1
|
Love SD, Posey S, Burch AD, Fane BA. Disenfranchised DNA: biochemical analysis of mutant øX174 DNA-binding proteins may further elucidate the evolutionary significance of the unessential packaging protein A. J Virol 2024; 98:e0182723. [PMID: 38305183 PMCID: PMC10949513 DOI: 10.1128/jvi.01827-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Most icosahedral DNA viruses package and condense their genomes into pre-formed, volumetrically constrained capsids. However, concurrent genome biosynthesis and packaging are specific to single-stranded (ss) DNA micro- and parvoviruses. Before packaging, ~120 copies of the øX174 DNA-binding protein J interact with double-stranded DNA. 60 J proteins enter the procapsid with the ssDNA genome, guiding it between 60 icosahedrally ordered DNA-binding pockets formed by the capsid proteins. Although J proteins are small, 28-37 residues in length, they have two domains. The basic, positively charged N-terminus guides the genome between binding pockets, whereas the C-terminus acts as an anchor to the capsid's inner surface. Three C-terminal aromatic residues, W30, Y31, and F37, interact most extensively with the coat protein. Their corresponding codons were mutated, and the resulting strains were biochemically and genetically characterized. Depending on the mutation, the substitutions produced unstable packaging complexes, unstable virions, infectious progeny, or particles packaged with smaller genomes, the latter being a novel phenomenon. The smaller genomes contained internal deletions. The juncture sequences suggest that the unessential A* (A star) protein mediates deletion formation.IMPORTANCEUnessential but strongly conserved gene products are understudied, especially when mutations do not confer discernable phenotypes or the protein's contribution to fitness is too small to reliably determine in laboratory-based assays. Consequently, their functions and evolutionary impact remain obscure. The data presented herein suggest that microvirus A* proteins, discovered over 40 years ago, may hasten the termination of non-productive packaging events. Thus, performing a salvage function by liberating the reusable components of the failed packaging complexes, such as DNA templates and replication enzymes.
Collapse
Affiliation(s)
- Samuel D. Love
- The BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Sierra Posey
- Berkshire School, Advanced Math/Science Research Program, Sheffield, Massachusetts, USA
| | - April D. Burch
- Berkshire School, Advanced Math/Science Research Program, Sheffield, Massachusetts, USA
| | - Bentley A. Fane
- The BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
2
|
Low-Temperature Adaptation Targets Genome Packing Reactions in an Icosahedral Single-Stranded DNA Virus. J Virol 2022; 96:e0197021. [DOI: 10.1128/jvi.01970-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The production of enzymes, transcription factors, and viral receptors directly influences the niches viruses can inhabit. Some prokaryotic hosts can thrive in widely differing environments; thus, physical parameters, such as temperature, should also be considered.
Collapse
|
3
|
Finally, a Role Befitting A star: Strongly Conserved, Unessential Microvirus A* Proteins Ensure the Product Fidelity of Packaging Reactions. J Virol 2020; 94:JVI.01593-19. [PMID: 31666371 DOI: 10.1128/jvi.01593-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022] Open
Abstract
In microviruses, 60 copies of the positively charged DNA binding protein J guide the single-stranded DNA genome into the icosahedral capsid. Consequently, ∼12% of the genome is icosahedrally ordered within virions. Although the internal volume of the ϕX174, G4, and α3 capsids are nearly identical, their genome lengths vary widely from 5,386 (ϕX174) to 6,067 (α3) nucleotides. As the genome size increases, the J protein's length and charge decreases. The ϕX174 J protein is 37 amino acids long and has a charge of +12, whereas the 23-residue G4 and α3 proteins have respective +6 and +8 charges. While the large ϕX174 J protein can substitute for the smaller ones, the converse is not true. Thus, the smallest genome, ϕX174, requires