1
|
Duardo RC, Marinello J, Russo M, Morelli S, Pepe S, Guerra F, Gómez-González B, Aguilera A, Capranico G. Human DNA topoisomerase I poisoning causes R loop-mediated genome instability attenuated by transcription factor IIS. SCIENCE ADVANCES 2024; 10:eadm8196. [PMID: 38787953 PMCID: PMC11122683 DOI: 10.1126/sciadv.adm8196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/18/2024] [Indexed: 05/26/2024]
Abstract
DNA topoisomerase I can contribute to cancer genome instability. During catalytic activity, topoisomerase I forms a transient intermediate, topoisomerase I-DNA cleavage complex (Top1cc) to allow strand rotation and duplex relaxation, which can lead to elevated levels of DNA-RNA hybrids and micronuclei. To comprehend the underlying mechanisms, we have integrated genomic data of Top1cc-triggered hybrids and DNA double-strand breaks (DSBs) shortly after Top1cc induction, revealing that Top1ccs increase hybrid levels with different mechanisms. DSBs are at highly transcribed genes in early replicating initiation zones and overlap with hybrids downstream of accumulated RNA polymerase II (RNAPII) at gene 5'-ends. A transcription factor IIS mutant impairing transcription elongation further increased RNAPII accumulation likely due to backtracking. Moreover, Top1ccs can trigger micronuclei when occurring during late G1 or early/mid S, but not during late S. As micronuclei and transcription-replication conflicts are attenuated by transcription factor IIS, our results support a role of RNAPII arrest in Top1cc-induced transcription-replication conflicts leading to DSBs and micronuclei.
Collapse
Affiliation(s)
- Renée C. Duardo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Marco Russo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Sara Morelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Simona Pepe
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Federico Guerra
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla–CSIC, Calle Américo Vespucio 24, 41092 Seville, Spain
- Departamento de Genetica, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla–CSIC, Calle Américo Vespucio 24, 41092 Seville, Spain
- Departamento de Genetica, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
2
|
Heuzé J, Kemiha S, Barthe A, Vilarrubias AT, Aouadi E, Aiello U, Libri D, Lin Y, Lengronne A, Poli J, Pasero P. RNase H2 degrades toxic RNA:DNA hybrids behind stalled forks to promote replication restart. EMBO J 2023; 42:e113104. [PMID: 37855233 PMCID: PMC10690446 DOI: 10.15252/embj.2022113104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
R-loops represent a major source of replication stress, but the mechanism by which these structures impede fork progression remains unclear. To address this question, we monitored fork progression, arrest, and restart in Saccharomyces cerevisiae cells lacking RNase H1 and H2, two enzymes responsible for degrading RNA:DNA hybrids. We found that while RNase H-deficient cells could replicate their chromosomes normally under unchallenged growth conditions, their replication was impaired when exposed to hydroxyurea (HU) or methyl methanesulfonate (MMS). Treated cells exhibited increased levels of RNA:DNA hybrids at stalled forks and were unable to generate RPA-coated single-stranded (ssDNA), an important postreplicative intermediate in resuming replication. Similar impairments in nascent DNA resection and ssDNA formation at HU-arrested forks were observed in human cells lacking RNase H2. However, fork resection was fully restored by addition of triptolide, an inhibitor of transcription that induces RNA polymerase degradation. Taken together, these data indicate that RNA:DNA hybrids not only act as barriers to replication forks, but also interfere with postreplicative fork repair mechanisms if not promptly degraded by RNase H.
