1
|
Miceli V, Ferrigno P, Centi C, Carcione C, Iannolo G, Agnese V, Lo Iacono G, Liotta R, Conaldi PG, Pinzani M, De Monte L, Bertani A. Differentially expressed microRNAs in pre-transplant lung biopsies target immune checkpoint proteins and can predict primary graft dysfunction in lung transplantation. Heliyon 2025; 11:e42515. [PMID: 40028527 PMCID: PMC11869042 DOI: 10.1016/j.heliyon.2025.e42515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 01/18/2025] [Accepted: 02/06/2025] [Indexed: 03/02/2025] Open
Abstract
Lung transplantation (LTx) significantly improves outcomes for patients with end-stage respiratory failure. However, primary graft dysfunction (PGD) remains one of the most relevant hurdles. Although PGD is attributed to ischemia-reperfusion injury (IRI), immune responses, primarily T cell-mediated, may play a pivotal role in its pathogenesis. Additionally, innate immune activation following IRI links PGD to adaptive alloimmunity, highlighting the impact of early events on LTx outcomes. Immune checkpoints (ICPs) such as PD-1/PD-L1, CD40/CD40LG, and OX40/OX40L, regulate post-LTx T cell responses, and dysregulation of microRNAs (miRNAs) has been implicated in altering ICP expression, influencing the amplification of immune responses. In this preliminary study, we used the taqMan low-density array (TLDA) cards to investigate miRNA dysregulation's prognostic potential as a PGD marker in pre-transplant back-table lung biopsies. Our analysis revealed differential miRNA expression in donor lung tissues, potentially associated with PGD onset, targeting immune regulatory pathways. Specifically, deregulated miRNAs targeted key ICP proteins, including PD-L1, CD40LG, and OX40L. Moreover, the differential expression of these miRNAs was observed in grafts with future PGD compared to grafts without PGD, suggesting a potential prognostic benefit and a possible role for lung tissue miRNAs in the onset of early graft dysfunction. These findings provide a basis for future investigations into their mechanistic roles and therapeutic potential for PGD. Although based on a limited number of cases, our results imply that miRNAs might be involved in early graft dysfunction. While requiring validation in larger cohorts, our data raise the possibility that the evaluation of the aforementioned markers during the pre-transplant phase, might offer a prognostic benefit in monitoring the onset of PGD. Additionally, the use of compounds that can modulate the function of these molecules could be evaluated for the management of LTx patients.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Pia Ferrigno
- Division of Thoracic Surgery and Lung Transplantation, Chest Center, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
- UPMCI (University of Pittsburgh Medical Center Italy), Palermo, Italy
| | - Claudio Centi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | | | - Gioacchin Iannolo
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Valentina Agnese
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Giovanna Lo Iacono
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Rosa Liotta
- Pathology Unit, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
- UPMCI (University of Pittsburgh Medical Center Italy), Palermo, Italy
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Massimo Pinzani
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - Lavinia De Monte
- Division of Thoracic Surgery and Lung Transplantation, Chest Center, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
| | - Alessandro Bertani
- Division of Thoracic Surgery and Lung Transplantation, Chest Center, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), Palermo, Italy
- UPMCI (University of Pittsburgh Medical Center Italy), Palermo, Italy
| |
Collapse
|
2
|
Jame-Chenarboo F, Reyes JN, Arachchige TU, Mahal LK. Profiling the Regulatory Landscape of Sialylation through miRNA Targeting of CMP- Sialic Acid Synthetase. J Biol Chem 2025:108340. [PMID: 40010608 DOI: 10.1016/j.jbc.2025.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
Cell surface sialic acid is an important glycan modification that contributes to both normal and pathological physiology. The enzyme cytidine monophosphate N-acetylneuraminic acid synthetase (CMAS) biosynthesizes the activated sugar donor cytidine monophosphate (CMP) sialic acid, which is required for all sialylation. CMAS levels impact sialylation with corresponding biological effects. The mechanisms that regulate CMAS are relatively uncharacterized. Herein, we use a high throughput genetically encoded fluorescence assay (miRFluR) to comprehensively profile the posttranscriptional regulation of CMAS by miRNA. These small non-coding RNAs have been found to impact glycosylation. Mapping the interactions of the human miRNAome with the 3'-untranslated region of CMAS, we identified miRNA whose impact on CMAS expression was either downregulatory or upregulatory. This follows previous work from our laboratory and others showing that miRNA regulation is bidirectional. Validation of the high-throughput results confirmed our findings. We also identified the direct binding sites for 2 upregulatory and 2 downregulatory miRNAs. Functional enrichment analysis for miRNAs upregulating CMAS revealed associations with pancreatic cancer, where sialic acid metabolism and the α-2,6-sialyltransferase ST6GAL1 have been found to be important. We found that miRNA associated with the enriched signature enhanced pancreatic cell-surface α-2,6-sialylation via CMAS expression in the absence of effects on ST6GAL1. We also find overlap between the miRNA regulation of CMAS and that of previously analyzed sialyltransferases. Overall, our work points to the importance of miRNA in regulating sialylation levels in disease and add further evidence to the bidirectional nature of miRNA regulation.
Collapse
Affiliation(s)
| | - Joseph N Reyes
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2.
| |
Collapse
|
3
|
Wang X, Li X, Tan L, Zhang F, Zhang J, Zhao X, Zhang Y, Du G, Liu W. Identification and Validation of Lipid Metabolism Gene FASN-Associated miRNA in Wilms Tumor. Biochem Genet 2025; 63:167-182. [PMID: 38416272 DOI: 10.1007/s10528-024-10703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
miRNA has been a research hotspot in recent years and its scope of action is very wide, involving the regulation of cell proliferation, differentiation, apoptosis, and other biological behaviors. This study intends to explore the role of miRNA in the lipid metabolism and development of Wilms tumor (WT) by detecting and analyzing the differences in the expression profiles of miRNAs between the tumor and adjacent normal tissue. Gene detection was performed in tumor tissues and adjacent normal tissues of three cases of WT to screen differentially expressed miRNAs (DEMs). According to our previous research, FASN, which participates in the lipid metabolism pathway, may be a target of WT. The starBase database was used to predict FASN-targeted miRNAs. The above two groups of miRNAs were intersected to obtain FASN-targeted DEMs and then GO Ontology (GO) functional enrichment analysis of FASN-targeted DEMs was performed. Finally, the FASN-targeted DEMs were compared and further verified by qRT‒PCR. Through gene sequencing and differential analysis, 287 DEMs were obtained, including 132 upregulated and 155 downregulated miRNAs. The top ten DEMs were all downregulated. Fourteen miRNAs targeted by the lipid metabolism-related gene FASN were predicted by starBase. After intersection with the DEMs, three miRNAs were finally obtained, namely, miR-107, miR-27a-3p, and miR-335-5p. GO enrichment analysis was mainly concentrated in the Parkin-FBXW7-Cul1 ubiquitin ligase complex and response to prostaglandin E. Further experimental verification showed that miR-27a-3p was significantly correlated with WT (P = 0.0018). Imbalanced expression of miRNAs may be involved in the occurrence and development of WT through lipid metabolism. The expression of miR-27a-3p is related to the malignant degree of WT, and it may become the target of diagnosis, prognosis, and treatment of WT in the later stage.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Street, Jinan, 250021, Shandong, People's Republic of China
- Post-Doctoral Research Station of Clinical Medicine, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, People's Republic of China
| | - Xiao Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, Shandong, People's Republic of China
| | - Lin Tan
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, 412007, Hunan, People's Republic of China
| | - Fengjun Zhang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, People's Republic of China
| | - Jing Zhang
- Department of Pediatrics, Shandong Second Provincial General Hospital, Jinan, 250022, Shandong, People's Republic of China
| | - Xu Zhao
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, People's Republic of China
| | - Yongfei Zhang
- Department of Dermatology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Guoqiang Du
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Street, Jinan, 250021, Shandong, People's Republic of China.
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Street, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Cui S, Yu S, Huang HY, Lin YCD, Huang Y, Zhang B, Xiao J, Zuo H, Wang J, Li Z, Li G, Ma J, Chen B, Zhang H, Fu J, Wang L, Huang HD. miRTarBase 2025: updates to the collection of experimentally validated microRNA-target interactions. Nucleic Acids Res 2025; 53:D147-D156. [PMID: 39578692 PMCID: PMC11701613 DOI: 10.1093/nar/gkae1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/02/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (18-26 nucleotides) that regulate gene expression by interacting with target mRNAs, affecting various physiological and pathological processes. miRTarBase, a database of experimentally validated miRNA-target interactions (MTIs), now features over 3 817 550 validated MTIs from 13 690 articles, significantly expanding its previous version. The updated database includes miRNA interactions with therapeutic agents, revealing roles in drug resistance and therapeutic strategies. It also highlights miRNAs as predictive, safety and monitoring biomarkers for toxicity assessment, clinical treatment guidance and therapeutic optimization. The expansion of miRNA-mRNA and miRNA-miRNA networks allows the identification of key regulatory genes and co-regulatory miRNAs, providing deeper insights into miRNA functions and critical target genes. Information on oxidized miRNA sequences has been added, shedding light on how oxidative modifications influence miRNA targeting and regulation. The integration of the LLAMA3 model into the NLP pipeline, alongside prompt engineering, enables the efficient identification of MTIs and miRNA-disease associations without large training datasets. An updated data integration and a redesigned user interface enhance accessibility, reinforcing miRTarBase as an essential resource for molecular oncology, drug development and related fields. The updated miRTarBase is available at https://mirtarbase.cuhk.edu.cn/∼miRTarBase/miRTarBase_2025.