the more stringent J protein packaging guide. To investigate this further, a chimeric virus (ϕXG4J) was generated by replacing the indigenous ϕX174 J gene with that of G4. The resulting mutant, ϕXG4J, was not viable on the level of plaque formation without ϕX174 J gene complementation. During uncomplemented infections, capsids dissociated during packaging or quickly thereafter. Those that survived were significantly less stable and infectious than the wild type. Complementation-independent ϕXG4J variants were isolated. They contained duplications that increased genome size by as much as 3.8%. Each duplication started at nucleotide 991, creating an additional DNA substrate for the unessential but highly conserved A* protein. Accordingly, ϕXG4J viability and infectivity was also restored by the exogenous expression of a cloned A* gene.IMPORTANCE Double-stranded DNA viruses typically package their genomes into a preformed capsid. In contrast, single-stranded RNA viruses assemble their coat proteins around their genomes via extensive nucleotide-protein interactions. Single-stranded DNA (ssDNA) viruses appear to blend both strategies, using nucleotide-protein interactions to organize their genomes into preformed shells, likely by a controlled process. Chaotic genome-capsid associations could inhibit packaging or genome release during the subsequent infection. This process appears to be partially controlled by the unessential A* protein, a shorter version of the essential A protein that mediates rolling-circle DNA replication. Protein A* may elevate fitness by ensuring the product fidelity of packaging reactions. This phenomenon may be widespread in ssDNA viruses that simultaneously synthesize and package DNA with rolling circle and rolling circle-like DNA replication proteins. Many of these viruses encode smaller, unessential, and/or functionally undefined in-frame versions of A/A*-like proteins.
Collapse
|
4
|
Wawrzyniak P, Sobolewska-Ruta A, Zaleski P, Łukasiewicz N, Kabaj P, Kierył P, Gościk A, Bierczyńska-Krzysik A, Baran P, Mazurkiewicz-Pisarek A, Płucienniczak A, Bartosik D. Molecular dissection of the replication system of plasmid pIGRK encoding two in-frame Rep proteins with antagonistic functions. BMC Microbiol 2019; 19:254. [PMID: 31722681 PMCID: PMC6854812 DOI: 10.1186/s12866-019-1595-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 09/10/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Gene overlapping is a frequent phenomenon in microbial genomes. Excluding so-called "trivial overlapping", there are significant implications of such genetic arrangements, including regulation of gene expression and modification of protein activity. It is also postulated that, besides gene duplication, the appearance of overlapping genes (OGs) is one of the most important factors promoting a genome's novelty and evolution. OGs coding for in-frame proteins with different functions are a particularly interesting case. In this study we identified and characterized two in-frame proteins encoded by OGs on plasmid pIGRK from Klebsiella pneumoniae, a representative of the newly distinguished pHW126 plasmid family. RESULTS A single repR locus located within the replication system of plasmid pIGRK encodes, in the same frame, two functional polypeptides: a full-length RepR protein and a RepR' protein (with N-terminal truncation) translated from an internal START codon. Both proteins form homodimers, and interact with diverse DNA regions within the plasmid replication origin and repR promoter operator. Interestingly, RepR and RepR' have opposing functions - RepR is crucial for initiation of pIGRK replication, while RepR' is a negative regulator of this process. Nevertheless, both proteins act cooperatively as negative transcriptional regulators of their own expression. CONCLUSIONS Regulation of the initiation of pIGRK replication is a complex process in which a major role is played by two in-frame proteins with antagonistic functions. In-frame encoded Rep proteins are uncommon, having been described in only a few plasmids. This is the first description of such proteins in a plasmid of the pHW126 family.
