have inserted into the human genome so recently that populations are polymorphic for the presence of an L1 element at a particular chromosomal location. L1 insertion polymorphisms offer several advantages over other types of polymorphisms for human evolution studies. First, they are typed by rapid, simple, polymerase chain reaction (PCR)-based assays. Second, they are stable polymorphisms that rarely undergo deletion. Third, the presence of an L1 element represents identity by descent, because the probability is negligible that two different young L1 repeats would integrate independently between the exact same two nucleotides. Fourth, the ancestral state of L1 insertion polymorphisms is known to be the absence of the L1 element, which can be used to root plots/trees of population relationships. Here we report the development of a PCR-based display for the direct identification of dimorphic L1 elements from the human genome. We have also developed PCR-based assays for the characterization of six polymorphic L1 elements within the human genome. PCR analysis of human/rodent hybrid cell line DNA samples showed that the polymorphic L1 elements were located on several different chromosomes. Phylogenetic analysis of nonhuman primate DNA samples showed that all of the recently integrated "young" L1 elements were restricted to the human genome and absent from the genomes of nonhuman primates. Analysis of a diverse array of human populations showed that the allele frequencies and level of heterozygosity for each of the L1 elements was variable. Polymorphic L1 elements represent a new source of identical-by-descent variation for the study of human evolution. [The sequence data described in this paper have been submitted to the GenBank data library under accession nos. AF242435-AF242451.]
Collapse
Affiliation(s)
- F M Sheen
- Promega Corporation, Madison, Wisconsin 53711, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Qu XY, Hauptschein RS, Rzhetsky A, Scotto L, Chien MC, Ye X, Frigeri F, Rao PH, Pasqualucci L, Gamberi B, Deaven LL, Zhang P, Chaganti RS, Dalla-Favera R, Russo JJ. Analysis of a 69-kb contiguous genomic sequence at a putative tumor suppressor gene locus on human chromosome 6q27. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1999; 9:189-204. [PMID: 10520750 DOI: 10.3109/10425179809105206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Multiple neoplasias including B-cell non-Hodgkin's lymphoma, breast carcinoma, and ovarian carcinoma, have been associated with frequent deletions of the distal region on the long arm of human chromosome 6, suggesting the presence of one or more tumor suppressor gene(s) at this locus. Loss of heterozygosity analysis of breast and ovarian tumors has further restricted the minimal region of loss within 6q27. To further characterize this genomic region for gene content including putative tumor suppressor genes as well as other elements that may contribute to tumorigenesis, a 68940-bp contiguous sequence, encompassing markers D6S193 and D6S297, was generated by random shotgun sequencing of a cosmid, P1, and PAC contig. In addition, exon trapping was performed utilizing a subset of these clones. Sixteen trapped exons, ranging in size from 44 to 399 bp, span this approximately 69-kb region. Many other putative exons have been identified computationally. Further analysis has identified 13 potential promoters and 13 putative polyadenylation sites in the region. Northern analysis identified a transcript mapping within this interval that is expressed in ovarian, breast, and lymphoid-derived tumor cell lines. Consideration of these data, together with the demonstration of several regions of high CpG content, suggests the possibility of several genes at this locus.
Collapse
Affiliation(s)
- X Y Qu
- Columbia Genome Center, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bepler G, O'briant KC, Kim YC, Schreiber G, Pitterle DM. A 1.4-Mb high-resolution physical map and contig of chromosome segment 11p15.5 and genes in the LOH11A metastasis suppressor region. Genomics 1999; 55:164-75. [PMID: 9933563 DOI: 10.1006/geno.1998.5659] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The centromeric part of chromosome segment 11p15.5 contains a region of frequent allele loss in many adult solid malignancies. This region, called LOH11A, is lost in 75% of lung cancers and is thought to contain a gene that may function as a metastasis suppressor. Genetic complementation studies have shown suppression of the malignant phenotype including reduction of metastasis formation. We constructed a high-resolution physical map and contig over 1.4 Mb that includes the beta-hemoglobin gene cluster and the gene for the large subunit of ribonucleotide reductase (RRM1). Through sequencing and computerized analysis, we determined that this region contains an unusually large number of transposable elements, which suggests that double-stranded DNA breaks occur frequently here. Twenty-two putative genes were identified. Because of its location at the site of maximal allele loss in the 650-kb LOH11A region and previous functional studies, RRM1 is the most likely candidate gene with metastasis suppressor function. The malignant phenotype, in this case, results from a relative loss of function rather than a complete loss.
Collapse
Affiliation(s)
- G Bepler
- Thoracic Oncology Program, Department of Medicine and Department of Radiology, Durham, North Carolina, 27710, USA.
| | | | | | | | | |
Collapse
|
20
|
Shiraishi M, Sekiguchi A, Chuu YH, Sekiya T. Alteration of mosaic methylation of the repeat unit of the human ribosomal RNA genes in lung cancer. Biol Chem 1999; 380:81-4. [PMID: 10064140 DOI: 10.1515/bc.1999.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have investigated the methylation status of the repeat unit of the human ribosomal RNA genes in lung cancer. Using a Southern blot analysis approach we have determined that the non-transcribed region of these genes was generally heavily methylated, while the transcribed region was not methylated in either tumor or normal DNA. Our study also revealed that, in one tumor, the boundary of mosaic methylation of the repeat unit was not distinct. In the same tumor, both the non-transcribed ribosomal spacer region and the L1 interspersed repeat sequences became partially demethylated. In tumor cells, the methylation status of DNA can be altered, but the methylation of subtelomeric repeats was found to be maintained. These results suggest that the mosaic methylation of the repeat unit is not necessarily maintained in tumor DNA, while subtelomeric repeats escape tumor-specific wave of demethylation.
