1
|
Zhang H, Ling J. Aminoacyl-tRNA synthetase defects in neurological diseases. IUBMB Life 2025; 77:e2924. [PMID: 39487674 PMCID: PMC11611227 DOI: 10.1002/iub.2924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes to support protein synthesis in all organisms. Recent studies, empowered by advancements in genome sequencing, have uncovered an increasing number of disease-causing mutations in aaRSs. Monoallelic aaRS mutations typically lead to dominant peripheral neuropathies such as Charcot-Marie-Tooth (CMT) disease, whereas biallelic aaRS mutations often impair the central nervous system (CNS) and cause neurodevelopmental disorders. Here, we review recent progress in the disease onsets, molecular basis, and potential therapies for diseases caused by aaRS mutations, with a focus on biallelic mutations in cytoplasmic aaRSs.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cell Biology and Molecular GeneticsThe University of MarylandCollege ParkMarylandUSA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular GeneticsThe University of MarylandCollege ParkMarylandUSA
| |
Collapse
|
2
|
Yurchenko A, Özkul G, van Riel NAW, van Hest JCM, de Greef TFA. Mechanism-based and data-driven modeling in cell-free synthetic biology. Chem Commun (Camb) 2024; 60:6466-6475. [PMID: 38847387 DOI: 10.1039/d4cc01289e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Cell-free systems have emerged as a versatile platform in synthetic biology, finding applications in various areas such as prototyping synthetic circuits, biosensor development, and biomanufacturing. To streamline the prototyping process, cell-free systems often incorporate a modeling step that predicts the outcomes of various experimental scenarios, providing a deeper insight into the underlying mechanisms and functions. There are two recognized approaches for modeling these systems: mechanism-based modeling, which models the underlying reaction mechanisms; and data-driven modeling, which makes predictions based on data without preconceived interactions between system components. In this highlight, we focus on the latest advancements in both modeling approaches for cell-free systems, exploring their potential for the design and optimization of synthetic genetic circuits.
Collapse
Affiliation(s)
- Angelina Yurchenko
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Synthetic Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Gökçe Özkul
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Synthetic Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Natal A W van Riel
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Eindhoven MedTech Innovation Center, 5612 AX Eindhoven, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Tom F A de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Synthetic Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, 3584 CB Utrecht, The Netherlands
| |
Collapse
|
3
|
Phan T, He C, Loladze I, Prater C, Elser J, Kuang Y. Dynamics and growth rate implications of ribosomes and mRNAs interaction in E. coli. Heliyon 2022; 8:e09820. [PMID: 35800243 PMCID: PMC9254350 DOI: 10.1016/j.heliyon.2022.e09820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/15/2021] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding how cells grow and adapt under various nutrient conditions is pivotal in the study of biological stoichiometry. Recent studies provide empirical evidence that cells use multiple strategies to maintain an optimal protein production rate under different nutrient conditions. Mathematical models can provide a solid theoretical foundation that can explain experimental observations and generate testable hypotheses to further our understanding of the growth process. In this study, we generalize a modeling framework that centers on the translation process and study its asymptotic behaviors to validate algebraic manipulations involving the steady states. Using experimental results on the growth of E. coli under C-, N-, and P-limited environments, we simulate the expected quantitative measurements to show the feasibility of using the model to explain empirical evidence. Our results support the findings that cells employ multiple strategies to maintain a similar protein production rate across different nutrient limitations. Moreover, we find that the previous study underestimates the significance of certain biological rates, such as the binding rate of ribosomes to mRNA and the transition rate between different ribosomal stages. Furthermore, our simulation shows that the strategies used by cells under C- and P-limitations result in a faster overall growth dynamics than under N-limitation. In conclusion, the general modeling framework provides a valuable platform to study cell growth under different nutrient supply conditions, which also allows straightforward extensions to the coupling of transcription, translation, and energetics to deepen our understanding of the growth process.
Collapse
Affiliation(s)
- Tin Phan
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA
- Division of Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Changhan He
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Irakli Loladze
- Bryan Medical Center, Bryan College of Health Sciences, Lincoln, NE 68506, USA
| | - Clay Prater
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jim Elser
- Flathead Lake Bio Station, University of Montana, Polson, MT 59860, USA
| | - Yang Kuang
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA
- Corresponding author.
| |
Collapse
|
4
|
Leucyl-tRNA synthetase is a tumour suppressor in breast cancer and regulates codon-dependent translation dynamics. Nat Cell Biol 2022; 24:307-315. [PMID: 35288656 PMCID: PMC8977047 DOI: 10.1038/s41556-022-00856-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/27/2022] [Indexed: 12/17/2022]
Abstract
Tumourigenesis and cancer progression require enhanced global protein translation1–3. Such enhanced translation is caused by oncogenic and tumour suppressive events that drive the synthesis and activity of translational machinery4,5. Here we report the surprising observation that leucyl-tRNA synthetase (LARS) becomes repressed during mammary cell transformation and in human breast cancer. Monoallelic genetic deletion of LARS in mouse mammary glands enhanced breast cancer tumour formation and proliferation. LARS repression reduced the abundance of select leucine tRNA isoacceptors, leading to impaired leucine codon-dependent translation of growth suppressive genes including epithelial membrane protein 3 (EMP3) and gamma-glutamyltransferase 5 (GGT5). Our findings uncover a tumour suppressive tRNA synthetase and reveal that dynamic repression of a specific tRNA synthetase—along with its downstream cognate tRNAs—elicits a downstream codon-biased translational gene network response that enhances breast tumour formation and growth.