Collapse
Affiliation(s)
- Paweł Wawrzyniak
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agnieszka Sobolewska-Ruta
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Piotr Zaleski
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Natalia Łukasiewicz
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Paulina Kabaj
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland
| | - Piotr Kierył
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Agata Gościk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Bierczyńska-Krzysik
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Piotr Baran
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Anna Mazurkiewicz-Pisarek
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Andrzej Płucienniczak
- Bioengineering Department, Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516 Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
5
|
Sanhueza S, Eisenberg S. Cleavage of single-stranded DNA by the varphiX174 A protein: The A-single-stranded DNA covalent linkage. Proc Natl Acad Sci U S A 2010; 81:4285-9. [PMID: 16593485 PMCID: PMC345572 DOI: 10.1073/pnas.81.14.4285] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phage varphiX174 A(*) protein cleaves single-stranded DNA and then binds to the 5'-phosphorylated terminus of the cleaved DNA fragment, forming a covalent protein-DNA complex. The bound A(*) protein can religate the termini to form covalently closed single-stranded circles. To determine the nature of the covalent linkage and the amino acid involved, we used A(*) protein to cleave DNA synthesized in vivo with [alpha-(32)P]dATP to form the A(*)-single-stranded DNA complex. The complex was then digested with DNase I and the (32)P-labeled A(*) protein was isolated by electrophoresis on polyacrylamide gels. The isolated complex was digested with either trypsin or Pronase. Incubation of the tryptic digest with snake venom phosphodiesterase gave (32)P-labeled products that migrated on electrophoresis on cellulose plates to the cathode, indicating covalent linkage of (32)P-labeled dAMP residues to a tryptic peptide. High concentrations of snake venom phosphodiesterase released all of the (32)P label as free dAMP. Formic acid/diphenylamine depurination (Burton reaction) of the [alpha-(32)P]dATP-labeled peptide-oligonucleotide complexes caused a transfer of the labeled phosphate from dAMP to the peptide. The phosphorylated peptides were isolated on cellulose plates and shown to be sensitive to bacterial alkaline phosphatase, indicating that a phosphodiester bond linked the peptides to the dAMP. The phosphorylated product of the Pronase digest was identified as free phosphotyrosine by its mobility in three different chromatography systems. Likewise, acid hydrolysis (5.6 M HCl, 110 degrees C, 2 hr) of the phosphorylated tryptic peptides revealed linkage of the phosphate to a tyrosine. Thus, A(*) protein cleaves single-stranded DNA and binds covalently to the 5'-phosphorylated terminus via a tyrosyl-dAMP phosphodiester bond.
Collapse
Affiliation(s)
- S Sanhueza
- Department of Biochemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
6
|
Hanai R, Wang J. The mechanism of sequence-specific DNA cleavage and strand transfer by phi X174 gene A* protein. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80460-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
7
|
Abstract
Bacteriophage phi X174 mutants within the 30 base-pair replication origin were constructed using oligodeoxynucleotide-directed mutagenesis. A total of 18 viable base substitution mutants at 13 different positions within the origin region were obtained. The majority of these ori mutants have a plaque morphology and burst size comparable to that of wild-type phi X174. Two phi X174 ori mutants with a reduced growth ability spontaneously acquired additional mutations that enhanced the growth rate. The additional mutation was located at the same site as the original mutation or was located in the N-terminal part of the gene A protein. This latter secondary mutation is responsible for a better binding and/or recognition of the gene A protein to the mutated origin. In a Darwinian experiment wild-type phi X174 outgrows all phi X174 ori mutants, indicating the superiority of the wild-type ori sequence for the reproduction of bacteriophage phi 174. Insertions and deletions were constructed at different positions within the phi X174 replication origin cloned in a plasmid. Small insertions and deletions in the A + T-rich spacer region do not inhibit phi X174 gene A protein cleavage in vitro, but severely impair packaging of single-stranded plasmid DNA in viral coats.
Collapse
Affiliation(s)
- P D Baas
- Institute of Molecular Biology and Medical Biotechnology, State University of Utrecht, The Netherlands
| |
Collapse
|
8
|
Colasanti J, Denhardt DT. Mechanism of replication of bacteriophage phi X174. XXII. Site-specific mutagenesis of the A* gene reveals that A* protein is not essential for phi X174 DNA replication. J Mol Biol 1987; 197:47-54. [PMID: 2960819 DOI: 10.1016/0022-2836(87)90608-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The A and A* proteins of phage phi X174 are encoded in the same reading frame in the viral genome; the smaller A protein is the result of a translational start signal with the A gene. To differentiate their respective functions, oligonucleotide-directed site-specific mutagenesis was used to change the ATG start codon of the phi X 174 A* gene, previously cloned into pCQV2 under lambda repressor control, into a TAG stop codon. The altered A gene was then inserted back into phi X replicative form DNA to produce an amber mutant, phi XamA*. Two different Escherichia coli amber suppressor strains infected with this mutant produced viable progeny phage with only a slight reduction in yield. In Su+ cells infected with phi XamA*, phi X gene A protein, altered at one amino acid, was synthesized at normal levels; A* protein was not detectable. These observations indicate that the A* protein increases the replicative efficiency of the phage, perhaps by shutting down host DNA replication, but is not required for replication of phi X174 DNA or the packaging of the viral strand under the conditions tested.