Collapse
Affiliation(s)
- M Shiraishi
- Oncogene Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | |
Collapse
|
21
|
Hadler HI, Devadas K, Mahalingam R. Selected nuclear LINE elements with mitochondrial-DNA-like inserts are more plentiful and mobile in tumor than in normal tissue of mouse and rat. J Cell Biochem 1998; 68:100-9. [PMID: 9407318 DOI: 10.1002/(sici)1097-4644(19980101)68:1<100::aid-jcb10>3.0.co;2-l] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nuclear DNA of normal and tumor mouse and rat tissue was examined for mitochondrial-DNA-like inserts by means of the Southern blot technique. The two probes were 32P-labeled cloned mitochondrial DNA. KpnI, which doesn't cut either mitochondrial DNA, was one of the restriction enzymes, while the enzymes that fragment mitochondrial DNA were for mouse and rat PstI and BamHI, respectively. When KpnI alone was used in the procedure a nuclear LINE family whose elements had mitochondrial-DNA-like insertions was selected. Such elements were much more abundant in tumor than in normal tissue. The results with PstI alone and BamHI alone and each combined with KpnI indicated that there were mobile LINE elements with mitochondrial-DNA-like inserts in the nuclear genome of tumor. The mouse tissues were normal liver and a transplantable lymphoid leukemic ascites cell line L1210 that had been carried for 40 years. The rat tissues were normal liver and a hepatoma freshly induced by diethylnitrosoamine in order to minimize the role of 40 years of transplantation. Our unitary hypothesis for carcinogenesis of 1971, which suggested these experiments, has been augmented to include mobile nuclear elements with inserts of mitochondrial-DNA-like sequences. Such elements have been related to diseases of genetic predisposition such as breast cancer and Huntington's disease.
Collapse
Affiliation(s)
- H I Hadler
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale 62901, USA
| | | | | |
Collapse
|
22
|
Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP, DeBerardinis RJ, Gabriel A, Swergold GD, Kazazian HH. Many human L1 elements are capable of retrotransposition. Nat Genet 1997; 16:37-43. [PMID: 9140393 DOI: 10.1038/ng0597-37] [Citation(s) in RCA: 335] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Using a selective screening strategy to enrich for active L1 elements, we isolated 13 full-length elements from a human genomic library. We tested these and two previously-isolated L1s (L1.3 and L1.4) for reverse transcriptase (RT) activity and the ability to retrotranspose in HeLa cells. Of the 13 newly-isolated L1s, eight had RT activity and three were able to retrotranspose. L1.3 and L1.4 possessed RT activity and retrotransposed at remarkably high frequencies. These studies bring the number of characterized active human L1 elements to seven. Based on these and other data, we estimate that 30-60 active L1 elements reside in the average diploid genome.
Collapse
Affiliation(s)
- D M Sassaman
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nakano T, Morozumi H, Inuzuka S, Nagata M, Taguchi Y, Mizokami M, Okamoto T. Clonal selection of HIV type 1 variants associated with resistance to foscarnet in vitro: confirmation by molecular evolutionary analysis. AIDS Res Hum Retroviruses 1997; 13:563-73. [PMID: 9135874 DOI: 10.1089/aid.1997.13.563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Foscarnet (trisodium phosphonoformate, PFA) is an effective inhibitor of retroviral reverse transcriptase (RT) and is known to block the replication of human immunodeficiency virus type 1 (HIV-1). In this article we analyzed the evolutionary process in generating HIV-1 strains related to drug resistance, using PFA as a selective pressure. PFA inhibited virus replication and protected the virus-induced cell killing, but it did not completely eliminate HIV-1 during the course of 7 weeks of treatment. The nucleotide sequence of the 859-bp DNA fragment spanning the core region of the HIV-1 pol gene was determined for 51 clones obtained from genomic DNA of the HIV-1-infected cells at different time points during PFA treatment. The nucleotide sequence analysis documented the presence of a minor HIV-1 variant prior to the PFA treatment. Molecular evolutionary techniques were utilized to analyze how the minor HIV-1 clones became predominant during this evolutionary process under the selective pressure of PFA. A phylogenetic tree analysis divided these 51 HIV-1 clones into 3 groups. One of the groups consisted of the clones associated with the resistance to PFA. The clones belonging to this group became predominant over time during the course of PFA treatment. Thus, the acquisition of PFA resistance by HIV-1 was considered to be due to clonal selection. Furthermore, among the various amino acid substitutions observed, the substitution of arginine at position 172 by lysine (Arg172Lys) clearly distinguished this group from the others. Since the consistent amino acid substitution observed here has not been identified in the HIV-1 strains resistant to other RT inhibitors, PFA in combination with other RT inhibitors is considered to be a feasible candidate for a convergent combined chemotherapy against HIV-1 in the treatment of patients with AIDS and related conditions.