Collapse
Affiliation(s)
- Shidong Cui
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Sicong Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Yixian Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Bojian Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Jihan Xiao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Huali Zuo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Jiayi Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhuoran Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Guanghao Li
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Jiajun Ma
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Baiming Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Haoxuan Zhang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Jiehui Fu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Guangdong Provincial Key Laboratory of Digital Biology and Drug Development, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P.R. China
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
5
|
Zajdel M, Szafron ŁM, Paziewska A, Rymkiewicz G, Dąbrowska M, Bystydzieński Z, Kulińczak M, Grygalewicz B, Sromek M, Błachnio K, Kulecka M, Hajdyła F, Goryca K, Chechlińska M, Siwicki JK. microRNA Profile of High-Grade B-Cell Lymphoma with 11q Aberration. Int J Mol Sci 2024; 26:285. [PMID: 39796140 PMCID: PMC11720131 DOI: 10.3390/ijms26010285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
High-grade B-cell lymphoma with 11q aberration (HGBCL-11q) is a rare germi-nal centre lymphoma characterised by a typical gain/loss pattern on chromo-some 11q but without MYC translocation. It shares some features with Burkitt lymphoma (BL), HGBCLs and germinal centre-derived diffuse large B-cell lym-phoma, not otherwise specified (GCB-DLBCL-NOS). Since microRNA expression in HGBCL-11q remains unknown, we aimed to identify and compare the mi-croRNA expression profiles in HGBCL-11q, BL and in GCB-DLBCL-NOS. Next-generation sequencing (NGS)-based microRNA profiling of HGBCL-11q (n = 6), BL (n = 8), and GCB-DLBCL-NOS without (n = 3) and with MYC rearrange-ment (MYC-R) (n = 7) was performed. We identified sets of 39, 64, and 49 mi-croRNAs differentiating HGBCL-11q from BL, and from GCB-DLBCL-NOS without MYC-R, respectively. The expression levels of miR-223-3p, miR-193b-3p, miR-29b-3p, and miR-146a-5p consistently differentiated HGBCL-11q from both BL, GCB-DLBCL-NOS without MYC-R. In addition, HGBCL-11q presented greater heterogeneity in microRNA expression than BL. The expression profile of MYC-regulated microRNAs differed in HGBCL-11q and in BL, while also clearly distinguishing HGBCL-11q and BL from GCB-DLBCL-NOS. The microRNA pro-file of HGBCL-11q differs from those of BL and GCB-DLBCL-NOS, exhibiting greater heterogeneity compared to BL. The microRNA profile further supports that HGBCL-11q is a distinct subtype of B-cell lymphoma.
Collapse
Affiliation(s)
- Michalina Zajdel
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warszawa, Poland (F.H.); (M.Ch.)
| | - Łukasz Michał Szafron
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warszawa, Poland; (Ł.M.S.)
| | - Agnieszka Paziewska
- Faculty of Medical and Health Sciences, Siedlce University, Konarskiego 2, 08-110 Siedlce, Poland
| | - Grzegorz Rymkiewicz
- Flow Cytometry Laboratory, Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warszawa, Poland
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warszawa, Poland; (Ł.M.S.)
| | - Zbigniew Bystydzieński
- Flow Cytometry Laboratory, Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warszawa, Poland
| | - Mariusz Kulińczak
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warszawa, Poland (F.H.); (M.Ch.)
| | - Beata Grygalewicz
- Cytogentics Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warszawa, Poland
| | - Maria Sromek
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warszawa, Poland (F.H.); (M.Ch.)
| | - Katarzyna Błachnio
- Flow Cytometry Laboratory, Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warszawa, Poland
| | - Maria Kulecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warszawa, Poland; (Ł.M.S.)
| | - Filip Hajdyła
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warszawa, Poland (F.H.); (M.Ch.)
| | - Krzysztof Goryca
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warszawa, Poland; (Ł.M.S.)
| | - Magdalena Chechlińska
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warszawa, Poland (F.H.); (M.Ch.)
| | - Jan Konrad Siwicki
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warszawa, Poland (F.H.); (M.Ch.)
| |
Collapse
|
6
|
Mortoglou M, Lian M, Miralles F, Dart DA, Uysal-Onganer P. miR-210 Mediated Hypoxic Responses in Pancreatic Ductal Adenocarcinoma. ACS OMEGA 2024; 9:47872-47883. [PMID: 39651070 PMCID: PMC11618397 DOI: 10.1021/acsomega.4c08947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one among the most lethal malignancies due to its aggressive behavior and resistance to conventional therapies. Hypoxia significantly contributes to cancer progression and therapeutic resistance of PDAC. microRNAs (miRNAs/miRs) have emerged as critical regulators of various biological processes. miR-210 is known as the "hypoxamir" due to its prominent role in cellular responses to hypoxia. In this study, we investigated the multifaceted role of miR-210 in PDAC using miR-210 knockout (KO) cellular models to elucidate its functions under hypoxic conditions. Hypoxia-inducible factor-1α (HIF1-α), a key transcription factor activated in response to low oxygen levels, upregulates miR-210. miR-210 maintains cancer stem cell (CSC) phenotypes and promotes epithelial-mesenchymal transition (EMT), which is essential for tumor initiation, metastasis, and therapeutic resistance. Our findings demonstrate that miR-210 regulates the expression of CSC markers, such as CD24, CD44, and CD133, and EMT markers, including E-cadherin, Vimentin, and Snail. Specifically, depletion of miR-210 reversed EMT and CSC marker expression levels in hypoxic Panc-1 and MiaPaCa-2 PDAC cells. These regulatory actions facilitate a more invasive and treatment-resistant PDAC phenotype. Understanding the regulatory network involving miR-210 under hypoxic conditions may reveal new therapeutic targets for combating PDAC and improving patient outcomes. Our data suggest that miR-210 is a critical regulator of HIF1-α expression, EMT, and the stemness of PDAC cells in hypoxic environments.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer
Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, U.K.
| | - Mutian Lian
- Cancer
Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, U.K.
| | - Francesc Miralles
- School
of Health and Medical Sciences, City St
George’s, University of London, Cranmer Terrace, London SW17 0RE, U.K.
| | - D. Alwyn Dart
- UCL
Cancer Institute, University College London, Paul O’Gorman Building, 72
Huntley Street, London WC1E 6DD, U.K.
| | - Pinar Uysal-Onganer
- Cancer
Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, U.K.
| |
Collapse
|
7
|
Zhou L, Zhu Z, Gao H, Wang C, Khan MA, Ullah M, Khan SU. Multi‐omics graph convolutional networks for digestive system tumour classification and early‐late stage diagnosis. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY 2024; 9:1572-1586. [DOI: 10.1049/cit2.12395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/05/2024] [Indexed: 01/12/2025] Open
Abstract
AbstractThe prevalence of digestive system tumours (DST) poses a significant challenge in the global crusade against cancer. These neoplasms constitute 20% of all documented cancer diagnoses and contribute to 22.5% of cancer‐related fatalities. The accurate diagnosis of DST is paramount for vigilant patient monitoring and the judicious selection of optimal treatments. Addressing this challenge, the authors introduce a novel methodology, denominated as the Multi‐omics Graph Transformer Convolutional Network (MGTCN). This innovative approach aims to discern various DST tumour types and proficiently discern between early‐late stage tumours, ensuring a high degree of accuracy. The MGTCN model incorporates the Graph Transformer Layer framework to meticulously transform the multi‐omics adjacency matrix, thereby illuminating potential associations among diverse samples. A rigorous experimental evaluation was undertaken on the DST dataset from The Cancer Genome Atlas to scrutinise the efficacy of the MGTCN model. The outcomes unequivocally underscore the efficiency and precision of MGTCN in diagnosing diverse DST tumour types and successfully discriminating between early‐late stage DST cases. The source code for this groundbreaking study is readily accessible for download at https://github.com/bigone1/MGTCN.
Collapse
Affiliation(s)
- Lin Zhou
- School of Information Science and Technology University of Science and Technology of China Hefei Anhui China
- Anhui Engineering Research Center on Information Fusion and Control of Intelligent Robot Wuhu Anhui China
| | - Zhengzhi Zhu
- Department of Breast Center West District of The Affiliated Hospital of University of Science and Technology of China Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China
| | - Hongbo Gao
- School of Information Science and Technology University of Science and Technology of China Hefei Anhui China
- Institute of Advanced Technology University of Science and Technology of China Hefei Anhui China
- School of Electrical and Electronic Engineering Nanyang Technological University Singapore Singapore
| | - Chunyu Wang
- School of Biological and Environmental Engineering Chaohu University Chaohu Regional Collaborative Technology Service Center for Rural Revitalization Hefei China
| | - Muhammad Attique Khan
- Department of Artificial Intelligence College of Computer Engineering and Science Prince Mohammad Bin Fahd University Al‐Khobar Saudi Arabia
| | - Mati Ullah
- School of Information Science and Technology University of Science and Technology of China Hefei Anhui China
- School of Automation Northwestern Polytechnical University Xi'an Shaanxi China
| | - Siffat Ullah Khan
- School of Information Science and Technology University of Science and Technology of China Hefei Anhui China
- Institute of Engineering and Computing Science University of Science and Technology of Bannu KPK Bannu Pakistan
| |
Collapse
|
8
|
Zhou X, Liu H, Hou F, Zheng ZQ, Cao X, Wang Q, Jiang W. REMR: Identification of RNA Editing-mediated MiRNA Regulation in Cancers. Comput Struct Biotechnol J 2024; 23:3418-3429. [PMID: 39386942 PMCID: PMC11462282 DOI: 10.1016/j.csbj.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Dysregulation of adenosine-to-inosine (A-to-I) RNA editing has been implicated in cancer progression. However, a comprehensive understanding of how A-to-I RNA editing is incorporated into miRNA regulation to modulate gene expression in cancer remains unclear, given the lack of effective identification methods. To this end, we introduced an information theory-based algorithm named REMR to systematically identify 12,006 A-to-I RNA editing-mediated miRNA regulatory triplets (RNA editing sites, miRNAs, and genes) across ten major cancer types based on multi-omics profiling data from The Cancer Genome Atlas (TCGA). Through analyses of functional enrichment, transcriptional regulatory networks, and protein-protein interaction (PPI) networks, we showed that RNA editing-mediated miRNA regulation potentially affects critical cancer-related functions, such as apoptosis, cell cycle, drug resistance, and immunity. Furthermore, triplets can serve as biomarkers for classifying cancer subtypes with distinct prognoses or drug responses, highlighting the clinical relevance of such regulation. In addition, an online resource (http://www.jianglab.cn/REMR/) was constructed to support the convenient retrieval of our findings. In summary, our study systematically dissected the RNA editing-mediated miRNA regulations, thereby providing a valuable resource for understanding the mechanism of RNA editing as an epitranscriptomic regulator in cancer.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Haizhou Liu
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Fei Hou
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Zong-Qing Zheng
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350209, China
| | - Xinyu Cao
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Quan Wang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Wei Jiang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
9
|
Wang X, Lu Y, Zhao R, Zhu B, Liu J, Yue Q, Wu R, Han S, Gao Y, Chen J, Gong J, He D, Xu T, Ying J. Global surveillance of circulating microRNA for diagnostic and prognostic assessment of acute myocardial infarction based on the plasma small RNA sequencing. Biomark Res 2024; 12:143. [PMID: 39563415 DOI: 10.1186/s40364-024-00690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Circulating microRNAs (miRNAs) are recently a rapidly increasing of interest as non-invasive biomarkers for diagnosis and prognosis of acute myocardial infarction (AMI). Previous studies revealed that several miRNAs exhibited the capacity for diagnosis and prognosis of AMI, the reasons why these circulating miRNAs are concerned as targets for investigation are quite cryptogenic, presumably due to the lack of clues provided by global surveillance at the transcriptome level, and the current data for some miRNAs are controversial and inconsistent among independent studies. METHODS To comprehensively profiling the potential miRNAs for diagnosis and prognosis of AMI, we reported transcriptomes of circulating miRNAs in the plasma of 27 healthy controls, 64 AMI patients (37 STEMI and 27 NSTEMI) and 20 AMI patients who were subjected to reperfusion therapy. Meanwhile, the cTnI of AMI patients was parallel determined. Differentially-circulated miRNAs were analyzed between each group. All detected circulating miRNAs were examined by ROC analysis and then LASSO dimension reduction to obtain an optimal panel for diagnosis of AMI. A five-year period follow-up towards the AMI and reperfusion patients was performed, and the prognostic value of circulating miRNAs in these patients was estimated by using the Cox regression model, ROC and Kaplan-Meier curves. RESULTS Comprehensive global differences of miRNAs transcriptome among AMI, reperfusion patients and healthy controls were identified. A total of 40 miRNAs, called high diagnostic performance miRNAs, including several previous well-studied miRNAs with AUC greater than 0.85 were shown to discriminate AMI with healthy controls. In addition, 29 miRNAs were analyzed to be strongly correlated with the plasma cTnI level, of which 20 overlapped with high diagnostic performance miRNAs. These overlapped miRNAs are over-represented in the pathways which actually reflect the pathological cause of myocardial infarction, as well as the regulation of gene expression and energetic pathway of cellular response to hypoxia. Finally, two miRNAs were analyzed to be significantly correlated to all-cause mortality. CONCLUSION This is the first time to survey plasma miRNAs for the development of AMI diagnostic and prognostic biomarkers at the transcriptome level. A subset of miRNAs exhibited potential diagnostic and prognostic merits for AMI.