Collapse
Affiliation(s)
- J Colasanti
- Cancer Research Laboratory, University of Western Ontario, London, Canada
| | | |
Collapse
|
9
|
Baas PD, Liewerink H, van Teeffelen HA, van Mansfeld AD, van Boom JH, Jansz HS. Alteration of the ATG start codon of the A protein of bacteriophage phi X174 into an ATT codon yields a viable phage indicating that A protein is not essential for phi X174 reproduction. FEBS Lett 1987; 218:119-25. [PMID: 2954853 DOI: 10.1016/0014-5793(87)81030-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bacteriophage phi X174 gene A encodes two proteins: the gene A protein and the smaller A protein, which is synthesized from a translational start signal within the A gene in the same reading frame as the gene A protein. The gene A protein is involved in initiation, elongation and termination of rolling circle DNA replication. The role of the A protein in the life cycle of phi X174, however, is unknown. Using oligonucleotide-directed mutagenesis a viable phi X174 mutant was constructed in which the ATG start codon of the A protein was changed into an ATT codon. This mutant, phi X-4499T, does not synthesize A protein. The burst size of phi X-4499T amounted to 50% of that of wild type phi X174. This indicates that A protein, although advantageous for phage reproduction, is not essential during the life cycle of bacteriophage phi X174.
Collapse
|
10
|
Vartapetian AB, Bogdanov AA. Proteins covalently linked to viral genomes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1987; 34:209-51. [PMID: 3326040 DOI: 10.1016/s0079-6603(08)60497-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
van Mansfeld AD, van Teeffelen HA, Fluit AC, Baas PD, Jansz HS. Effect of SSB protein on cleavage of single-stranded DNA by phi X gene A protein and A* protein. Nucleic Acids Res 1986; 14:1845-61. [PMID: 2937018 PMCID: PMC339577 DOI: 10.1093/nar/14.4.1845] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Gene A protein of bacteriophage phi X174 plays a role as a site-specific endonuclease in the initiation and termination of phi X rolling circle DNA replication. To clarify the sequence requirements of this protein we have studied the cleavage of single-stranded restriction fragments from phi X and G4 viral DNAs using purified gene A protein. The results show that in both viral DNAs cleavage occurs at the origin and at one additional site which shows striking sequence homology with the origin region. During rolling circle replication the single-stranded viral DNA tail is covered with single-stranded DNA binding (SSB) protein. Therefore, we have also studied the effect of SSB on phi X gene A protein cleavage. In these conditions only single-stranded fragments containing the complete or almost complete origin region of 30 bases are cleaved, whereas cleavage at the additional sites of phi X or G4 viral DNAs does not occur. A model for termination of rolling circle replication which is based on these findings is presented. Finally, we present evidence that the second product of gene A, the A* protein, cleaves phi X viral DNA at the additional cleavage site in the presence of SSB, not only in vitro but also in vivo. The functional significance of this cleavage in vivo is discussed.