Collapse
MESH Headings
- Amino Acid Sequence
- Anti-HIV Agents/pharmacology
- Arginine/genetics
- Biological Evolution
- Cells, Cultured
- Cloning, Molecular
- DNA, Viral/analysis
- Drug Resistance, Microbial/genetics
- Foscarnet/pharmacology
- Gene Expression Regulation, Viral
- Genes, pol
- Genetic Variation
- HIV Infections/drug therapy
- HIV Infections/genetics
- HIV-1/drug effects
- HIV-1/genetics
- HIV-1/physiology
- Humans
- Lysine/genetics
- Microbial Sensitivity Tests
- Molecular Sequence Data
- Phylogeny
- Polymerase Chain Reaction
- Polymorphism, Restriction Fragment Length
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- T-Lymphocytes
- Virus Replication/drug effects
Collapse
Affiliation(s)
- T Nakano
- Department of Molecular Genetics, Nagoya City University Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Hohjoh H, Singer MF. Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J 1996; 15:630-9. [PMID: 8599946 PMCID: PMC449981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
P40 is the protein encoded by the first open reading frame (ORF1) of the human LINE-1 (L1Hs) retrotransposon; it is 338 amino acids long, has a leucine zipper motif and has been found in human teratocarcinoma cell lines and some tumor cells. In this report, we describe properties of p40 in the human teratocarcinoma cell lines NTera2D1 and 2102Ep. The results indicate that: (i) most of p40 occurs in large multimeric cytoplasmic complexes, (ii) L1Hs RNA is associated with the p40 complexes, (iii) the complexes are dissociated by ribonuclease and (iv) p40 is a novel RNA-binding protein. Cross-linking experiments with full-length and truncated p40 produced in Escherichia coli also showed that: (i) p40 itself can form a multimeric complex larger than 250 kDa, (ii) the leucine zipper motif and the region conserved among the predicted ORF1 polypeptides of mammalian LINE-1s participate in complex formation and (iii) the amino terminal region is important for the stability of complex formation. Analysis of the amino acid sequence of p40 suggests that long segments of the molecule can assume an alpha-helical configuration including the leucine zipper and the conserved region. The evidence presented here suggests that the p40 complex is a ribonucleoprotein complex containing L1Hs RNA(s) and that protein-protein interactions in which alpha-helix structures participate, for example coiled-coils, may occur in the complex.
Collapse
Affiliation(s)
- H Hohjoh
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
25
|
Abstract
Full-length RNA transcribed from the human LINE-1 (L1) element L1 Homo sapiens (L1Hs) has a 900-nt, G+C-rich, 5'-untranslated region (UTR). The 5' UTR is followed by two long open reading frames, ORF1 and ORF2, which are separated from each other by an inter-ORF region of 33 nt that includes two or three in-frame stop codons. We examine here the mechanism(s) by which the translation of L1Hs ORF1 and ORF2 is initiated. A stable hairpin structure (delta G = -74.8 kcal/mol), inserted at nt 661 of the 5' UTR, caused a 3- to 8-fold decrease in the in vitro and in vivo translation of either a lacZ reporter gene for ORF1 or the ORF1 polypeptide product, p40, but translation of a lacZ reporter gene in ORF2 was increased. The results are compatible with a model for ORF1 translation initiation in which the majority of ribosomes scan from a point 5' of nt 661 but suggest that ORF2 is not translated by attached ribosomes that reinitiate after the termination of ORF1 translation. Our data are compatible with a model whereby the translation of L1Hs ORF2 is initiated internally.
Collapse
Affiliation(s)
- J P McMillan
- Laboratory of Biochemistry, National Cancer Institute, Bethesda, MD 20892
| | | |
Collapse
|
26
|
Abstract
Among the 10(5) LINE-1 sequences (L1Hs) in the human genome are one or more 6-kb segments that are active retrotransposons. Expression of these retrotransposons appears to be favored in cells of germ line origin, as well as in some other tumor cells of epithelial origin. In such cells, the product of the first L1Hs open reading frame (ORF), a protein called p40, is detectable; p40 has no apparent similarity to gag proteins, but contains a leucine zipper region which may be responsible for the occurrence of p40 multimers. Transcription of L1Hs initiates at residue 1 although the transcriptional regulatory regions are downstream in the first 670 bp of the 5' untranslated region; deletion of a YY1-binding site in the first 20 bp reduces transcription by fivefold. Translation of the second ORF, which encodes reverse transcriptase, is independent of the translation of the frame encoding p40.
Collapse
Affiliation(s)
- M F Singer
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
27
|
Amariglio N, Rechavi G. Insertional mutagenesis by transposable elements in the mammalian genome. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1993; 21:212-218. [PMID: 8385004 DOI: 10.1002/em.2850210303] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Several mammalian repetitive transposable genetic elements were characterized in recent years, and their role in mutagenesis is delineated in this review. Two main groups have been described: elements with symmetrical termini such as the murine IAP sequences and the human THE 1 elements and elements characterized by a poly-A rich tail at the 3' end such as the SINE and LINE sequences. The characteristic property of such mobile elements to spread and integrate in the host genome leads to insertional mutagenesis. Both germline and somatic mutations have been documented resulting from the insertion of the various types of mammalian repetitive transposable genetic elements. As foreseen by Barbara McClintock, such genetic events can cause either the activation or the inactivation of specific genes, resulting in their identification via an altered phenotype. Several disease states, such as hemophilia and cancer, are the result of this apparent aspect of genome instability.
Collapse
Affiliation(s)
- N Amariglio
- Department of Hematology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | | |
Collapse
|
28
|
Hendriks RW, Hinds H, Chen ZY, Craig IW. The hypervariable DXS255 locus contains a LINE-1 repetitive element with a CpG island that is extensively methylated only on the active X chromosome. Genomics 1992; 14:598-603. [PMID: 1385307 DOI: 10.1016/s0888-7543(05)80157-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The DXS255 locus at Xp11.22 is highly polymorphic due to a 26-bp variable number of tandem repeats (VNTR) motif. In previous studies, one of the MspI sites flanking the VNTR manifested a correlation between methylation and X chromosome inactivation. Here we show, by DNA sequence analysis, that this MspI site is located within the CpG island at the 5' end of a LINE-1 element, which is 2.5 kb from the VNTR. The methylation status of the CpG island was assessed in Southern blotting experiments using the methylation-sensitive enzymes HpaII, HhaI, and BssHII. All these sites were completely methylated on active X chromosomes, consistent with previously reported findings of full methylation of LINE-1 elements throughout the genome. However, on inactive X chromosomes these sites were predominantly unmethylated, although patterns were found to be heterogeneous. The results suggest that LINE-1 elements on the inactive X chromosome are not suppressed by full methylation of their CpG islands. The differential methylation of the DXS255 CpG island provides the basis for a highly informative X inactivation analysis system.