Collapse
Affiliation(s)
- Xiaomin Wang
- Department of Cardiology/Chest Pain Center, Baotou Central Hospital, Baotou, China
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
| | - Yaojun Lu
- Department of Cardiology/Chest Pain Center, Baotou Central Hospital, Baotou, China
| | - Ruiping Zhao
- Department of Cardiology/Chest Pain Center, Baotou Central Hospital, Baotou, China
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
| | - Bing Zhu
- Department of Cardiology/Chest Pain Center, Baotou Central Hospital, Baotou, China
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
| | - Jian Liu
- Dian Diagnostics Group Co., Ltd, Hangzhou, China
| | - Qiang Yue
- Department of Cardiology/Chest Pain Center, Baotou Central Hospital, Baotou, China
| | - Rina Wu
- Department of Cardiology/Chest Pain Center, Baotou Central Hospital, Baotou, China
| | - Shuwen Han
- Department of Cardiology/Chest Pain Center, Baotou Central Hospital, Baotou, China
| | - Yuanyuan Gao
- Department of Cardiology/Chest Pain Center, Baotou Central Hospital, Baotou, China
| | - Juan Chen
- Department of Cardiology/Chest Pain Center, Baotou Central Hospital, Baotou, China
| | - Jie Gong
- Department of Cardiology/Chest Pain Center, Baotou Central Hospital, Baotou, China
| | - Danna He
- Department of Cardiology/Chest Pain Center, Baotou Central Hospital, Baotou, China
| | - Teng Xu
- Department of Cardiology/Chest Pain Center, Baotou Central Hospital, Baotou, China.
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, China.
| | - Jianchao Ying
- Wenzhou Key Laboratory of Emergency, Critical Care, and Disaster Medicine/Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
10
|
Yu Z, Saiki S, Shiina K, Iseki T, Sasazawa Y, Ishikawa KI, Nishikawa N, Sako W, Oyama G, Hatano T, Suzuki A, Souma S, Kataura T, Hattori N. Comprehensive data for studying serum exosome microRNA transcriptome in Parkinson's disease patients. Sci Data 2024; 11:1128. [PMID: 39406833 PMCID: PMC11480472 DOI: 10.1038/s41597-024-03909-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, was classically attributed to alpha-synuclein aggregation and consequent loss of dopaminergic neurons in the substantia nigra pars compacta. Recently, emerging evidence suggested a broader spectrum of contributing factors, including exosome-mediated intercellular communication, which can potentially serve as biomarkers and therapeutic targets. However, there is a remarkable lack of comprehensive studies that connect the serum exosome microRNA (miRNA) transcriptome with demographic, clinical, and neuroimaging data in PD patients. Here, we present serum exosome miRNA transcriptome data generated from four cohort studies. Two of these studies include 96 PD patients and 80 age- and gender-matched controls, with anonymised demographic, clinical, and neuroimaging data provided for PD patients. The other two studies involve 96 PD patients who were evaluated both before and after one year of treatment with rasagiline, a widely prescribed anti-parkinsonism drug. Together, the datasets provide a valuable source for understanding pathogenesis and discovering biomarkers and therapeutic targets in PD.
Collapse
Affiliation(s)
- Zhiyang Yu
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinji Saiki
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Department of Neurology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Kenta Shiina
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tatou Iseki
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yukiko Sasazawa
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division for Development of Autophagy Modulating Drugs, Juntendo University Faculty of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kei-Ichi Ishikawa
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Noriko Nishikawa
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wataru Sako
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Genko Oyama
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ayami Suzuki
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Neurology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Sanae Souma
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tetsushi Kataura
- Department of Neurology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Division for Development of Autophagy Modulating Drugs, Juntendo University Faculty of Medicine, Tokyo, Japan.
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
11
|
Mishra DD, Maurya PK, Tiwari S. Reference gene panel for urinary exosome-based molecular diagnostics in patients with kidney disease. World J Nephrol 2024; 13:99105. [PMID: 39351186 PMCID: PMC11439094 DOI: 10.5527/wjn.v13.i3.99105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Kidney disease is a severe complication of diabetes that often leads to end-stage renal disease. Early diagnosis is crucial for prevention or delay. However, the current diagnostic methods, with their limitations in detecting the disease in its early stages, underscore the urgency and importance of finding new solutions. miRNAs encapsulated inside urinary exosomes (UEs) have potential as early biomarkers for kidney diseases. The need for reference miRNAs for accurate interpretation currently limits their translational potential. AIM To identify consistently expressing reference miRNAs from UEs of controls and patients with type 2 diabetesmellitus (T2DM) and biopsy-confirmed kidney diseases. METHODS miRNA profiling was performed on UEs from 31 human urine samples using a rigorous and unbiased method. The UEs were isolated from urine samples collected from healthy individuals (n = 6), patients with T2DM (n = 13), and T2DM patients who also had kidney diseases (including diabetic nephropathy, n = 5; membranous nephropathy, n = 5; and IgA nephropathy, n = 2) through differential ultracentrifugation. After characterizing the UEs, miRNA expression profiling using microarray technology was conducted. RESULTS Microarray data analysis identified 14 miRNAs that were consistently expressed in UEs from 31 human samples, representing various kidney conditions: diabetic controls, diabetic nephropathy, membrane nephropathy, IgA nephropathy, and healthy controls. Through in silico analysis, we determined that 10 of these miRNAs had significant potential to serve as reference genes in UEs. CONCLUSION We identified uniformly expressing UE miRNAs that could serve as reference genes kidney disease biomarkers.
Collapse
Affiliation(s)
- Deendayal D Mishra
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Pramod K Maurya
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Swasti Tiwari
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
12
|
Rostami S, Rounge TB, Pestarino L, Lyle R, Fortner RT, Haaland ØA, Lie RT, Wiklund F, Bjørge T, Langseth H. Differential levels of circulating RNAs prior to endometrial cancer diagnosis. Int J Cancer 2024; 155:946-956. [PMID: 38733362 DOI: 10.1002/ijc.34951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/01/2024] [Accepted: 03/15/2024] [Indexed: 05/13/2024]
Abstract
Endometrial cancer (EC) is one of the most common female cancers and there is currently no routine screening strategy for early detection. An altered abundance of circulating microRNAs (miRNAs) and other RNA classes have the potential as early cancer biomarkers. We analyzed circulating RNA levels using small RNA sequencing, targeting RNAs in the size range of 17-47 nucleotides, in EC patients with samples collected prior to diagnosis compared to cancer-free controls. The analysis included 316 cases with samples collected 1-11 years prior to EC diagnosis, and 316 matched controls, both from the Janus Serum Bank cohort in Norway. We identified differentially abundant (DA) miRNAs, isomiRs, and small nuclear RNAs between EC cases and controls. The top EC DA miRNAs were miR-155-5p, miR-200b-3p, miR-589-5p, miR-151a-5p, miR-543, miR-485-5p, miR-625-p, and miR-671-3p. miR-200b-3p was previously reported to be among one of the top miRNAs with higher abundance in EC cases. We observed 47, 41, and 32 DA miRNAs for EC interacting with BMI, smoking status, and physical activity, respectively, including two miRNAs (miR-223-3p and miR-29b-3p) interacting with all three factors. The circulating RNAs are altered and show temporal dynamics prior to EC diagnosis. Notably, DA miRNAs for EC had the lowest q-value 4.39-6.66 years before diagnosis. Enrichment analysis of miRNAs showed that signaling pathways Fc epsilon RI, prolactin, toll-like receptor, and VEGF had the strongest associations.
Collapse
Affiliation(s)
- Sina Rostami
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Trine B Rounge
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
- Center for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Luca Pestarino
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
- Department of Gynecological Oncology, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Robert Lyle
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Renée Turzanski Fortner
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | | | - Rolv T Lie
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Tone Bjørge
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Section for Cervical Cancer Screening, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Hilde Langseth
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
13
|
Lv M, Li X, Zheng C, Tian W, Yang H, Yin Z, Zhou B. Exosomal miR-130b-3p suppresses metastasis of non-small cell lung cancer cells by targeting DEPDC1 via TGF-β signaling pathway. Int J Biol Macromol 2024; 275:133594. [PMID: 38960258 DOI: 10.1016/j.ijbiomac.2024.133594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Exosomal miRNAs have vital functions in mediating intercellular communication as well as tumor occurrence and development. Thus, our research was aimed at exploring the regulatory mechanisms of exosomal miR-130b-3p/DEP domain containing 1 (DEPDC1)/transforming growth factor-β (TGF-β) signaling pathway in non-small cell lung cancer (NSCLC). Here we indicated that exosomal miR-130b-3p expression decreased in the serum of NSCLC patients, and it was of significant diagnostic value. Moreover, elevated miR-130b-3p levels suppressed the proliferation and migration of NSCLC cells, and enhanced their apoptosis. Conversely, miR-130b-3p down-regulation led to an opposite effect. As the upstream of DEPDC1, miR-130b-3p directly bound to 3'UTR in DEPDC1 to regulate its expression. DEPDC1 levels affected the proliferation, migration, and apoptosis of NSCLC cells via TGF-β signaling pathway. Exosomal miR-130b-3p was highly expressed in BEAS-2B cells, besides, BEAS-2B cells transferred exosomal miR-130b-3p to NSCLC cells. Finally, exosomal miR-130b-3p suppressed NSCLC cell growth and migration, promoted their apoptosis via TGF-β signaling pathway by decreasing DEPDC1 expression, and suppressed epithelial-mesenchymal transition (EMT) in NSCLC cells. In conclusion, exosomal miR-130b-3p has the potential to be a predictive biomarker for NSCLC, thereby stimulating the exploration of diagnostic and therapeutic approaches targeting NSCLC.