Collapse
|
5
|
He Q, He X, Xiao Y, Zhao Q, Ye Z, Cui L, Chen Y, Guan MX. Tissue-specific expression atlas of murine mitochondrial tRNAs. J Biol Chem 2021; 297:100960. [PMID: 34265302 PMCID: PMC8342785 DOI: 10.1016/j.jbc.2021.100960] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 11/08/2022] Open
Abstract
Mammalian mitochondrial tRNA (mt-tRNA) plays a central role in the synthesis of the 13 subunits of the oxidative phosphorylation complex system (OXPHOS). However, many aspects of the context-dependent expression of mt-tRNAs in mammals remain unknown. To investigate the tissue-specific effects of mt-tRNAs, we performed a comprehensive analysis of mitochondrial tRNA expression across five mice tissues (brain, heart, liver, skeletal muscle, and kidney) using Northern blot analysis. Striking differences in the tissue-specific expression of 22 mt-tRNAs were observed, in some cases differing by as much as tenfold from lowest to highest expression levels among these five tissues. Overall, the heart exhibited the highest levels of mt-tRNAs, while the liver displayed markedly lower levels. Variations in the levels of mt-tRNAs showed significant correlations with total mitochondrial DNA (mtDNA) contents in these tissues. However, there were no significant differences observed in the 2-thiouridylation levels of tRNALys, tRNAGlu, and tRNAGln among these tissues. A wide range of aminoacylation levels for 15 mt-tRNAs occurred among these five tissues, with skeletal muscle and kidneys most notably displaying the highest and lowest tRNA aminoacylation levels, respectively. Among these tissues, there was a negative correlation between variations in mt-tRNA aminoacylation levels and corresponding variations in mitochondrial tRNA synthetases (mt-aaRS) expression levels. Furthermore, the variable levels of OXPHOS subunits, as encoded by mtDNA or nuclear genes, may reflect differences in relative functional emphasis for mitochondria in each tissue. Our findings provide new insight into the mechanism of mt-tRNA tissue-specific effects on oxidative phosphorylation.
Collapse
Affiliation(s)
- Qiufen He
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao He
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yun Xiao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiong Zhao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhenzhen Ye
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Limei Cui
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ye Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Genetic and Developmental Disorders, Zhejiang Univrsity, Hangzhou, Zhejiang, China.
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Lab of Genetic and Developmental Disorders, Zhejiang Univrsity, Hangzhou, Zhejiang, China; Key Lab of Reproductive Genetics, Center for Mitochondrial Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang, China; Division of Mitochondrial Biomedicine, Zhejiang University-University of Toronto Joint Institute of Genetics and Genome Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Targeted Deletion of Los1 Homologue Affects the Production of a Recombinant Model Protein in Pichia pastoris. IRANIAN BIOMEDICAL JOURNAL 2021; 25:255-64. [PMID: 33992037 PMCID: PMC8334395 DOI: 10.52547/ibj.25.4.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: The methylotrophic yeast Pichia pastoris is an appealing production host for a variety of recombinant proteins, including biologics. In this sense, various genetic- and non-genetic-based techniques have been implemented to improve the production efficiency of this expression platform. Los1 (loss of supression) encodes a non-essential nuclear tRNA exporter in Saccharomyces cerevisiae, which its deletion extends RLS. Herein, a los1-deficient strain of P. pastoris was generated and characterized. Methods: A gene disruption cassette was prepared and transformed into an anti-CD22-expressing strain of P. pastoris. A δ los1 mutant was isolated and confirmed. The drug sensitivity of the mutant was also assessed. The growth pattern and the level of anti-CD22 ScFv expression were compared between the parent and mutant strains. Results: The los1 homologue was found to be a non-essential gene in P. pastoris. Furthermore, the susceptibility of los1 deletion strain to protein synthesis inhibitors was altered. This strain showed an approximately 1.85-fold increase in the extracellular level of anti-CD22 scFv (p < 0.05). The maximum concentrations of total proteins secreted by δ los1 and parent strains were 125 mg/L and 68 mg/L, respectively. Conclusion: The presented data suggest that the targeted disruption of los1 homologue in P. pastoris can result in a higher expression level of our target protein. Findings of this study may improve the current strategies used in optimizing the productivity of recombinant P. pastoris strains.