Collapse
|
12
|
Fulford W, Russel M, Model P. Aspects of the growth and regulation of the filamentous phages. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1986; 33:141-68. [PMID: 3541041 DOI: 10.1016/s0079-6603(08)60022-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Baas PD. DNA replication of single-stranded Escherichia coli DNA phages. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 825:111-39. [PMID: 3890949 DOI: 10.1016/0167-4781(85)90096-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Colasanti J, Denhardt DT. Expression of the cloned bacteriophage phi X174 A* gene in Escherichia coli inhibits DNA replication and cell division. J Virol 1985; 53:807-13. [PMID: 3156255 PMCID: PMC254711 DOI: 10.1128/jvi.53.3.807-813.1985] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The A* gene of bacteriophage phi X174 has been cloned into the inducible expression vector pCQV2 under conditions allowing its lethal action to be controlled by the lambda cI857 repressor. Upon induction of expression, DNA synthesis in Escherichia coli carrying the recombinant plasmid is severely inhibited; however, these same cells permit beta-galactosidase induction at a rate similar to that observed in control cells at the inducing (for A*) temperature. Cells in which A* is expressed form filaments and produce more RecA protein, indicating at least a partial induction of the SOS response; however, there is no evidence of damage to the bacterial chromosome. It appears that the A* protein has as one function the inhibition of cell division and DNA replication but not transcription or protein synthesis during phage infection.
Collapse
|
15
|
Ghosh A, Pal SK, Poddar RK. Modulation of gene expression in Escherichia coli infected with single-stranded bacteriophage phi X174. MOLECULAR & GENERAL GENETICS : MGG 1985; 198:304-8. [PMID: 2580215 DOI: 10.1007/bf00383011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Synthesis of tryptophanase, D-serine deaminase and alkaline phosphatase in Escherichia coli C was repressed as the result of infection with the single-stranded DNA bacteriophage phi X174. However, the degree of repression differed, the more catabolite-sensitive the operon was, the more severe was the repression. For the catabolite-sensitive enzymes it was found that cyclic adenosine 3'5' monophosphate (cyclic AMP or cAMP) was unable to release or reduce the phage-induced inhibition. Experiments with amber mutants of phi X174 revealed that A, product of cistron A, was responsible for the inhibition. The cistron A product probably acted at the level of transcription. The possible role of A in the observed modulation of gene expression is discussed.
Collapse
|
16
|
Fulford W, Model P. Gene X of bacteriophage f1 is required for phage DNA synthesis. Mutagenesis of in-frame overlapping genes. J Mol Biol 1984; 178:137-53. [PMID: 6333512 DOI: 10.1016/0022-2836(84)90136-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The gene II protein of bacteriophage f1 is a site-specific endonuclease required for initiation of phage viral strand DNA synthesis. Within gene II is another gene, X, encoding a protein of unknown function identical to the C-terminal 27% of the gene II protein, and separately translated from codon 300 (AUG) of gene II. By oligonucleotide mutagenesis, we constructed phage mutants in which this codon has been changed to UAG (amber) or UUG (leucine), and propagated them on cells carrying a cloned copy of gene X on a plasmid. The amber mutant makes no gene X protein, and cannot grow in the absence of the complementing plasmid; the leucine-inserting mutant can make gene X protein, and grows normally without the plasmid. Without gene X protein, phage DNA synthesis (particularly viral strand synthesis) is impaired. We discuss this finding in the context of other known in-frame overlapping genes (particularly genes A and A* of phage phi X174), many of which are also involved in the specific initiation of DNA synthesis, and suggest applications for the mutagenic strategy we employed.
Collapse
|
17
|
van Mansfeld AD, van Teeffelen HA, Baas PD, Veeneman GH, van Boom JH, Jansz HS. The bond in the bacteriophage phi X174 gene A protein--DNA complex is a tyrosyl-5'-phosphate ester. FEBS Lett 1984; 173:351-6. [PMID: 6235129 DOI: 10.1016/0014-5793(84)80804-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The bacteriophage phi X174 gene A protein cleaves the viral strand of the double-stranded replicative form (RF) DNA of the phage at a specific site, the origin. It leaves a free 3'-OH at nucleotide 4305 (G) of the phi X DNA sequence and binds covalently to the DNA. The nature and position of the covalent bond have been determined using the octadecadesoxyribonucleotide CAACTTG[32P]ATATTAATAAC. This octadecamer, which corresponds to nucleotides 4299-4316 of phi X viral DNA, is cleaved by gene A protein. Gene A protein is bound to the labelled phosphate via a tyrosyl residue, indicating that binding occurs to the nucleotide corresponding to 4306 (A) of the phi X viral DNA strand.