Collapse
Affiliation(s)
- Meiwen Lv
- Department of Clinical Epidemiology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Chang Zheng
- Department of Clinical Epidemiology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Wen Tian
- Department of Clinical Epidemiology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - He Yang
- Department of Clinical Epidemiology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Baosen Zhou
- Department of Clinical Epidemiology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
14
|
Loganathan T, George Priya Doss C. Biomarker identification of medullary thyroid carcinoma from gene expression profiles considering without-treatment and with-treatment studies-A bioinformatics approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:367-396. [PMID: 39059991 DOI: 10.1016/bs.apcsb.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor derived from parafollicular thyroid gland cells. In both hereditary MTC and sporadic forms, genetic changes result in fundamental changes, and prognosis and mutational status are highly correlated. In this work, biomarker genes (DEGs and DEmiRNAs) for MTC will be computationally identified in order to help in their diagnosis and treatment. The gene expression profiles of two different types of studies, namely without-treatment (wo-trt) and with-treatment (w-trt), are considered for discovering biomarkers. The datasets were retrieved from the GEO database, and the DEGs and DEmiRNAs were analyzed using ExpressAnalyst and GEO2R. The functional analysis of DEGs and DEmiRNAs was performed, and most of the pathways enriched related to thyroid oncological pathways such as MAPK pathway,mTOR pathway, and PI3K-AKT Signaling pathway. Through this conclusion, the RET gene was upregulated wo-trt; the dinaciclib treatment RET gene was down-regulated computationally. To optimize the therapeutic targeting of RET, greater research into the mechanisms regulating RET transcription is necessary.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
15
|
Fernández-Ruiz M, López-García Á, Valverde-Manso A, Parra P, Rodríguez-Goncer I, Ruiz-Merlo T, López-Medrano F, González E, Polanco N, San Juan R, Andrés A, Aguado JM, Redondo N. Human microRNA sequencing and cytomegalovirus infection risk after kidney transplantation. Am J Transplant 2024; 24:1180-1192. [PMID: 38311311 DOI: 10.1016/j.ajt.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Cytomegalovirus (CMV)-seropositive kidney transplant recipients (KTRs) with detectable CMV-specific cell-mediated immunity according to the QuantiFERON-CMV assay (QTF-CMV) are expected to have adequate immune protection. Nevertheless, a proportion of patients still develop CMV infection. Human microRNAs (hsa-miRNAs) are promising biomarkers owing to their high stability and easy detection. We performed whole blood miRNA sequencing in samples coincident with the first reactive QTF-CMV after transplantation or cessation of antiviral prophylaxis to investigate hsa-miRNAs differentially expressed according to the occurrence of CMV infection. One-year incidence of CMV viremia was 55.0% (median interval from miRNA sequencing sampling of 29 days). After qPCR validation, we found that hsa-miR-125a-5p was downregulated in KTRs developing CMV viremia within the next 90 days (ΔCt: 7.9 ± 0.9 versus 7.3 ± 1.0; P = .011). This difference was more evident among KTRs preemptively managed (8.2 ± 0.9 versus 6.9 ± 0.8; P < .001), with an area under the receiver operating characteristic curve of 0.865. Functional enrichment analysis identified hsa-miR-125a-5p targets involved in cell cycle regulation and apoptosis, including the BAK1 gene, which was significantly downregulated in KTRs developing CMV viremia. In conclusion, hsa-miR-125a-5p may serve as biomarker to identify CMV-seropositive KTRs at risk of CMV reactivation despite detectable CMV-CMI.
Collapse
Affiliation(s)
- Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Ángela López-García
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Andrea Valverde-Manso
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Patricia Parra
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Isabel Rodríguez-Goncer
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Tamara Ruiz-Merlo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Esther González
- Department of Nephrology, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Natalia Polanco
- Department of Nephrology, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Rafael San Juan
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Amado Andrés
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain; Department of Nephrology, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Natalia Redondo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre," Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
16
|
Mashayekhi V, Schomisch A, Rasheed S, Aparicio-Puerta E, Risch T, Yildiz D, Koch M, Both S, Ludwig N, Legroux TM, Keller A, Müller R, Fuhrmann G, Hoppstädter J, Kiemer AK. The RNA binding protein IGF2BP2/IMP2 alters the cargo of cancer cell-derived extracellular vesicles supporting tumor-associated macrophages. Cell Commun Signal 2024; 22:344. [PMID: 38937789 PMCID: PMC11212187 DOI: 10.1186/s12964-024-01701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Tumor cells release extracellular vesicles (EVs) that contribute to the polarization of macrophages towards tumor-associated macrophages (TAMs). High expression levels of the RNA binding protein IGF2BP2/IMP2 are correlated with increased tumor cell proliferation, invasion, and poor prognosis in the clinic. However, there is a lack of understanding of whether IMP2 affects the cargo of cancer cell-derived EVs, thereby modulating macrophage polarization. METHODS EVs were isolated from IMP2-expressing HCT116 parental cells (WT) and CRISPR/Cas9 IMP2 knockout (KO) cells. EVs were characterized according to MISEV guidelines, microRNA cargo was assessed by microRNA-Seq, and the protein cargo was analyzed by proteomics. Primary human monocyte-derived macrophages (HMDMs) were polarized by EVs, and the expression of genes and surface markers was assessed using qPCR and flow cytometry, respectively. Morphological changes of macrophages, as well as the migratory potential of cancer cells, were assessed by the Incucyte® system and macrophage matrix degradation potential by zymography. Changes in the metabolic activity of macrophages were quantified using a Seahorse® analyzer. For in vivo studies, EVs were injected into the yolk sac of zebrafish larvae, and macrophages were isolated by fluorescence-activated cell sorting. RESULTS EVs from WT and KO cells had a similar size and concentration and were positive for 25 vesicle markers. The expression of tumor-promoting genes was higher in macrophages polarized with WT EVs than KO EVs, while the expression of TNF and IL6 was reduced. A similar pattern was observed in macrophages from zebrafish larvae treated in vivo. WT EV-polarized macrophages showed a higher abundance of TAM-like surface markers, higher matrix degrading activity, as well as a higher promotion of cancer cell migration. MicroRNA-Seq revealed a significant difference in the microRNA composition of WT and KO EVs, particularly a high abundance of miR-181a-5p in WT EVs, which was absent in KO EVs. Inhibitors of macropinocytosis and phagocytosis antagonized the delivery of miR-181a-5p into macrophages and the downregulation of the miR-181a-5p target DUSP6. Proteomics data showed differences in protein cargo in KO vs. WT EVs, with the differentially abundant proteins mainly involved in metabolic pathways. WT EV-treated macrophages exhibited a higher basal oxygen consumption rate and a lower extracellular acidification rate than KO EV-treated cells. CONCLUSION Our results show that IMP2 determines the cargo of EVs released by cancer cells, thereby modulating the EVs' actions on macrophages. Expression of IMP2 is linked to the secretion of EVs that polarize macrophages towards a tumor-promoting phenotype.
Collapse
Affiliation(s)
- Vida Mashayekhi
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Annika Schomisch
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Sari Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Brunswick, Germany
| | - Ernesto Aparicio-Puerta
- Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany
| | - Timo Risch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Brunswick, Germany
| | - Daniela Yildiz
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, Homburg, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Simon Both
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Thierry M Legroux
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Brunswick, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Gregor Fuhrmann
- Department of Pharmaceutical Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
17
|
Satish KS, Saraswathy GR, Ritesh G, Saravanan KS, Krishnan A, Bhargava J, Ushnaa K, Dsouza PL. Exploring cutting-edge strategies for drug repurposing in female cancers - An insight into the tools of the trade. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:355-415. [PMID: 38942544 DOI: 10.1016/bs.pmbts.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Female cancers, which include breast and gynaecological cancers, represent a significant global health burden for women. Despite advancements in research pertinent to unearthing crucial pathological characteristics of these cancers, challenges persist in discovering potential therapeutic strategies. This is further exacerbated by economic burdens associated with de novo drug discovery and clinical intricacies such as development of drug resistance and metastasis. Drug repurposing, an innovative approach leveraging existing FDA-approved drugs for new indications, presents a promising avenue to expedite therapeutic development. Computational techniques, including virtual screening and analysis of drug-target-disease relationships, enable the identification of potential candidate drugs. Integration of diverse data types, such as omics and clinical information, enhances the precision and efficacy of drug repurposing strategies. Experimental approaches, including high-throughput screening assays, in vitro, and in vivo models, complement computational methods, facilitating the validation of repurposed drugs. This review highlights various target mining strategies based on analysis of differential gene expression, weighted gene co-expression, protein-protein interaction network, and host-pathogen interaction, among others. To unearth drug candidates, the technicalities of leveraging information from databases such as DrugBank, STITCH, LINCS, and ChEMBL, among others are discussed. Further in silico validation techniques encompassing molecular docking, pharmacophore modelling, molecular dynamic simulations, and ADMET analysis are elaborated. Overall, this review delves into the exploration of individual case studies to offer a wide perspective of the ever-evolving field of drug repurposing, emphasizing the multifaceted approaches and methodologies employed for the same to confront female cancers.