Collapse
|
7
|
Dauloudet O, Neri I, Walter JC, Dorignac J, Geniet F, Parmeggiani A. Modelling the effect of ribosome mobility on the rate of protein synthesis. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:19. [PMID: 33686567 PMCID: PMC7940305 DOI: 10.1140/epje/s10189-021-00019-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Translation is one of the main steps in the synthesis of proteins. It consists of ribosomes that translate sequences of nucleotides encoded on mRNA into polypeptide sequences of amino acids. Ribosomes bound to mRNA move unidirectionally, while unbound ribosomes diffuse in the cytoplasm. It has been hypothesized that finite diffusion of ribosomes plays an important role in ribosome recycling and that mRNA circularization enhances the efficiency of translation, see e.g. Lodish et al. (Molecular cell biology, 8th edn, W.H. Freeman and Company, San Francisco, 2016). In order to estimate the effect of cytoplasmic diffusion on the rate of translation, we consider a totally asymmetric simple exclusion process coupled to a finite diffusive reservoir, which we call the ribosome transport model with diffusion. In this model, we derive an analytical expression for the rate of protein synthesis as a function of the diffusion constant of ribosomes, which is corroborated with results from continuous-time Monte Carlo simulations. Using a wide range of biological relevant parameters, we conclude that diffusion is not a rate limiting factor in translation initiation because diffusion is fast enough in biological cells.
Collapse
Affiliation(s)
- Olivier Dauloudet
- Laboratoire Charles Coulomb (L2C), CNRS, Montpellier University, Montpellier, France
- Laboratory of Parasite Host Interactions (LPHI), CNRS, Montpellier University, Montpellier, France
| | - Izaak Neri
- Department of Mathematics, King’s College London, Strand, London, WC2R 2LS UK
| | - Jean-Charles Walter
- Laboratoire Charles Coulomb (L2C), CNRS, Montpellier University, Montpellier, France
| | - Jérôme Dorignac
- Laboratoire Charles Coulomb (L2C), CNRS, Montpellier University, Montpellier, France
| | - Frédéric Geniet
- Laboratoire Charles Coulomb (L2C), CNRS, Montpellier University, Montpellier, France
| | - Andrea Parmeggiani
- Laboratoire Charles Coulomb (L2C), CNRS, Montpellier University, Montpellier, France
- Laboratory of Parasite Host Interactions (LPHI), CNRS, Montpellier University, Montpellier, France
| |
Collapse
|
8
|
Muller R, Meacham ZA, Ferguson L, Ingolia NT. CiBER-seq dissects genetic networks by quantitative CRISPRi profiling of expression phenotypes. Science 2020; 370:eabb9662. [PMID: 33303588 PMCID: PMC7819735 DOI: 10.1126/science.abb9662] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
To realize the promise of CRISPR-Cas9-based genetics, approaches are needed to quantify a specific, molecular phenotype across genome-wide libraries of genetic perturbations. We addressed this challenge by profiling transcriptional, translational, and posttranslational reporters using CRISPR interference (CRISPRi) with barcoded expression reporter sequencing (CiBER-seq). Our barcoding approach allowed us to connect an entire library of guides to their individual phenotypic consequences using pooled sequencing. CiBER-seq profiling fully recapitulated the integrated stress response (ISR) pathway in yeast. Genetic perturbations causing uncharged transfer RNA (tRNA) accumulation activated ISR reporter transcription. Notably, tRNA insufficiency also activated the reporter, independent of the uncharged tRNA sensor. By uncovering alternate triggers for ISR activation, we illustrate how precise, comprehensive CiBER-seq profiling provides a powerful and broadly applicable tool for dissecting genetic networks.
Collapse
Affiliation(s)
- Ryan Muller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zuriah A Meacham
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lucas Ferguson
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
9
|
Absence of AfuXpot, the yeast Los1 homologue, limits Aspergillus fumigatus growth under amino acid deprived condition. World J Microbiol Biotechnol 2020; 36:28. [PMID: 32002680 DOI: 10.1007/s11274-020-2805-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
In Saccharomyces cerevisiae, los1 encodes a nuclear tRNA exporter. Despite the non-essentiality, the deletion of los1 has been shown to extend replicative life span in yeast. Here, we characterized AfuXpot, the los1 homologue in human pathogen Aspergillus fumigatus and found that it is continuously expressed during fungal growth. Microscopic examination of an AfuXpot-GFP-expressing transformant confirmed the nuclear localization of the fusion protein. The targeted gene deletion affirmed the non-essential role of AfuXpot in hyphal growth and sporulation. However, the growth of the deletion mutant was affected by amino acid, but not glucose, deprivation. The susceptibility of the deletant strain to protein and DNA/RNA synthesis inhibitors was also altered. Using bioinformatics tools, some transcription factor binding sites were predicted in AfuXpot promoter. Expression analyses of potential AfuXpot-interacting genes showed a marked down-regulation of sfp1 and mtr10 homologues in ΔAfuXpot strain. Our data demonstrates some conserved aspects of AfuXpot as a tRNA exporter in A. fumigatus.
Collapse
|