Collapse
|
18
|
Van Mansfeld AD, Baas PD, Jansz HS. Gene A protein of bacteriophage phi X174 is a highly specific single-strand nuclease and binds via a tyrosyl residue to DNA after cleavage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1984; 179:221-30. [PMID: 6098154 DOI: 10.1007/978-1-4684-8730-5_23] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The sequence specificity of the endonuclease activity of gene A protein and A* protein was studied using synthetic oligonucleotides containing (part of) the sequence of the origin of phi X RF DNA replication and single-stranded (ss) DNA fragments of phi X and G4. From a comparison of the sequences that are cleaved a consensus sequence for cleavage of ssDNA by gene A protein has been deduced. This consensus sequence occurs in ssDNA of both phi X and G4 at the origin and at one additional site. This is surprising since the rolling circle mechanism demands that gene A protein cleaves at the origin only. However, it could be shown that in the presence of SSB protein the ssDNAs of phi X and G4 are only cleaved at the origin, which is probably due to a strong gene A protein binding site, the key sequence, which forms part of the 30 b.p. origin region of phi X and related bacteriophages. Gene A protein and A* protein bind covalently to the DNA at the 5'-end of the cleavage site. Using a uniquely, internally 32p-labelled oligonucleotide as a substrate, it was shown that gene A protein and A* protein are bound via a tyrosyl residue to the 5'-phosphate of the phosphodiester bond which is cleaved.
Collapse
|
19
|
Van der Avoort HG, Teertstra R, Versteeg R, Weisbeek PJ. Genes and regulatory sequences of bacteriophage phi X174. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 741:94-102. [PMID: 6311269 DOI: 10.1016/0167-4781(83)90014-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fragments of the DNA of bacteriophage phi X174 were inserted in the plasmids pACYC177 and pBR322, in order to test the in vivo effects of separate phage genes and regulatory sequences. The phi X174 inserts were identified by recombination and complementation with phage mutants, followed by restriction enzyme analysis. The genes B, C, F and G can be maintained stably in the cell even when there is efficient expression of these viral genes. Recombinant plasmids with the complete genes D and E can only be maintained when the expression of these genes is completely blocked. Expression of complete H and J genes could not yet be demonstrated. The intact gene A was apparently lethal for the host cell, as it was never found in the recombinants. The genes F and G are expressed, even when they are not preceded by one of the well characterized viral or plasmid promoter sequences. Screening of the nucleotide sequence of phi X174 gives two promoter-like sequences just in front of the two genes. Viral sequences with replication signals (the phi X174 (+) origin of replication, the initiation site for complementary strand synthesis and the incompatibility sequence) appeared to be functional also when inserted in recombinant plasmids. A plasmid with the phi X (+) origin can be forced to a rolling circle mode of replication. The A protein produced by infecting phages works in trans on the cloned viral origin. The (-) origin can function as initiation signal for complementary strand synthesis during transduction of single-stranded plasmid DNA. The intracellular presence of the incompatibility sequence on a plasmid prevents propagation of infecting phages.
Collapse
|
20
|
van Mansfeld AD, van Teeffelen HA, Zandberg J, Baas PD, Jansz HS, Veeneman GH, van Boom JH. A protein of bacteriophage phi X174 carries an oligonucleotide which it can transfer to the 3' -OH of a DNA chain. FEBS Lett 1982; 150:103-8. [PMID: 6218997 DOI: 10.1016/0014-5793(82)81313-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The bacteriophage phi X174 gene A encodes two proteins: gene A protein and A* protein. Purified A* protein acts as a single-stranded, DNA-specific endonuclease which remains covalently attached to the 5'-end of the cleavage site. Incubation of A* protein with the synthetic heptamer CAACTTG or with oligonucleotides which yield this heptamer after cleavage with the A* protein yields oligonucleotides with the sequences CAACTTGAG, CAACTTGAGG and CAACTTGAGGA. This indicates that A* protein carries an oligonucleotide with the sequence--AG, -AGG or -AGGA. The oligonucleotide can be transferred to the 3'-end of the heptamer CAACTTG. This suggests that A* protein reacts with a specific DNA sequence in the infected cell.