Collapse
Affiliation(s)
- Kshreeraja S Satish
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Ganesan Rajalekshmi Saraswathy
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India.
| | - Giri Ritesh
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Kamatchi Sundara Saravanan
- Department of Pharmacognosy, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Aarti Krishnan
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Janhavi Bhargava
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Kuri Ushnaa
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Prizvan Lawrence Dsouza
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| |
Collapse
|
18
|
Pal A, Vasudevan V, Houle F, Lantin M, Maniates K, Huberdeau MQ, Abbott A, Simard M. Defining the contribution of microRNA-specific Argonautes with slicer capability in animals. Nucleic Acids Res 2024; 52:5002-5015. [PMID: 38477356 PMCID: PMC11109967 DOI: 10.1093/nar/gkae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
microRNAs regulate gene expression through interaction with an Argonaute protein. While some members of this protein family retain an enzymatic activity capable of cleaving RNA molecules complementary to Argonaute-bound small RNAs, the role of the slicer residues in the canonical microRNA pathway is still unclear in animals. To address this, we created Caenorhabditis elegans strains with mutated slicer residues in the endogenous ALG-1 and ALG-2, the only two slicing Argonautes essential for the miRNA pathway in this animal model. We observe that the mutation in ALG-1 and ALG-2 catalytic residues affects overall animal fitness and causes phenotypes reminiscent of miRNA defects only when grown and maintained at restrictive temperature. Furthermore, the analysis of global miRNA expression shows that the slicer residues of ALG-1 and ALG-2 contribute differentially to regulate the level of specific subsets of miRNAs in young adults. We also demonstrate that altering the catalytic tetrad of those miRNA-specific Argonautes does not result in any defect in the production of canonical miRNAs. Together, these data support that the slicer residues of miRNA-specific Argonautes contribute to maintaining levels of a set of miRNAs for optimal viability and fitness in animals particularly exposed to specific growing conditions.
Collapse
Affiliation(s)
- Anisha Pal
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Vaishnav Vasudevan
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - François Houle
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Michael Lantin
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Katherine A Maniates
- Waksman Institute of Microbiology and Department of Genetics, Rutgers University, USA
| | - Miguel Quévillon Huberdeau
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Allison L Abbott
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Martin J Simard
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| |
Collapse
|
19
|
Khanabdali R, Mandrekar M, Grygiel R, Vo PA, Palma C, Nikseresht S, Barton S, Shojaee M, Bhuiyan S, Asari K, Belzer S, Ansari K, Coward JI, Perrin L, Hooper J, Guanzon D, Lai A, Salomon C, Kershner K, Newton C, Horejsh D, Rice G. High-throughput surface epitope immunoaffinity isolation of extracellular vesicles and downstream analysis. Biol Methods Protoc 2024; 9:bpae032. [PMID: 39070184 PMCID: PMC11272960 DOI: 10.1093/biomethods/bpae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/09/2024] [Accepted: 05/16/2024] [Indexed: 07/30/2024] Open
Abstract
Extracellular vesicles (EVs), including exosomes, have significant potential for diagnostic and therapeutic applications. The lack of standardized methods for efficient and high-throughput isolation and analysis of EVs, however, has limited their widespread use in clinical practice. Surface epitope immunoaffinity (SEI) isolation utilizes affinity ligands, including antibodies, aptamers, or lectins, that target specific surface proteins present on EVs. Paramagnetic bead-SEI isolation represents a fit-for-purpose solution for the reproducible, high-throughput isolation of EVs from biofluids and downstream analysis of RNA, protein, and lipid biomarkers that is compatible with clinical laboratory workflows. This study evaluates a new SEI isolation method for enriching subpopulations of EVs. EVs were isolated from human plasma using a bead-based SEI method designed for on-bead and downstream analysis of EV-associated RNA and protein biomarkers. Western blot analysis confirmed the presence of EV markers in the captured nanoparticles. Mass spectrometry analysis of the SEI lysate identified over 1500 proteins, with the top 100 including known EV-associated proteins. microRNA (miRNA) sequencing followed by RT-qPCR analysis identified EV-associated miRNA transcripts. Using SEI, EVs were isolated using automated high-throughput particle moving instruments, demonstrating equal or higher protein and miRNA yield and recovery compared to manual processing. SEI is a rapid, efficient, and high-throughput method for isolating enriched populations of EVs; effectively reducing contamination and enabling the isolation of a specific subpopulation of EVs. In this study, high-throughput EV isolation and RNA extraction have been successfully implemented. This technology holds great promise for advancing the field of EV research and facilitating their application for biomarker discovery and clinical research.
Collapse
Affiliation(s)
| | | | - Rick Grygiel
- Promega Corporation, Madison, WI 53711, United States
| | - Phuoc-An Vo
- Promega Corporation, Madison, WI 53711, United States
| | | | | | | | | | | | | | | | | | - Jermaine I Coward
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
- ICON Cancer Care, South Brisbane, QLD 4101, Australia
| | - Lewis Perrin
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - John Hooper
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Dominic Guanzon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Andrew Lai
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | | | | | | | - Gregory Rice
- INOVIQ Ltd., Notting Hill, VIC 3168, Australia
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
20
|
Huo K, Chen T, Kong D, Zhang W, Shao J. Comprehensive analysis of circRNA expression profiles in postmenopausal women differing in bone mineral density. Medicine (Baltimore) 2024; 103:e37813. [PMID: 38640297 PMCID: PMC11029967 DOI: 10.1097/md.0000000000037813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 04/21/2024] Open
Abstract
Postmenopausal osteoporosis (PMOP) seriously endangers the bone health of older women. Although there are currently indicators to diagnose PMOP, early diagnostic biomarkers are lacking. Circular ribonucleic acid (circRNA) has a stable structure, regulates gene expression, participates in the pathological process of disease, and has the potential to become a biomarker. The purpose of this study was to investigate circRNAs that could be used to predict patients with early PMOP. Ribonucleic acid (RNA) sequencing was performed on peripheral blood leukocytes from 15 female patients to identify differential circRNAs between different groups. Using bioinformatics analysis, enrichment analysis was performed to discover relevant functions and pathways. CircRNA-micro ribonucleic acid (miRNA) interaction analysis and messenger ribonucleic acid (mRNA) prediction and network construction help us to understand the relationship between circRNA, miRNA, and mRNA. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the gene expression of candidate circRNAs. We screened out 2 co-expressed differential circRNAs, namely hsa_circ_0060849 and hsa_circ_0001394. By analyzing the regulatory network, a total of 54 miRNAs and 57 osteoporosis-related mRNAs were identified, which, as potential downstream target genes of hsa_circ_0060849 and hsa_circ_0001394, may play a key role in the occurrence and development of PMOP. The occurrence and development of PMOP is regulated by circRNAs, and hsa_circ_0060849 and hsa_circ_0001394 can be used as new diagnostic markers and therapeutic targets for early PMOP.
Collapse
Affiliation(s)
- Kailun Huo
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Yinchuan, Ningxia Hui-Autonomous Region, China
| | - Tianning Chen
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Yinchuan, Ningxia Hui-Autonomous Region, China
| | - Dece Kong
- Department of Orthopedics, Pudong New Area Gongli Hospital, Shanghai, China
| | - Weiwei Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Shao
- Department of Orthopedics, Pudong New Area Gongli Hospital, Shanghai, China
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
21
|
Liao W, Xu Y, Pan M, Chen H. Serum micro-RNAs with mutation-targeted RNA modification: a potent cancer detection tool constructed using an optimized machine learning workflow. Sci Rep 2024; 14:9016. [PMID: 38641707 PMCID: PMC11031599 DOI: 10.1038/s41598-024-59480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
RNA modifications affect fundamental biological processes and diseases and are a research hotspot. Several micro-RNAs (miRNAs) exhibit genetic variant-targeted RNA modifications that can greatly alter their biofunctions and influence their effect on cancer. Therefore, the potential role of these miRNAs in cancer can be implicated in new prevention and treatment strategies. In this study, we determined whether RMvar-related miRNAs were closely associated with tumorigenesis and identified cancer-specific signatures based on these miRNAs with variants targeting RNA modifications using an optimized machine learning workflow. An effective machine learning workflow, combining least absolute shrinkage and selection operator analyses, recursive feature elimination, and nine types of machine learning algorithms, was used to screen candidate miRNAs from 504 serum RMvar-related miRNAs and construct a diagnostic signature for cancer detection based on 43,047 clinical samples (with an area under the curve value of 0.998, specificity of 93.1%, and sensitivity of 99.3% in the validation cohort). This signature demonstrated a satisfactory diagnostic performance for certain cancers and different conditions, including distinguishing early-stage tumors. Our study revealed the close relationship between RMvar-related miRNAs and tumors and proposed an effective cancer screening tool.
Collapse
Affiliation(s)
- Wei Liao
- Department of Hepatobiliary Surgery, The First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Yuyan Xu
- General Surgery Center, Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Mingxin Pan
- General Surgery Center, Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Huanwei Chen
- Department of Hepatobiliary Surgery, The First People's Hospital of Foshan, Foshan, Guangdong Province, China.
| |
Collapse
|
22
|
Yao S, Liu B, Hu X, Tan Y, Liu K, He M, Wu B, Ahmad N, Su X, Zhang Y, Yi M. Diagnostic value of microRNAs in active tuberculosis based on quantitative and enrichment analyses. Diagn Microbiol Infect Dis 2024; 108:116172. [PMID: 38340483 DOI: 10.1016/j.diagmicrobio.2024.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Tuberculosis (TB) infection remains a crucial global health challenge, with active tuberculosis (ATB) representing main infection source. MicroRNA (miRNA) has emerged as a potential diagnostic tool in this context. This study aims to identify candidate miRNAs for ATB diagnosis and explore their possible mechanisms. METHODS Differentially expressed miRNAs in ATB were summarized in qualitative analysis. The diagnostic values of miRNAs for ATB subtypes were assessed by overall sensitivity, specificity, and area under the curve. Additionally, we conducted enrichment analysis on miRNAs and target genes. RESULTS Over 100 differentially expressed miRNAs were identified, with miR-29 family being the most extensively studied. The miR-29 family demonstrated sensitivity, specificity, and area under the curve of 80 %, 80 % and 0.86 respectively for active pulmonary TB (PTB). The differentially expressed miR-29-target genes in PTB were enriched in immune-related pathways. CONCLUSIONS The miR-29 family exhibits good diagnostic value for active PTB and shows association with immune process.