Collapse
Affiliation(s)
- R W Hendriks
- Department of Biochemistry, University of Oxford, United Kingdom
| | | | | | | |
Collapse
|
29
|
Dombroski BA, Mathias SL, Nanthakumar E, Scott AF, Kazazian HH. Isolation of an active human transposable element. Science 1991; 254:1805-8. [PMID: 1662412 DOI: 10.1126/science.1662412] [Citation(s) in RCA: 331] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two de novo insertions of truncated L1 elements into the factor VIII gene on the X chromosome have been identified that produced hemophilia A. A full-length L1 element that is the likely progenitor of one of these insertions was isolated by its sequence identity to the factor VIII insertion. This L1 element contains two open-reading frames and is one of at least four alleles of a locus on chromosome 22 that has been occupied by an L1 element for at least 6 million years.
Collapse
Affiliation(s)
- B A Dombroski
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | | | |
Collapse
|
30
|
Campbell C, Gulati R, Nandi AK, Floy K, Hieter P, Kucherlapati RS. Generation of a nested series of interstitial deletions in yeast artificial chromosomes carrying human DNA. Proc Natl Acad Sci U S A 1991; 88:5744-8. [PMID: 2062854 PMCID: PMC51954 DOI: 10.1073/pnas.88.13.5744] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have generated a nested series of interstitial deletions in a fragment of human X chromosome-derived DNA cloned into a yeast artificial chromosome (YAC) vector. A yeast strain carrying the YAC was transformed with a linear recombination substrate containing at one end a sequence that is uniquely represented on the YAC and at the other end a truncated long interspersed repetitive element (LINE 1, or L1). Homologous recombination between the YAC and the input DNA resulted in a nested series of interstitial deletions, the largest of which was 500 kilobases. In combination with terminal deletions that can be generated through homologous recombination, the interstitial deletions are useful for mapping and studying gene structure-function relationships.
Collapse
Affiliation(s)
- C Campbell
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | | | | | | | |
Collapse
|
31
|
Albertson DG, Sherrington P, Vaudin M. Mapping nonisotopically labeled DNA probes to human chromosome bands by confocal microscopy. Genomics 1991; 10:143-50. [PMID: 1710597 DOI: 10.1016/0888-7543(91)90494-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A method for mapping nonisotopically labeled probes to human metaphase chromosomes that can be used with laser scanning confocal microscopy has been developed. Only a limited number of wavelengths are available from the argon ion lasers used in most commercial instruments and therefore a method that allowed the visualization of bands on human chromosomes stained with propidium iodide and, simultaneously, the detection of hybridization signals using FITC-labeled antibodies was developed. The confocal microscope was used to map single-copy probes to chromosome bands and the positions of the probes on the R-banded chromosomes corresponded to map positions previously determined on Hoechst 33258-stained chromosomes (G-banded). A comparison of confocal imaging of single-copy hybridization signals with conventional fluorescence microscopy and high-sensitivity video cameras revealed little difference in sensitivity but greater resolution of chromosome bands with the confocal microscope. The polymerase chain reaction was used to prepare nonisotopically labeled probes for in situ hybridization and to amplify Alu and KpnI family repeats from cloned DNA to be used to suppress hybridization of these repeat sequences so that a cosmid probe could be mapped to a chromosome band.
Collapse
|
32
|
Schmitz E, Mohr E, Richter D. Rat vasopressin and oxytocin genes are linked by a long interspersed repeated DNA element (LINE): sequence and transcriptional analysis of LINE. DNA Cell Biol 1991; 10:81-91. [PMID: 1706187 DOI: 10.1089/dna.1991.10.81] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sequence analysis of the rat vasopressin and oxytocin gene family reveals that the two genes are linked by a long interspersed repeated DNA element (LINE) giving rise to seven long open reading frames encoding hypothetical proteins of 99 to 556 amino acid residues. Furthermore, although both DNA strands of LINEs serve as templates for transcription, transcripts initiated at the 3' end are more abundant than those started from the 5' end. The LINEs are transcribed preferentially in brain tissues as analyzed by Northern blot, in situ hybridization, and RNase protection experiments. The data show that most LINEs are transcribed at their entire length and that a major fraction of respective RNAs does not enter the cytoplasm but remains in the cell nucleus.
Collapse
Affiliation(s)
- E Schmitz
- Institut für Zellbiochemie und klinische Neurobiologie, UKE, Universität Hamburg, FRG
| | | | | |
Collapse
|
33
|
Severynse DM, Hutchison CA, Edgell MH. Identification of transcriptional regulatory activity within the 5' A-type monomer sequence of the mouse LINE-1 retroposon. Mamm Genome 1991; 2:41-50. [PMID: 1311970 DOI: 10.1007/bf00570439] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
LINE-1 (L1) is a retroposon found in all mammals. In the mouse, approximately 10% of L1 elements are full-length and can be grouped into two classes, A or F, based upon the type of monomer sequence repeated at the 5' end. In order to test for promoter activity in the 5' end of the A-type mouse L1 element, we cloned several different A-monomers into a promoterless chloramphenicol acetyltransferase (CAT) vector. The A-monomer constructs varied in their ability to regulate transcription of the CAT gene, exhibiting CAT activity 16-37% of that detected with the Rous sarcoma virus promoter and enhancer. A series of A-monomer deletions were tested for their ability to regulate CAT expression and gel retardation experiments were performed to identify regions of the A-monomer that may be involved in L1 transcriptional regulation. A-monomer sequences are usually found repeated 2-5 times at the 5' end of a full-length mouse L1. In the absence of long terminal repeats or an internal promoter, the tandem array of A-monomers may provide a mechanism for A-type L1 elements to generate transcripts containing transcriptional regulatory sequences.