Collapse
Affiliation(s)
- Jonathan Heuzé
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Samira Kemiha
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Antoine Barthe
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Alba Torán Vilarrubias
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Elyès Aouadi
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Umberto Aiello
- Université Paris Cité, CNRS, Institut Jacques MonodParisFrance
- Department of GeneticsStanford UniversityStanfordCAUSA
| | - Domenico Libri
- Université Paris Cité, CNRS, Institut Jacques MonodParisFrance
- Present address:
Institut de Génétique Moléculaire de MontpellierUniversité de Montpellier, CNRSMontpellierFrance
| | - Yea‐Lih Lin
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Armelle Lengronne
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| | - Jérôme Poli
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
- Institut Universitaire de France (IUF)ParisFrance
| | - Philippe Pasero
- Institut de Génétique HumaineUniversité de Montpellier, CNRS, Equipe labélisée Ligue contre le CancerMontpellierFrance
| |
Collapse
|
3
|
Heuzé J, Lin YL, Lengronne A, Poli J, Pasero P. Impact of R-loops on oncogene-induced replication stress in cancer cells. C R Biol 2023; 346:95-105. [PMID: 37779381 DOI: 10.5802/crbiol.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 10/03/2023]
Abstract
Replication stress is an alteration in the progression of replication forks caused by a variety of events of endogenous or exogenous origin. In precancerous lesions, this stress is exacerbated by the deregulation of oncogenic pathways, which notably disrupts the coordination between replication and transcription, and leads to genetic instability and cancer development. It is now well established that transcription can interfere with genome replication in different ways, such as head-on collisions between polymerases, accumulation of positive DNA supercoils or formation of R-loops. These structures form during transcription when nascent RNA reanneals with DNA behind the RNA polymerase, forming a stable DNA:RNA hybrid. In this review, we discuss how these different cotranscriptional processes disrupt the progression of replication forks and how they contribute to genetic instability in cancer cells.
Collapse
|
4
|
Malfatti MC, Codrich M, Dalla E, D'Ambrosio C, Storici F, Scaloni A, Tell G. AUF1 Recognizes 8-Oxo-Guanosine Embedded in DNA and Stimulates APE1 Endoribonuclease Activity. Antioxid Redox Signal 2023; 39:411-431. [PMID: 36855946 PMCID: PMC10517317 DOI: 10.1089/ars.2022.0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
Aims: The existence of modified ribonucleotide monophosphates embedded in genomic DNA, as a consequence of oxidative stress conditions, including 8-oxo-guanosine and ribose monophosphate abasic site (rAP), has been recently highlighted by several works and associated with oxidative stress conditions. Although human apurinic-apyrimidinic endodeoxyribonuclease 1 (APE1), a key enzyme of the base-excision repair pathway, repairs rAP sites and canonical deoxyribose monophosphate abasic sites with similar efficiency, its incision-repairing activity on 8-oxo-guanosine is very weak. The aims of this work were to: (i) identify proteins able to specifically bind 8-oxo-guanosine embedded in DNA and promote APE1 endoribonuclease activity on this lesion, and (ii) characterize the molecular and biological relevance of this interaction using human cancer cell lines. Results: By using an unbiased proteomic approach, we discovered that the AU-rich element RNA-binding protein 1 (AUF1) actively recognizes 8-oxo-guanosine and stimulates the APE1 enzymatic activity on this DNA lesion. By using orthogonal approaches, we found that: (i) the interaction between AUF1 and APE1 is modulated by H2O2-treatment; (ii) depletion of APE1 and AUF1 causes the accumulation of single- and double- strand breaks; and (iii) both proteins are involved in modulating the formation of DNA:RNA hybrids. Innovation: These results establish unexpected functions of AUF1 in modulating genome stability and improve our knowledge of APE1 biology with respect to 8-oxo-guanosine embedded in DNA. Conclusion: By showing a novel function of AUF1, our findings shed new light on the process of genome stability in mammalian cells toward oxidative stress-related damages. Antioxid. Redox Signal. 39, 411-431.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marta Codrich
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Chiara D'Ambrosio
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council (CNR) of Italy, Portici, Italy
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council (CNR) of Italy, Portici, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
5
|
Elserafy M, El-Shiekh I, Fleifel D, Atteya R, AlOkda A, Abdrabbou MM, Nasr M, El-Khamisy SF. A role for Rad5 in ribonucleoside monophosphate (rNMP) tolerance. Life Sci Alliance 2021; 4:4/10/e202000966. [PMID: 34407997 PMCID: PMC8380674 DOI: 10.26508/lsa.202000966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/24/2021] [Accepted: 07/03/2021] [Indexed: 11/29/2022] Open
Abstract
Ribonucleoside incorporation in genomic DNA poses a significant threat to genomic integrity. Here, we describe how cells tolerate this threat and discuss implications for cancer therapeutics. Ribonucleoside monophosphate (rNMP) incorporation in genomic DNA poses a significant threat to genomic integrity. In addition to repair, DNA damage tolerance mechanisms ensure replication progression upon encountering unrepaired lesions. One player in the tolerance mechanism is Rad5, which is an E3 ubiquitin ligase and helicase. Here, we report a new role for yeast Rad5 in tolerating rNMP incorporation, in the absence of the bona fide ribonucleotide excision repair pathway via RNase H2. This role of Rad5 is further highlighted after replication stress induced by hydroxyurea or by increasing rNMP genomic burden using a mutant DNA polymerase (Pol ε - Pol2-M644G). We further demonstrate the importance of the ATPase and ubiquitin ligase domains of Rad5 in rNMP tolerance. These findings suggest a similar role for the human Rad5 homologues helicase-like transcription factor (HLTF) and SNF2 Histone Linker PHD RING Helicase (SHPRH) in rNMP tolerance, which may impact the response of cancer cells to replication stress-inducing therapeutics.