Collapse
Affiliation(s)
- Shuoyi Yao
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Xiangya School of Medicine, Central South University, Changsha, China
| | - Bin Liu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Tan
- School of Medicine, Changsha Social Work College, Changsha, China
| | - Kun Liu
- School of Life Sciences, Central South University, Changsha, China
| | - Meng He
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bohan Wu
- School of Life Sciences, Central South University, Changsha, China
| | - Namra Ahmad
- School of Life Sciences, Central South University, Changsha, China
| | - Xiaoli Su
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Minhan Yi
- School of Life Sciences, Central South University, Changsha, China.
| |
Collapse
|
23
|
Mao Y, Wang J, Wang Y, Fu Z, Dong L, Liu J. Hypoxia induced exosomal Circ-ZNF609 promotes pre-metastatic niche formation and cancer progression via miR-150-5p/VEGFA and HuR/ZO-1 axes in esophageal squamous cell carcinoma. Cell Death Discov 2024; 10:133. [PMID: 38472174 DOI: 10.1038/s41420-024-01905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Exosomes derived from cancer are regarded as significant mediators of cancer-host crosstalk. Hypoxia, on the other hand, is one of the essential characteristics of solid tumors. This research set out to discover how circulating exosomes from hypoxic esophageal squamous cell carcinoma (ESCC) contribute to the formation of metastatic niches and distant metastasis. First, we noticed that human umbilical vein endothelial cells (HUVECs) had their tight connections disrupted and the expression of proteins involved in angiogenesis boosted by ESCC hypoxic exosomes. Hypoxia significantly induced Circ-ZNF609 expression in exosomes from ESCC, which was then internalized by HUVECs, as determined by circular RNA screening. High Circ-ZNF609 expression in HUVECs facilitated angiogenesis and vascular permeability, thereby promoting pre-metastatic niche formation, and enhancing distant metastasis in vitro and in vivo. Exosomal Circ-ZNF609 activated vascular endothelial growth factor A (VEGFA) mechanistically by sponging miR-150-5p. Exosomal Circ-ZNF609 also interacted with HuR and inhibited HuR binding to ZO-1, Claudin-1, and Occludin mRNAs, thereby reducing their translation. Collectively, our findings identified an essential function for exosomal Circ-ZNF609 from ESCC cells, suggesting the potential therapeutic value of exosomes for ESCC patients.
Collapse
Affiliation(s)
- Yu Mao
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China.
- Key Laboratory of Research on Molecular Mechanism of Gastrointestinal Tumors in Qinhuangdao, Qinhuangdao, Hebei, China.
| | - Jiahao Wang
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Yimin Wang
- Key Laboratory of Research on Molecular Mechanism of Gastrointestinal Tumors in Qinhuangdao, Qinhuangdao, Hebei, China
- Department of General Surgery, First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China
| | - Zhanzhao Fu
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Lixin Dong
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Jia Liu
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
24
|
Dremel SE, Tagawa T, Koparde VN, Hernandez-Perez C, Arbuckle JH, Kristie TM, Krug LT, Ziegelbauer JM. Interferon induced circRNAs escape herpesvirus host shutoff and suppress lytic infection. EMBO Rep 2024; 25:1541-1569. [PMID: 38263330 PMCID: PMC10933408 DOI: 10.1038/s44319-023-00051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
To globally profile circRNAs, we employ RNA-Sequencing paired with chimeric junction analysis for alpha-, beta-, and gamma-herpesvirus infection. We find circRNAs are, as a population, resistant to host shutoff. We validate this observation using ectopic expression assays of human and murine herpesvirus endoribonucleases. During lytic infection, four circRNAs are commonly induced across all subfamilies of human herpesviruses, suggesting a shared mechanism of regulation. We test one such mechanism, namely how interferon-stimulation influences circRNA expression. 67 circRNAs are upregulated by either interferon-β or -γ treatment, with half of these also upregulated during lytic infection. Using gain and loss of function studies we find an interferon-stimulated circRNA, circRELL1, inhibits lytic Herpes Simplex Virus-1 infection. We previously reported circRELL1 inhibits lytic Kaposi sarcoma-associated herpesvirus infection, suggesting a pan-herpesvirus antiviral activity. We propose a two-pronged model in which interferon-stimulated genes may encode both mRNA and circRNA with antiviral activity. This is critical in cases of host shutoff, such as alpha- and gamma-herpesvirus infection, where the mRNA products are degraded but circRNAs escape.
Collapse
Affiliation(s)
- Sarah E Dremel
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, 20892, USA
| | - Takanobu Tagawa
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, 20892, USA
| | - Vishal N Koparde
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, Bethesda, 20892, USA
- Frederick National Laboratory for Cancer Research Advanced Biomedical Computational Sciences, Leidos Biomedical Research, Inc., Frederick, 21701, USA
| | | | - Jesse H Arbuckle
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, 20892, USA
| | - Thomas M Kristie
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, 20892, USA
| | - Laurie T Krug
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, 20892, USA
| | - Joseph M Ziegelbauer
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, 20892, USA.
| |
Collapse
|
25
|
Li Y, Lin Y, Li X, Chen Y, Chen G, Yang H. A Group of Highly Secretory miRNAs Correlates with Lymph Node Metastasis and Poor Prognosis in Oral Squamous Cell Carcinoma. Biomolecules 2024; 14:224. [PMID: 38397460 PMCID: PMC10886572 DOI: 10.3390/biom14020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
MicroRNAs (miRNAs) in oral squamous cell carcinoma (OSCC)-derived small extracellular vesicles (sEVs) play a pivotal role in modulating intercellular communications between tumor cells and other cells in the microenvironment, thereby influencing tumor progression and the efficacy of therapeutic interventions. However, a comprehensive inventory of these secretory miRNAs in sEVs and their biological and clinical implications remains elusive. This study aims to profile the miRNA content of OSCC cell line sEVs and computationally elucidate their biological and clinical relevance. We conducted miRNA sequencing to compare the miRNA profiles of OSCC cells and their corresponding sEVs. Our motif enrichment analysis identified specific sorting motifs that are implicated in either cellular retention or preferential sEV secretion. Target cell analysis suggested that the sEV miRNAs potentially interact with various immune cell types, including natural killer cells and dendritic cells. Additionally, we explored the clinical relevance of these miRNAs by correlating their expression levels with TNM stages and patient survival outcomes. Intriguingly, our findings revealed that a distinct sEV miRNA signature is associated with lymph node metastasis and poorer survival in patients in TCGA-HNSC dataset. Collectively, this research furthers our understanding of the miRNA sorting mechanisms in OSCC and underscores their clinical implications.
Collapse
Affiliation(s)
- Yicun Li
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, China; (Y.L.)
| | - Yuntao Lin
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, China; (Y.L.)
| | - Xiaolian Li
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, China; (Y.L.)
| | - Yuling Chen
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, China; (Y.L.)
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hongyu Yang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518035, China; (Y.L.)
| |
Collapse
|
26
|
Herrington CS, Oswald AJ, Stillie LJ, Croy I, Churchman M, Hollis RL. Compartment-specific multiomic profiling identifies SRC and GNAS as candidate drivers of epithelial-to-mesenchymal transition in ovarian carcinosarcoma. Br J Cancer 2024; 130:327-335. [PMID: 38097740 PMCID: PMC10803731 DOI: 10.1038/s41416-023-02508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Ovarian carcinosarcoma (OCS) is an exceptionally aggressive and understudied ovarian cancer type harbouring distinct carcinomatous and sarcomatous compartments. Here, we seek to identify shared and compartment-specific events that may represent potential therapeutic targets and candidate drivers of sarcomatous compartment formation through epithelial-to-mesenchymal transition (EMT). METHODS We performed multiomic profiling (exome sequencing, RNA-sequencing, microRNA profiling) of paired carcinomatous and sarcomatous components in 12 OCS cases. RESULTS While paired sarcomatous and carcinomatous compartments demonstrate substantial genomic similarities, multiple loci are recurrently copy number-altered between components; regions containing GNAS and SRC are recurrently gained within the sarcomatous compartment. CCNE1 gain is a common event in OCS, occurring more frequently than in high grade serous ovarian carcinoma (HGSOC). Transcriptomic analysis suggests increased MAPK activity and subtype switching toward poor prognosis HGSOC-derived transcriptomic subtypes within the sarcomatous component. The two compartments show global differences in microRNA profiles, with differentially expressed microRNAs targeting EMT-related genes (SIRT1, ZEB2) and regulators of pro-tumourigenic pathways (TGFβ, NOTCH); chrX is a highly enriched target of these microRNAs and is also frequently deleted across samples. The sarcomatous component harbours significantly fewer CD8-positive cells, suggesting poorer immune engagement. CONCLUSION CCNE1 gain and chrX loss are frequent in OCS. SRC gain, increased GNAS expression and microRNA dysregulation represent potential mechanisms driving sarcomatous compartment formation.
Collapse
Affiliation(s)
- C Simon Herrington
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ailsa J Oswald
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Lorna J Stillie
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scotland Centre and Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ian Croy
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Michael Churchman
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Robert L Hollis
- The Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
27
|
Makarenkov N, Yoel U, Haim Y, Pincu Y, Bhandarkar NS, Shalev A, Shelef I, Liberty IF, Ben-Arie G, Yardeni D, Rudich A, Etzion O, Veksler-Lublinsky I. Circulating isomiRs May Be Superior Biomarkers Compared to Their Corresponding miRNAs: A Pilot Biomarker Study of Using isomiR-Ome to Detect Coronary Calcium-Based Cardiovascular Risk in Patients with NAFLD. Int J Mol Sci 2024; 25:890. [PMID: 38255963 PMCID: PMC10815227 DOI: 10.3390/ijms25020890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Circulating miRNAs are increasingly being considered as biomarkers in various medical contexts, but the value of analyzing isomiRs (isoforms of canonical miRNA sequences) has not frequently been assessed. Here we hypothesize that an in-depth analysis of the full circulating miRNA landscape could identify specific isomiRs that are stronger biomarkers, compared to their corresponding miRNA, for identifying increased CV risk in patients with non-alcoholic fatty liver disease (NAFLD)-a clinical unmet need. Plasma miRNAs were sequenced with next-generation sequencing (NGS). Liver fat content was measured with magnetic-resonance spectrometry (MRS); CV risk was determined, beyond using traditional biomarkers, by a CT-based measurement of coronary artery calcium (CAC) score and the calculation of a CAC score-based CV-risk percentile (CAC-CV%). This pilot study included n = 13 patients, age > 45 years, with an MRS-measured liver fat content of ≥5% (wt/wt), and free of overt CVD. NGS identified 1103 miRNAs and 404,022 different isomiRs, of which 280 (25%) and 1418 (0.35%), respectively, passed an abundance threshold. Eighteen (sixteen/two) circulating miRNAs correlated positively/negatively, respectively, with CAC-CV%, nine of which also significantly discriminated between high/low CV risk through ROC-AUC analysis. IsomiR-ome analyses uncovered 67 isomiRs highly correlated (R ≥ 0.55) with CAC-CV%. Specific isomiRs of miRNAs 101-3p, 144-3p, 421, and 484 exhibited stronger associations with CAC-CV% compared to their corresponding miRNA. Additionally, while miRNAs 140-3p, 223-3p, 30e-5p, and 342-3p did not correlate with CAC-CV%, specific isomiRs with altered seed sequences exhibited a strong correlation with coronary atherosclerosis burden. Their predicted isomiRs-specific targets were uniquely enriched (compared to their canonical miRNA sequence) in CV Disease (CVD)-related pathways. Two of the isomiRs exhibited discriminative ROC-AUC, and another two showed a correlation with reverse cholesterol transport from cholesterol-loaded macrophages to ApoB-depleted plasma. In summary, we propose a pipeline for exploring circulating isomiR-ome as an approach to uncover novel and strong CVD biomarkers.