Collapse
Affiliation(s)
- D M Severynse
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill 27599
| | | | | |
Collapse
|
34
|
Abstract
A constructed human LINE-1 (L1Hs) element containing intact 5' and 3' untranslatable regions and an in-frame fusion between the L1Hs open reading frame 1 and the bacterial lacZ gene (p1LZ) was found to promote the expression of beta-galactosidase in a variety of transiently transfected cell types in tissue culture. Full-length RNA was detected in the transfected cells. Most of the RNA transcripts initiated at or near the beginning of the L1Hs segment. Sequences within the L1Hs segment of p1LZ were sufficient for expression of the reporter gene; however, modulation of the transcriptional regulatory region by upstream sequences was not ruled out. Deletion analysis revealed that the sequences most critical for transcription were located within the first 100 bp of L1Hs. Other sequences within the first 668 bp of L1Hs also contributed to overall expression. Expression of p1LZ was high in human teratocarcinoma cells and low in all other cell types. This pattern of cell-type-specific expression matches the known pattern of endogenous L1Hs transcription in cultured cells.
Collapse
|
35
|
Arn PH, Li X, Smith C, Hsu M, Schwartz DC, Jabs EW. Analysis of DNA restriction fragments greater than 5.7 Mb in size from the centromeric region of human chromosomes. Mamm Genome 1991; 1:249-54. [PMID: 1665375 DOI: 10.1007/bf00352332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pulsed electrophoresis was used to study the organization of the human centromeric region. Genomic DNA was digested with rare-cutting enzymes. DNA fragments from 0.2 to greater than 5.7 Mb were separated by electrophoresis and hybridized with alphoid and simple DNA repeats. Rare-cutting enzymes (Mlu I, Nar I, Not I, Nru I, Sal I, Sfi I, Sst II) demonstrated fewer restriction sites at centromeric regions than elsewhere in the genome. The enzyme Not I had the fewest restriction sites at centromeric regions. As much as 70% of these sequences from the centromeric region are present in Not I DNA fragments greater than 5.7 and estimated to be as large as 10 Mb in size. Other repetitive sequences such as short interspersed repeated segments (SINEs), long interspersed repeated segments (LINEs), ribosomal DNA, and mini-satellite DNA that are not enriched at the centromeric region, are not enriched in Not I fragments of greater than 5.7 Mb in size.
Collapse
Affiliation(s)
- P H Arn
- Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland 21205
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
A constructed human LINE-1 (L1Hs) element containing intact 5' and 3' untranslatable regions and an in-frame fusion between the L1Hs open reading frame 1 and the bacterial lacZ gene (p1LZ) was found to promote the expression of beta-galactosidase in a variety of transiently transfected cell types in tissue culture. Full-length RNA was detected in the transfected cells. Most of the RNA transcripts initiated at or near the beginning of the L1Hs segment. Sequences within the L1Hs segment of p1LZ were sufficient for expression of the reporter gene; however, modulation of the transcriptional regulatory region by upstream sequences was not ruled out. Deletion analysis revealed that the sequences most critical for transcription were located within the first 100 bp of L1Hs. Other sequences within the first 668 bp of L1Hs also contributed to overall expression. Expression of p1LZ was high in human teratocarcinoma cells and low in all other cell types. This pattern of cell-type-specific expression matches the known pattern of endogenous L1Hs transcription in cultured cells.
Collapse
Affiliation(s)
- G D Swergold
- Laboratory of Biochemistry, National Cancer Institute, Bethesda, Maryland 20892
| |
Collapse
|
37
|
Hohjoh H, Minakami R, Sakaki Y. Selective cloning and sequence analysis of the human L1 (LINE-1) sequences which transposed in the relatively recent past. Nucleic Acids Res 1990; 18:4099-104. [PMID: 2165587 PMCID: PMC331165 DOI: 10.1093/nar/18.14.4099] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
L1 (LINE-1), a long interspersed repetitive DNA family of mammalian genomes, is thought to be a sequence family derived from a retrotransposon-like element(s), but its actively transposable unit(s) has not been identified yet. We developed a novel method for selective isolation of the human L1 sequences which transposed in a relatively recent past and may have still retained a feature of the 'active L1' unit. From the inspection of the nucleotide sequences, we conjectured that the 'active L1' or 'nearly active L1' units should have a high content of the CpG dinucleotide sequence, a mutation hot spot sequence, and contain several sites for rare cutters such as BssH II and Nar I at their 5' terminal regions. Using these rare cutter sites as selection markers, the L1 sequences were isolated, which had the high content of CpG at the 5' terminal regions and over 90% homology to L1 transcripts found in a human teratocarcinoma cell line. These L1s were shown to be 'relatively new L1' units which had integrated into chromosomes within these several million years during evolution. From the sequence data of these L1s and L1 cDNA, a consensus sequence of the 5' terminal region of high CpG L1s were constructed. A region of the consensus sequence showed about 69% homology to the 5' terminal region of Drosophila jockey element.
Collapse
Affiliation(s)
- H Hohjoh
- Research Laboratory for Genetic Information, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
38
|
Yasunami M, Kikuchi I, Sarapata D, Yoshida A. The human class I alcohol dehydrogenase gene cluster: three genes are tandemly organized in an 80-kb-long segment of the genome. Genomics 1990; 7:152-8. [PMID: 2347582 DOI: 10.1016/0888-7543(90)90535-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The class I alcohol dehydrogenases (ADH; EC 1.1.1.1) play a key role in hepatic alcohol catabolism. Three human class I ADH genes, ADH1, ADH2, and ADH3, which encode the alpha, beta, and gamma subunits respectively, have been isolated and mapped on chromosome 4q21-q23. Genomic cloning using a cosmid vector allowed us to obtain an 88-kb-long genomic segment, which was found to include an entire 80 kb of the class I ADH gene cluster. All three genes lie in the same transcriptional orientation and the order of genes is 5'-ADH3-ADH2-ADH1-3'. It may be of some significance that the order of transcriptional activation in the hepatic development, alpha----beta----gamma, is opposite to the order of gene arrangement. Several members of the AluI family and the KpnI (L1) family of interspersed repetitive sequences were mapped in this region. The divergence of insertional sites suggested that gene multiplication of the class I ADH genes had taken place in the earlier stages of human (or primate) evolution.