Collapse
|
21
|
Ross W, Landy A. Bacteriophage lambda int protein recognizes two classes of sequence in the phage att site: characterization of arm-type sites. Proc Natl Acad Sci U S A 1982; 79:7724-8. [PMID: 6218502 PMCID: PMC347420 DOI: 10.1073/pnas.79.24.7724] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Purified int protein from bacteriophage lambda binds to specific sites in DNA that are not part of the functional attachment sites (non-att DNA) as well as to specific sites in att DNA. Analysis of non-att sites protected from nucleases by int has permitted definition of two distinctly different consensus recognition sequences, one of which, the arm-type sequence, is characterized in this report. Both types of recognition sequence occur in attP; five copies of the arm-type consensus sequence are located distant from the crossover region in the P1, P2, and P' arm protected regions. The second type of recognition sequence occurs at the crossover region. Modification of int with N-ethylmaleimide selectively alters its interaction with arm-type sequences.
Collapse
|
22
|
van der Ende A, Teertstra R, Weisbeek PJ. Initiation and termination of the bacteriophage phi X174 rolling circle DNA replication in vivo: packaging of plasmid single-stranded DNA into bacteriophage phi X174 coats. Nucleic Acids Res 1982; 10:6849-63. [PMID: 6294617 PMCID: PMC326969 DOI: 10.1093/nar/10.21.6849] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The bacteriophage phi X174 viral (+) origin when inserted in a plasmid can interact in vivo with the A protein produced by infecting phi X174 phages. A consequence of this interaction is packaging of single-stranded plasmid DNA into preformed phage coats resulting in infective particles (1). This property was used to study morphogenesis and to analyse the signals for initiation and termination of the rolling circle DNA replication in vivo. It is shown that the size of the DNA had a strong effect on the encapsidation by the phage coats and the infectivity of the particle. Termination was analysed by using plasmids with two phi X (+) origins either in the same orientation or in opposite orientation. Both origins were used with equal frequency. Initiation at one origin resulted in very efficient termination (greater than 96%) at the second origin in the case of two origins in the same orientation. When the two (+) origins have opposite orientations, no correct termination was observed. The second origin in the opposite strand effectively inhibits (greater than 98%) the normal DNA synthesis; i.e. the covalently bound A protein present in the replication fork interacts with the (+) origin sequence in the opposite strand.
Collapse
|
23
|
Pal SK, Poddar RK. Effect of bacteriophage phi X174 infection on the conformation of Escherichia coli DNA. MOLECULAR & GENERAL GENETICS : MGG 1982; 187:162-5. [PMID: 6219269 DOI: 10.1007/bf00384400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cistron A proteins of bacteriophage phi X174 inhibit the synthesis of beta-galactosidase of host Escherichia coli. A drastic reduction in the rate of transcription of the lac gene is observed in infected cells. This loss in the efficiency of transcription is due to conformational changes in the host DNA. Probably the host DNA is nicked at a few sites along its length and some of its negative superhelical twists are released.
Collapse
|
24
|
van der Ende A, Langeveld SA, Van Arkel GA, Weisbeek PJ. The interaction of the A and A* proteins of bacteriophage phi X174 with single-stranded and double-stranded phi X DNA in vitro. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 124:245-52. [PMID: 6212237 DOI: 10.1111/j.1432-1033.1982.tb06584.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The binding of the bacteriophage phi X 174-coded A and A* proteins to single-stranded (ssDNA) and double-stranded (dsDNA ) phi X DNA was studied by electron microscopy. The interaction of the A* protein with ssDNA and dsDNA was also studied by sedimentation velocity centrifugation. It was shown that the binding of the A and A* proteins to ssDNA occurs in a non-cooperative manner and requires no or very little sequence specificity under the conditions used here. Both protein-ssDNA complexes have the same compact structure caused by intrastrand cross-linking through the interaction of protein molecules with separate parts of the ssDNA molecule. The A protein does not bind to phi X dsDNA in the absence of divalent cations. The A* protein does bind to dsDNA, although it has a strong preference for binding to ssDNA. The structure of the A* protein-dsDNA complexes is different from that of the A* protein-ssDNA complexes, as the former have a rosette-like structure caused by protein-protein interactions. High ionic strengths favour the formation of large condensed aggregates.