Collapse
Affiliation(s)
- Nataly Makarenkov
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
- Department of Software & Information Systems Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Uri Yoel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
- The Endocrinology Unit, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Yulia Haim
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
| | - Yair Pincu
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
| | - Nikhil S. Bhandarkar
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
| | - Aryeh Shalev
- Cardiology Department, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Ilan Shelef
- Department of Diagnostic Imaging, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - Idit F. Liberty
- Diabetes Clinic, Soroka University Medical Center, Beer-Sheva 84101, Israel;
| | - Gal Ben-Arie
- Department of Diagnostic Imaging, Soroka University Medical Center, Beer-Sheva 84101, Israel
| | - David Yardeni
- Department of Gastroenterology and Liver Diseases, Soroka University Medical Center, Beer-Sheva 84101, Israel (O.E.)
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (N.M.); (U.Y.); (N.S.B.)
| | - Ohad Etzion
- Department of Gastroenterology and Liver Diseases, Soroka University Medical Center, Beer-Sheva 84101, Israel (O.E.)
| | - Isana Veksler-Lublinsky
- Department of Software & Information Systems Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| |
Collapse
|
28
|
Liang HB, Chen X, Zhao R, Li SJ, Huang PS, Tang YH, Cui GH, Liu JR. Simultaneous ischemic regions targeting and BBB crossing strategy to harness extracellular vesicles for therapeutic delivery in ischemic stroke. J Control Release 2024; 365:1037-1057. [PMID: 38109946 DOI: 10.1016/j.jconrel.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
Extracellular vesicles (EVs) derived from adipose-derived stem cells (ADSC-EVs) hold great promise for ischemic stroke treatment, but their therapeutic efficacy is greatly limited due to insufficient targeting ability. Previous reports focused on single ischemic targeting or blood-brain barrier (BBB) penetration, precise delivery to the brain parenchyma has not been fully considered. This study leveraged the targeting ability of RGD peptide and the cell penetrating ability of Angiopep-2 peptide to deliver ADSC-EVs precisely to the impaired brain parenchyma. We found that dual-modified EVs (RA-EVs) significantly enhanced the transcellular permeability across BBB in vitro, and not only targeted ischemic blood vessels but also achieved rapid accumulation in the ischemic lesion area after intravenous administration in vivo. RA-EVs further decreased the infarct volume, apoptosis, BBB disruption, and neurobehavioral deficits. RNA sequencing revealed the molecular regulation mechanism after administration. These findings demonstrate that dual-modification optimizes brain parenchymal targeting and highlights the significance of recruitment and penetration as a previously unidentified strategy for harnessing EVs for therapeutic delivery in ischemic stroke.
Collapse
Affiliation(s)
- Huai-Bin Liang
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Chen
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Zhao
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shen-Jie Li
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pei-Sheng Huang
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao-Hui Tang
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Hong Cui
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian-Ren Liu
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Clinical Research Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
29
|
Tominaga Y, Kawamura T, Ito E, Takeda M, Harada A, Torigata K, Sakaniwa R, Sawa Y, Miyagawa S. Pleiotropic effects of extracellular vesicles from induced pluripotent stem cell-derived cardiomyocytes on ischemic cardiomyopathy: A preclinical study. J Heart Lung Transplant 2024; 43:85-99. [PMID: 37611882 DOI: 10.1016/j.healun.2023.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/29/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Stem cell-secreted extracellular vesicles (EVs) play essential roles in intercellular communication and restore cardiac function in animal models of ischemic heart disease. However, few studies have used EVs derived from clinical-grade stem cells and their derivatives with stable quality. Moreover, there is little information on the mechanism and time course of the multifactorial effect of EV therapy from the acute to the chronic phase, the affected cells, and whether the effects are direct or indirect. METHODS Induced pluripotent stem cell-derived cardiomyocytes (iPSCM) were produced using a clinical-grade differentiation induction system. EVs were isolated from the conditioned medium by ultracentrifugation and characterized in silico, in vitro, and in vivo. A rat model of myocardial infarction was established by left anterior descending artery ligation and treated with iPSCM-derived EVs. RESULTS iPSCM-derived EVs contained microRNAs and proteins associated with angiogenesis, antifibrosis, promotion of M2 macrophage polarization, cell proliferation, and antiapoptosis. iPSCM-derived EV treatment improved left ventricular function and reduced mortality in the rat model by improving vascularization and suppressing fibrosis and chronic inflammation in the heart. EVs were uptaken by cardiomyocytes, endothelial cells, fibroblasts, and macrophages in the cardiac tissues. The pleiotropic effects occurred due to the direct effects of microRNAs and proteins encapsulated in EVs and indirect paracrine effects on M2 macrophages. CONCLUSIONS Clinical-grade iPSCM-derived EVs improve cardiac function by regulating various genes and pathways in various cell types and may have clinical potential for treating ischemic heart disease.
Collapse
Affiliation(s)
- Yuji Tominaga
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Emiko Ito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Maki Takeda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kosuke Torigata
- Department of Frontier Regenerative Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryoto Sakaniwa
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sawa
- Department of Future Medicine, Division of Health Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
30
|
Huang B, Xin C, Yan H, Yu Z. A Machine Learning Method for a Blood Diagnostic Model of Pancreatic Cancer Based on microRNA Signatures. Crit Rev Immunol 2024; 44:13-23. [PMID: 38421702 DOI: 10.1615/critrevimmunol.2023051250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
This study aimed to construct a blood diagnostic model for pancreatic cancer (PC) using miRNA signatures by a combination of machine learning and biological experimental verification. Gene expression profiles of patients with PC and transcriptome normalization data were obtained from the Gene Expression Omnibus (GEO) database. Using random forest algorithm, lasso regression algorithm, and multivariate cox regression analyses, the classifier of differentially expressed miRNAs was identified based on algorithms and functional properties. Next, the ROC curve analysis was used to evaluate the predictive performance of the diagnostic model. Finally, we analyzed the expression of two specific miRNAs in Capan-1, PANC-1, and MIA PaCa-2 pancreatic cells using qRT-PCR. Integrated microarray analysis revealed that 33 common miRNAs exhibited significant differences in expression profiles between tumor and normal groups (P value < 0.05 and |logFC| > 0.3). Pathway analysis showed that differentially expressed miRNAs were related to P00059 p53 pathway, hsa04062 chemokine signaling pathway, and cancer-related pathways including PC. In ENCORI database, the hsa-miR-4486 and hsa-miR-6075 were identified by random forest algorithm and lasso regression algorithm and introduced as major miRNA markers in PC diagnosis. Further, the receiver operating characteristic curve analysis achieved the area under curve score > 80%, showing good sensitivity and specificity of the two-miRNA signature model in PC diagnosis. Additionally, hsa-miR-4486 and hsa-miR-6075 genes expressions in three pancreatic cells were all up-regulated by qRT-PCR. In summary, these findings suggest that the two miRNAs, hsa-miR-4486 and hsa-miR-6075, could serve as valuable prognostic markers for PC.
Collapse
Affiliation(s)
- Bin Huang
- The Affiliated People's Hospital of Ningbo University
| | - Chang Xin
- Department of Hepatopancreatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Huanjun Yan
- Department of Hepatopancreatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zhewei Yu
- Department of Hepatopancreatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
31
|
Nyström S, Hultberg J, Blixt E, Nilsdotter-Augustinsson Å, Larsson M. Plasma Levels of mir-34a-5p Correlate with Systemic Inflammation and Low Naïve CD4 T Cells in Common Variable Immunodeficiency. J Clin Immunol 2023; 44:21. [PMID: 38129593 PMCID: PMC10739380 DOI: 10.1007/s10875-023-01618-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Common variable immunodeficiency (CVID) is a primary antibody deficiency that commonly manifests as recurrent infections. Many CVID patients also suffer from immune dysregulation, an inflammatory condition characterized by polyclonal lymphocytic tissue infiltration and associated with increased morbidity and mortality. The genetic cause is unknown in most CVID patients and epigenetic alterations may contribute to the broad range of clinical manifestations. MicroRNAs are small non-coding RNAs that are involved in epigenetic modulation and may contribute to the clinical phenotype in CVID. METHODS Here, we determined the circulating microRNAome and plasma inflammatory proteins of a cohort of CVID patients with various levels of immune dysregulation and compared them to healthy controls. A set of deregulated microRNAs was validated by qPCR and correlated to inflammatory proteins and clinical findings. RESULTS Levels of microRNA-34a correlated with 11 proteins such as CXCL9, TNF, and IL10, which were predicted to be biologically connected. Moreover, there was a negative correlation between mir-34 levels and the number of naïve CD4 T cells in CVID. CONCLUSION Collectively, our data show that microRNAs correlate with the inflammatory response in CVID. Further investigations are needed to elucidate the role of miRNAs in the development of CVID-related immune dysregulation.
Collapse
Affiliation(s)
- Sofia Nyström
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, S-58185, Linköping, Sweden.
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Jonas Hultberg
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Emelie Blixt
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, S-58185, Linköping, Sweden
| | - Åsa Nilsdotter-Augustinsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
32
|
Shankar M, Shetty A, N S M, C G S, A K, Tennankore K. Urinary exosomal miRNA signature of IgA nephropathy: a case-control study. Sci Rep 2023; 13:21400. [PMID: 38049447 PMCID: PMC10695945 DOI: 10.1038/s41598-023-47751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
IgA nephropathy is the most common primary glomerulonephritis worldwide and can progress to end-stage kidney disease (ESKD). The current "gold standard" for diagnosis is kidney biopsy, which is invasive and associated with morbidity. miRNAs are small, non-coding endogenous RNA that may serve as non-invasive biomarkers, and that are found in urinary exosomes. Thus far, there is a paucity of studies of the miRNA profile for the diagnosis of IgA nephropathy. Hence, we aimed to study the urinary exosomal miRNA signature of Indian patients with IgA nephropathy. Fifty biopsy-proven IgA nephropathy patients, 50 healthy controls and 25 patients with ESKD (IgA nephropathy) were recruited over 2 years (2020-2022). Urinary exosomes were isolated from which miRNA was extracted . Analysis of urinary exosomal miRNA was done using the digital multiplexed nCounter® human v3 miRNA Expression Assay which contains 799 unique miRNA barcodes. Candidate miRNAs were identified using Lasso regression and consensus clustering. The mean age of IgA nephropathy patients was 36.32 ± 3.067 years, mean creatinine was 2.26 ± 0.318 mg/dl and mean proteinuria was 2.69 ± 0.64 g/day. Compared to healthy controls, the majority (N = 150) of miRNAs were significantly downregulated. Five candidate miRNAs (hsa.miR.146b.3p, hsa.miR.599, hsa.miR.4532, hsa.miR.664b.5p and hsa.miR.221.5p) were able to differentiate between IgA nephropathy cases and controls (AUC > 0.90); the presence of all 5 was associated with 100% specificity and sensitivity for diagnosing IgA nephropathy cases. This study of Indian patients identified that there was a significant difference in the urinary exosomal miRNA profile between IgA nephropathy cases and healthy controls, suggesting that miRNAs may be valuable in the non-invasive diagnosis of IgA nephropathy.