Collapse
Affiliation(s)
- M Yasunami
- Department of Biochemical Genetics, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | | | | | | |
Collapse
|
39
|
Month SR, Wood RW, Trifillis PT, Orchowski PJ, Sharon B, Ballas SK, Surrey S, Schwartz E. Analysis of 5' flanking regions of the gamma globin genes from major African haplotype backgrounds associated with sickle cell disease. J Clin Invest 1990; 85:364-70. [PMID: 1688883 PMCID: PMC296433 DOI: 10.1172/jci114447] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
There are at least three major African haplotype backgrounds on which the beta s mutation arises. Sequence changes in the immediate 5' flanking area of the gamma-globin genes may account for differences in fetal hemoglobin expression among the three haplotypes. We determined the sequence from -350 to 10 bp 5' of the G gamma and A gamma fetal globin genes from one beta s-containing chromosome on each of the three major haplotype backgrounds. The Senegal chromosome had a T at -158 5' to the G gamma gene; the Benin (BEN) chromosome had an A to G change at -309 5' to the G gamma gene; and the Central African Republic (CAR) chromosome had a C to T change at -271 5' to the A gamma gene. Genomic DNA from patients with sickle cell disease was analyzed using the polymerase chain reaction and radiolabeled allele-specific oligonucleotide probes. The -309 G variant 5' to the G gamma gene is associated with BEN chromosomes, and the -271 T variant 5' to A gamma with CAR. The -309 change was also found on beta A-containing chromosomes, while the -271 change was not. The -309 change may have predated the beta s mutation on the BEN chromosome.
Collapse
Affiliation(s)
- S R Month
- Division of Hematology, Children's Hospital of Philadelphia, Pennsylvania 19104
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Wright JM. Nucleotide sequence, genomic organization and evolution of a major repetitive DNA family in tilapia (Oreochromis mossambicus/hornorum). Nucleic Acids Res 1989; 17:5071-9. [PMID: 2762120 PMCID: PMC318095 DOI: 10.1093/nar/17.13.5071] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A highly repetitive DNA sequence from tilapia (Oreochromis mossambicus/hornorum) has been cloned and sequenced. It is a tandemly arrayed sequence of 237 bp and constitutes 7% of the fish genome. The copy number of the repeat is approximately 3 x 10(5) per haploid genome. DNA sequence analysis of 7 cloned repeats revealed a high degree of conservation of the monomeric unit. Within the monomeric unit, a 9 bp AT rich motif is regularly spaced approximately 30 bp apart and may represent the progenitor of the amplified sequence. One cloned repeat, Ti-14, contained a 30 bp deletion at a position flanked by a 7 bp direct repeat. The Ti-14 sequence appears to have been amplified independently of the major 237 bp tandem array. A higher-order repeat unit, defined by longer-range periodicities revealed by restriction endonuclease digestion, is further imposed on the tandem array.
Collapse
Affiliation(s)
- J M Wright
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
41
|
Matsuura S, Igarashi M, Tanizawa Y, Yamada M, Kishi F, Kajii T, Fujii H, Miwa S, Sakurai M, Nakazawa A. Human adenylate kinase deficiency associated with hemolytic anemia. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)81779-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Woods-Samuels P, Wong C, Mathias SL, Scott AF, Kazazian HH, Antonarakis SE. Characterization of a nondeleterious L1 insertion in an intron of the human factor VIII gene and further evidence of open reading frames in functional L1 elements. Genomics 1989; 4:290-6. [PMID: 2497061 DOI: 10.1016/0888-7543(89)90332-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have characterized an insertional event in IVS-10 of the factor VIII gene in a pedigree containing a hemophilia A patient (JH-25). The inserted DNA is a 5' truncated L1 element that is 681 bp long followed by a 3'66-bp poly(A) tract. The L1 element is inserted 154 bp 5' to the start of exon 11 and is flanked by a 13- to 17-bp target site duplication. The L1 insertion is present in four generations of the patient's family. The maternal grandfather who carries the insertion does not have hemophilia A, indicating that the insertion is not the cause of hemophilia A in the patient. We have sequenced this insertion and two previously reported de novo L1 insertions in the factor VIII gene in patients JH-27 (3785 bp) and JH-28 (2132 bp). The three nucleotide sequences differ by 0.2-0.8%. All three of these L1 insertions have open reading frames (ORFs) (1192, 642, and 157 aa) and the three derived amino acid sequences are 98-99% identical. The previously reported sequence similarity between L1 3' ORFs and the polymerase domain of reverse transcriptases is maintained in the ORFs of the JH-27 and JH-28 L1 insertions. The presence of open reading frames and the close sequence similarity of these recently inserted L1 elements provide indirect evidence for the existence of a set of functional L1 elements that encode one or more proteins necessary for their retrotransposition.