Collapse
Affiliation(s)
- Menattallah Elserafy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Iman El-Shiekh
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Dalia Fleifel
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Reham Atteya
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Abdelrahman AlOkda
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed M Abdrabbou
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Mostafa Nasr
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.,University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Sherif F El-Khamisy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt .,The Healthy Lifespan Institute and Institute of Neuroscience, School of Bioscience, University of Sheffield, South Yorkshire, UK.,The Institute of Cancer Therapeutics, University of Bradford, West Yorkshire, UK.,Center for Genomics, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
6
|
Cerritelli SM, El Hage A. RNases H1 and H2: guardians of the stability of the nuclear genome when supply of dNTPs is limiting for DNA synthesis. Curr Genet 2020; 66:1073-1084. [PMID: 32886170 DOI: 10.1007/s00294-020-01086-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 11/29/2022]
Abstract
RNA/DNA hybrids are processed by RNases H1 and H2, while single ribonucleoside-monophosphates (rNMPs) embedded in genomic DNA are removed by the error-free, RNase H2-dependent ribonucleotide excision repair (RER) pathway. In the absence of RER, however, topoisomerase 1 (Top1) can cleave single genomic rNMPs in a mutagenic manner. In RNase H2-deficient mice, the accumulation of genomic rNMPs above a threshold of tolerance leads to catastrophic genomic instability that causes embryonic lethality. In humans, deficiencies in RNase H2 induce the autoimmune disorders Aicardi-Goutières syndrome and systemic lupus erythematosus, and cause skin and intestinal cancers. Recently, we reported that in Saccharomyces cerevisiae, the depletion of Rnr1, the major catalytic subunit of ribonucleotide reductase (RNR), which converts ribonucleotides to deoxyribonucleotides, leads to cell lethality in absence of RNases H1 and H2. We hypothesized that under replicative stress and compromised DNA repair that are elicited by an insufficient supply of deoxyribonucleoside-triphosphates (dNTPs), cells cannot survive the accumulation of persistent RNA/DNA hybrids. Remarkably, we found that cells lacking RNase H2 accumulate ~ 5-fold more genomic rNMPs in absence than in presence of Rnr1. When the load of genomic rNMPs is further increased in the presence of a replicative DNA polymerase variant that over-incorporates rNMPs in leading or lagging strand, cells missing both Rnr1 and RNase H2 suffer from severe growth defects. These are reversed in absence of Top1. Thus, in cells lacking RNase H2 and containing a limiting supply of dNTPs, there is a threshold of tolerance for the accumulation of genomic ribonucleotides that is tightly associated with Top1-mediated DNA damage. In this mini-review, we describe the implications of the loss of RNase H2, or RNases H1 and H2, on the integrity of the nuclear genome and viability of budding yeast cells that are challenged with a critically low supply of dNTPs. We further propose that our findings in budding yeast could pave the way for the study of the potential role of mammalian RNR in RNase H2-related diseases.
Collapse
Affiliation(s)
- Susana M Cerritelli
- SFR, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Aziz El Hage
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|