Collapse
|
25
|
Matthes M, Weisbeek PJ, Denhardt DT. Mechanism of replication of bacteriophage phi X174 XIX. Initiation of phi X174 viral strand DNA synthesis at internal sites on the genome. J Virol 1982; 42:301-5. [PMID: 6211552 PMCID: PMC256072 DOI: 10.1128/jvi.42.1.301-305.1982] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Bacteriophage phi X174 viral strand DNA molecules shorter than genome length found late in the infectious cycle in Escherichia coli were 5' end labeled with 32P. Hybridization of the 32P-labeled molecules to restriction enzyme fragments of phi X replicative form DNA revealed an excess of phi X molecules whose 5' ends mapped in HaeIII fragments Z3 and Z4 in comparison with fragments Z1 and Z2. This suggests that initiation of phi X174 viral strand DNA synthesis may occur at internal sites on the complementary strand. There are several appropriately located sequences that might serve as n' (factor Y) recognition sequences and thereby facilitate discontinuous synthesis of the viral strand.
Collapse
|
26
|
Matthes M, Denhardt DT. Mechanism of replication of bacteriophage phi X174 XX. Sensitivity of nascent DNA to single-strand-specific nucleases. J Virol 1982; 42:12-9. [PMID: 6283133 PMCID: PMC256039 DOI: 10.1128/jvi.42.1.12-19.1982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We reported earlier that dephosphorylated nascent phi X174 viral strand DNA molecules were less extensively degraded from the 5' end by spleen exonuclease than were non-nascent molecules. Experiments described here revealed that the insensitivity to the 5'-OH end-specific nuclease was more evident among the longer molecules in the population than among the shorter, all of the molecules being less than unit length in size. The smallest molecules in the population were about as sensitive to the enzyme as the control molecules and hence must possess unblocked 5'-terminal nucleotides. Degradation of the nascent DNA with the 3' end-specific snake venom phosphodiesterase revealed only a small enrichment for [3H]thymidine near the 3' end, seemingly insufficient to account completely for the apparent insensitivity of the longer molecules to spleen exonuclease. When the nascent molecules were isolated without the use of proteolytic enzymes, some pronase-sensitive material was found associated with the DNA, particularly the longer molecules. We suggest that the resistance of the longer nascent (pronase-treated) molecules to spleen exonuclease occurs because they have remnants of the viral gene A or A* protein covalently bound to the 5' end.
Collapse
|
27
|
Bacteriophage f1 gene II and X proteins. Isolation and characterization of the products of two overlapping genes. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)68586-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
van der Ende A, Langeveld SA, Teertstra R, van Arkel GA, Weisbeek PJ. Enzymatic properties of the bacteriophage phi X174 A protein on superhelical phi X174 DNA: a model for the termination of the rolling circle DNA replication. Nucleic Acids Res 1981; 9:2037-53. [PMID: 6272222 PMCID: PMC326825 DOI: 10.1093/nar/9.9.2037] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Incubation of phi X174 replication form I DNA with the A* protein of phi X174 in the presence of MN2+ results in the formation of three different types of DNA molecules: open circular form DNA (RFII), linear form DNA (RFIII) and the relaxed covalently closed form DNA (RFIV). The RFII and RFIII DNAs are shown to be A* protein-DNA complexes by electron microscopy using the protein labeling technique of Wu and Davidson (1). The linear double-stranded RFIII DNA molecule carries at one end a covalently attached A* protein whereas at the other end of the molecule the single-stranded termini are covalently linked to each other. The structure of the RFIII DNA shows its way of formation. The described properties of the A* protein indicate the way the larger A protein functions in the termination step of the rolling-circle type of phi X174 DNA replication.
Collapse
|