Collapse
Affiliation(s)
- P Woods-Samuels
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | | | |
Collapse
|
43
|
Pilot-Matias TJ, Kister SE, Fox JL, Kropp K, Glasser SW, Whitsett JA. Structure and organization of the gene encoding human pulmonary surfactant proteolipid SP-B. DNA (MARY ANN LIEBERT, INC.) 1989; 8:75-86. [PMID: 2924687 DOI: 10.1089/dna.1.1989.8.75] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human pulmonary surfactant proteolipid SP-B arises by proteolytic processing of a 42,000-dalton precursor. The active proteolipid SP-B is one of two small hydrophobic proteins identified in surfactant that impart surface-active properties to surfactant phospholipids. We report the isolation and characterization of complete SP-B cDNA from a human lung cDNA library. The cDNA was used to isolate the gene encoding the SP-B precursor from a lambda EMBL3 library of human embryonic kidney DNA. The entire SP-B gene was sequenced and is approximately 9.5 kb long, with 11 exons and 10 introns including a large 823-nucleotide 3' untranslated exon. The sequence derived from the exons differs from the cDNA sequence at 3 positions out of 2001, only one of which is in the translated region. Direct RNA sequencing indicated that the 5' untranslated region is only 14 nucleotides long. A number of putative regulatory elements were found upstream of the SP-B gene, including a GC box and several putative cAMP and glucocorticoid receptor binding sites. Several Alu repeats and a region of potential Z-DNA formation were found in the introns. Southern blotting of human genomic DNA probed with SP-B cDNA indicated the presence of only one SP-B gene in the human genome, and the gene was localized to chromosome 2.
Collapse
|
44
|
Masumoto H, Sugimoto K, Okazaki T. Alphoid satellite DNA is tightly associated with centromere antigens in human chromosomes throughout the cell cycle. Exp Cell Res 1989; 181:181-96. [PMID: 2917601 DOI: 10.1016/0014-4827(89)90192-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, we have examined a DNA element specific to the centromere domain of human chromosomes. Purified HeLa chromosomes were digested with the restriction enzyme Sau3AI and fractionated by sedimentation through a sucrose gradient. Fractions showing antigenecity to anticentromere (kinetochore) serum obtained from a scleroderma CREST patient were used to construct a DNA library. From this library we found one clone which has specifically hybridized to the centromere domain of metaphase chromosomes using a biotinylated probe DNA and FITC-conjugated avidin. The clone contained a stretch of alphoid DNA dimer. To determine precisely the relative location of the alphoid DNA stretch and the centromere antigen, a method was developed to carry out in situ hybridization of DNA and indirect immunofluorescent staining of antigen on the same cell preparation. Using this method, we have found perfect overlapping of the alphoid DNA sites with the centromere antigen sites in both metaphase chromosomes and nuclei at various stages in the cell cycle. We have also observed this exact correlation at the attachment sites of artificially extended sister chromatids. These results suggest the possibility that alphoid DNA repeats are a key component of kinetochore structure.
Collapse
Affiliation(s)
- H Masumoto
- Department of Molecular Biology, School of Science, Nagoya University, Japan
| | | | | |
Collapse
|
45
|
Hirano H, Komeda Y, Iino T. Cloning and structural analysis of the snap-back DNA of Pharbitis nil. PLANT MOLECULAR BIOLOGY 1989; 12:235-244. [PMID: 24272802 DOI: 10.1007/bf00020508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/1988] [Accepted: 11/08/1988] [Indexed: 06/02/2023]
Abstract
We isolated and cloned DNA fragments that exist as inverted-repeat structures in the genome of Pharbitis nil. The method used exploited the fact that if inverted repeat DNA is present in the DNA fragment, intramolecular double-stranded structures can be partly formed within single-stranded DNA molecules after denaturation and rapid renaturation of the fragment. The rapidly renaturing DNA fragments (termed snap-back DNA) were isolated by hybroxylapatite column chromatography and treatment with mungbean nuclease and were cloned into the pUC9 vector. Four snap-back DNA members out of thousands of independent clones obtained were characterized with respect to the reiteration frequency and the nucleotide sequences. When used as probes in Southern hybridization experiments, some of the members identified restriction fragment length polymorphism among the cultivars, suggesting that these sequences might be fluid in the genome. One of the four clones has regions of nucleotide sequence homology to those of inverted-repeat regions in the transposon Taml of Antirrhinum majus.
Collapse
Affiliation(s)
- H Hirano
- Molecular Genetics Research Laboratory, Faculty-of-Science-Building No. 7, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113, Tokyo, Japan
| | | | | |
Collapse
|
46
|
Bernatzky R, Pichersky E, Malik VS, Tanksley SD. CR1 - a dispersed repeated element associated with the Cab-1 locus in tomato. PLANT MOLECULAR BIOLOGY 1988; 10:423-433. [PMID: 24277590 DOI: 10.1007/bf00014948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/1987] [Accepted: 01/20/1988] [Indexed: 06/02/2023]
Abstract
Cab-1 is a complex genetic locus in tomato consisting of four clustered genes encoding chlorophyll a/b-binding polypeptide. Southern blot analysis of total tomato DNA with genomic clones corresponding to the Cab-1 locus has revealed the presence of a repetitive element in the 3 kb spacer regions between two of these genes. This repetitive element, named CR1, has been characterized via sequencing, genetic mapping and hybridization to related solanaceous species. Results indicate that there are as many as 30 copies of this element in the tomato genome and that most, if not all, are found at independent loci. Sites corresponding to 12 of the repeats have been located on different regions of chromosomes 2, 4, 5, 7, 10 and 11. A 1.6 kb PstI-EcoRI fragment from the Cab-1 locus containing the element was sequenced and found to be 75% AT-rich. No open reading frames larger than 150 bp were detected. Several imperfect inverted repeats flanked by direct repeats could be found at the ends of the element. This arrangement is reminiscent of known transposons. Southern hybridization analysis indicates that multiple copies of CR1 exist in all species of the genus Lycopersicon as well as in Solanum lycopersicoides and S. tuberosum (potato), but not in eggplant, pepper, petunia, Datura or tobacco. Melt-off experiments indicate that members of the CR1 family in the tomato genome are more closely related to one another than to homologous members in the genomes of S. lycopersicoides or S. tuberosum, suggesting some type of concerted evolution.
Collapse
Affiliation(s)
- R Bernatzky
- Department of Plant Breeding and Biometry, Cornell University, 14853, Ithaca, NY, USA
| | | | | | | |
Collapse
|
47
|
Abstract
We have characterized the approximately 6.5-kilobase cytoplasmic poly(A)+ Line-1 (L1) RNA present in a human teratocarcinoma cell line, NTera2D1, by primer extension and by analysis of cloned cDNAs. The bulk of the RNA begins (5' end) at the residue previously identified as the 5' terminus of the longest known primate genomic L1 elements, presumed to represent "unit" length. Several of the cDNA clones are close to 6 kilobase pairs, that is, close to full length. The partial sequences of 18 cDNA clones and full sequence of one (5,975 base pairs) indicate that many different genomic L1 elements contribute transcripts to the 6.5-kilobase cytoplasmic poly(A)+ RNA in NTera2D1 cells because no 2 of the 19 cDNAs analyzed had identical sequences. The transcribed elements appear to represent a subset of the total genomic L1s, a subset that has a characteristic consensus sequence in the 3' noncoding region and a high degree of sequence conservation throughout. Two open reading frames (ORFs) of 1,122 (ORF1) and 3,852 (ORF2) bases, flanked by about 800 and 200 bases of sequence at the 5' and 3' ends, respectively, can be identified in the cDNAs. Both ORFs are in the same frame, and they are separated by 33 bases bracketed by two conserved in-frame stop codons. ORF 2 is interrupted by at least one randomly positioned stop codon in the majority of the cDNAs. The data support proposals suggesting that the human L1 family includes one or more functional genes as well as an extraordinarily large number of pseudogenes whose ORFs are broken by stop codons. The cDNA structures suggest that both genes and pseudogenes are transcribed. At least one of the cDNAs (cD11), which was sequenced in its entirety, could, in principle, represent an mRNA for production of the ORF1 polypeptide. The similarity of mammalian L1s to several recently described invertebrate movable elements defines a new widely distributed class of elements which we term class II retrotransposons.
Collapse
|
48
|
Bosma PJ, van den Berg EA, Kooistra T, Siemieniak DR, Slightom JL. Human plasminogen activator inhibitor-1 gene. Promoter and structural gene nucleotide sequences. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)76517-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
49
|
Skowronski J, Fanning TG, Singer MF. Unit-length line-1 transcripts in human teratocarcinoma cells. Mol Cell Biol 1988; 8:1385-97. [PMID: 2454389 PMCID: PMC363295 DOI: 10.1128/mcb.8.4.1385-1397.1988] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have characterized the approximately 6.5-kilobase cytoplasmic poly(A)+ Line-1 (L1) RNA present in a human teratocarcinoma cell line, NTera2D1, by primer extension and by analysis of cloned cDNAs. The bulk of the RNA begins (5' end) at the residue previously identified as the 5' terminus of the longest known primate genomic L1 elements, presumed to represent "unit" length. Several of the cDNA clones are close to 6 kilobase pairs, that is, close to full length. The partial sequences of 18 cDNA clones and full sequence of one (5,975 base pairs) indicate that many different genomic L1 elements contribute transcripts to the 6.5-kilobase cytoplasmic poly(A)+ RNA in NTera2D1 cells because no 2 of the 19 cDNAs analyzed had identical sequences. The transcribed elements appear to represent a subset of the total genomic L1s, a subset that has a characteristic consensus sequence in the 3' noncoding region and a high degree of sequence conservation throughout. Two open reading frames (ORFs) of 1,122 (ORF1) and 3,852 (ORF2) bases, flanked by about 800 and 200 bases of sequence at the 5' and 3' ends, respectively, can be identified in the cDNAs. Both ORFs are in the same frame, and they are separated by 33 bases bracketed by two conserved in-frame stop codons. ORF 2 is interrupted by at least one randomly positioned stop codon in the majority of the cDNAs. The data support proposals suggesting that the human L1 family includes one or more functional genes as well as an extraordinarily large number of pseudogenes whose ORFs are broken by stop codons. The cDNA structures suggest that both genes and pseudogenes are transcribed. At least one of the cDNAs (cD11), which was sequenced in its entirety, could, in principle, represent an mRNA for production of the ORF1 polypeptide. The similarity of mammalian L1s to several recently described invertebrate movable elements defines a new widely distributed class of elements which we term class II retrotransposons.
Collapse
Affiliation(s)
- J Skowronski
- Laboratory of Biochemistry, National Cancer Institute, Bethesda, Maryland 20892
| | | | | |
Collapse
|
50
|
Kazazian HH, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 1988; 332:164-6. [PMID: 2831458 DOI: 10.1038/332164a0] [Citation(s) in RCA: 611] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
L1 sequences are a human-specific family of long, interspersed, repetitive elements, present as approximately 10(5) copies dispersed throughout the genome. The full-length L1 sequence is 6.1 kilobases, but the majority of L1 elements are truncated at the 5' end, resulting in a fivefold higher copy number of 3' sequences. The nucleotide sequence of L1 elements includes an A-rich 3' end and two long open reading frames (orf-1 and orf-2), the second of which encodes a potential polypeptide having sequence homology with the reverse transcriptases. This structure suggests that L1 elements represent a class of non-viral retrotransposons. A number of L1 complementary DNAs, including a nearly full-length element, have been isolated from an undifferentiated teratocarcinoma cell line. We now report insertions of L1 elements into exon 14 of the factor VIII gene in two of 240 unrelated patients with haemophilia A. Both of these insertions (3.8 and 2.3 kilobases respectively) contain 3' portions of the L1 sequence, including the poly (A) tract, and create target site duplications of at least 12 and 13 nucleotides of the factor VIII gene. In addition, their 3'-trailer sequences following orf-2 are nearly identical to the consensus sequence of L1 cDNAs (ref. 6). These results indicate that certain L1 sequences in man can be dispersed, presumably by an RNA intermediate, and cause disease by insertional mutation.
Collapse
Affiliation(s)
- H H Kazazian
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | | | |
Collapse
|