Collapse
Affiliation(s)
- Mythri Shankar
- Department of Nephrology, Institute of NephroUrology, Bengaluru, India.
| | - Aditya Shetty
- Department of Nephrology, Institute of NephroUrology, Bengaluru, India
| | - Madhura N S
- Department of Biochemistry, Institute of NephroUrology, Bengaluru, India
| | - Sreedhara C G
- Department of Nephrology, Institute of NephroUrology, Bengaluru, India
| | - Kishan A
- Department of Nephrology, Institute of NephroUrology, Bengaluru, India
| | | |
Collapse
|
33
|
Li T, Tan X, Tian L, Jia C, Cheng C, Chen X, Wei M, Wang Y, Hu Y, Jia Q, Ni Y, Al-Nusaif M, Li S, Le W. The role of Nurr1-miR-30e-5p-NLRP3 axis in inflammation-mediated neurodegeneration: insights from mouse models and patients' studies in Parkinson's disease. J Neuroinflammation 2023; 20:274. [PMID: 37990334 PMCID: PMC10664369 DOI: 10.1186/s12974-023-02956-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/12/2023] [Indexed: 11/23/2023] Open
Abstract
Nuclear receptor related-1 (Nurr1), a ligand-activated transcription factor, is considered a potential susceptibility gene for Parkinson's disease (PD), and has been demonstrated to possess protective effects against inflammation-induced neuronal damage. Despite the evidence showing decreased NURR1 level and increased pro-inflammatory cytokines in cell and animal models as well as in PD patients' peripheral blood mononuclear cells (PBMCs), the underlying mechanism remains elusive. In this study, we investigated the molecular mechanism of Nurr1 in PD-related inflammation. Through the miRNA-sequencing and verification in PBMCs from a cohort of 450 individuals, we identified a significant change of a Nurr1-dependent miRNA miR-30e-5p in PD patients compared to healthy controls (HC). Additionally, PD patients exhibited an elevated plasma interleukin-1β (IL-1β) level and increased nucleotide-binding domain-like receptor protein 3 (NLRP3) expression in PBMCs compared to HC. Statistical analyses revealed significant correlations among NURR1, miR-30e-5p, and NLRP3 levels in the PBMCs of PD patients. To further explore the involvement of Nurr1-miR-30e-5p-NLRP3 axis in the inflammation-mediated PD pathology, we developed a mouse model (Nurr1flox+/Cd11b-cre+, Nurr1cKO) conditionally knocking out Nurr1 in Cd11b-expressing cells. Our investigations in Nurr1cKO mice unveiled significant dopaminergic neurodegeneration following lipopolysaccharide-induced inflammation. Remarkably, Nurr1 deficiency triggered microglial activation and activated NLRP3 inflammasome, resulting in increased IL-1β secretion. Coincidently, we found that miR-30e-5p level was significantly decreased in the PBMCs and primary microglia of Nurr1cKO mice compared to the controls. Furthermore, our in vitro experiments demonstrated that miR-30e-5p specifically targeted NLRP3. In Nurr1-knockdown microglia, NLRP3 expression was upregulated via miR-30e-5p. In summary, our findings highlight the involvement of Nurr1-miR-30e-5p-NLRP3 axis in the inflammation-mediated neurodegeneration in PD, the results of which may offer promising prospects for developing PD biomarkers and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Tianbai Li
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Xiang Tan
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Lulu Tian
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Congcong Jia
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Cheng Cheng
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Xi Chen
- Institute of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial Hospital, Chengdu, 610072, China
| | - Min Wei
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Yuanyuan Wang
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Yiying Hu
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Qiqi Jia
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Yang Ni
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Murad Al-Nusaif
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Song Li
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research On the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
- Institute of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial Hospital, Chengdu, 610072, China.
| |
Collapse
|
34
|
Jung AM, Furlong MA, Goodrich JM, Cardenas A, Beitel SC, Littau SR, Caban-Martinez AJ, Gulotta JJ, Wallentine DD, Urwin D, Gabriel J, Hughes J, Graber JM, Grant C, Burgess JL. Associations Between Epigenetic Age Acceleration and microRNA Expression Among U.S. Firefighters. Epigenet Insights 2023; 16:25168657231206301. [PMID: 37953967 PMCID: PMC10634256 DOI: 10.1177/25168657231206301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/20/2023] [Indexed: 11/14/2023] Open
Abstract
Epigenetic changes may be biomarkers of health. Epigenetic age acceleration (EAA), the discrepancy between epigenetic age measured via epigenetic clocks and chronological age, is associated with morbidity and mortality. However, the intersection of epigenetic clocks with microRNAs (miRNAs) and corresponding miRNA-based health implications have not been evaluated. We analyzed DNA methylation and miRNA profiles from blood sampled among 332 individuals enrolled across 2 U.S.-based firefighter occupational studies (2015-2018 and 2018-2020). We considered 7 measures of EAA in leukocytes (PhenoAge, GrimAge, Horvath, skin-blood, and Hannum epigenetic clocks, and extrinsic and intrinsic epigenetic age acceleration). We identified miRNAs associated with EAA using individual linear regression models, adjusted for sex, race/ethnicity, chronological age, and cell type estimates, and investigated downstream effects of associated miRNAs with miRNA enrichment analyses and genomic annotations. On average, participants were 38 years old, 88% male, and 75% non-Hispanic white. We identified 183 of 798 miRNAs associated with EAA (FDR q < 0.05); 126 with PhenoAge, 59 with GrimAge, 1 with Horvath, and 1 with the skin-blood clock. Among miRNAs associated with Horvath and GrimAge, there were 61 significantly enriched disease annotations including age-related metabolic and cardiovascular conditions and several cancers. Enriched pathways included those related to proteins and protein modification. We identified miRNAs associated with EAA of multiple epigenetic clocks. PhenoAge had more associations with individual miRNAs, but GrimAge and Horvath had greater implications for miRNA-associated pathways. Understanding the relationship between these epigenetic markers could contribute to our understanding of the molecular underpinnings of aging and aging-related diseases.
Collapse
Affiliation(s)
- Alesia M Jung
- Department of Community, Environment & Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
- Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, College of Public Health, Tucson, AZ, USA
| | - Melissa A Furlong
- Department of Community, Environment & Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Shawn C Beitel
- Department of Community, Environment & Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Sally R Littau
- Department of Community, Environment & Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Alberto J Caban-Martinez
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | | | - Derek Urwin
- Los Angeles County Fire Department, Los Angeles, CA, USA
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Division of Health Safety and Medicine, International Association of Fire Fighters, Washington, DC, USA
| | - Jamie Gabriel
- Los Angeles County Fire Department, Los Angeles, CA, USA
| | | | - Judith M Graber
- Department of Biostatistics & Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Casey Grant
- Fire Protection Research Foundation, Quincy, MA, USA
| | - Jefferey L Burgess
- Department of Community, Environment & Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
35
|
Piergiorge RM, da Silva Francisco Junior R, de Vasconcelos ATR, Santos-Rebouças CB. Multi-layered transcriptomic analysis reveals a pivotal role of FMR1 and other developmental genes in Alzheimer's disease-associated brain ceRNA network. Comput Biol Med 2023; 166:107494. [PMID: 37769462 DOI: 10.1016/j.compbiomed.2023.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Alzheimer's disease (AD) is an increasingly neurodegenerative disorder that causes progressive cognitive decline and memory impairment. Despite extensive research, the underlying causes of late-onset AD (LOAD) are still in progress. This study aimed to establish a network of competing regulatory interactions involving circular RNAs (circRNAs), microRNAs (miRNAs), RNA-binding proteins (RBPs), and messenger RNAs (mRNAs) connected to LOAD. A systematic analysis of publicly available expression data was conducted to identify integrated differentially expressed genes (DEGs) from the hippocampus of LOAD patients. Subsequently, gene co-expression analysis identified modules comprising highly expressed DEGs that act cooperatively. The competition between co-expressed DEGs and miRNAs/RBPs and the simultaneous interactions between circRNA and miRNA/RBP revealed a complex ceRNA network responsible for post-transcriptional regulation in LOAD. Hippocampal expression data for miRNAs, circRNAs, and RBPs were used to filter relevant relationships for AD. An integrated topological score was used to identify the highly connected hub gene, from which a brain core ceRNA subnetwork was generated. The Fragile X Messenger Ribonucleoprotein 1 (FMR1) coding for the RBP FMRP emerged as the prominent driver gene in this subnetwork. FMRP has been previously related to AD but not in a ceRNA network context. Also, the substantial number of neurodevelopmental genes in the ceRNA subnetwork and their related biological pathways strengthen that AD shares common pathological mechanisms with developmental conditions. Our results enhance the current knowledge about the convergent ceRNA regulatory pathways underlying AD and provide potential targets for identifying early biomarkers and developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
36
|
Shao H, Zhu J, Zhu Y, Liu L, Zhao S, Kang Q, Liu Y, Zou H. Identification of characteristic genes and construction of regulatory network in gallbladder carcinoma. BMC Med Genomics 2023; 16:240. [PMID: 37821907 PMCID: PMC10566037 DOI: 10.1186/s12920-023-01663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Gallbladder carcinoma (GBC) is a highly malignant tumor with a poor overall prognosis. This study aimed to identify the characteristic microRNAs (miRNAs) of GBC and the competing endogenous RNA (ceRNA) regulatory mechanisms. METHODS The microarray data of GBC tissue samples and normal gallbladder (NGB) tissue samples from the Gene Expression Omnibus (GEO) database was downloaded. GBC-related differentially expressed miRNAs (DE-miRNAs) were identified by inter-group differential expression analysis and weighted gene co-expression network analysis (WGCNA). Machine learning algorithms were used to screen the characteristic miRNA based on the intersect between least absolute shrinkage and selection operator (LASSO) and Support vector machine-recursive feature elimination (SVM-RFE). Based on the differential expression analysis of GEO database, the ceRNA network of characteristic miRNA was predicted and constructed. The biological functions of the ceRNA network were revealed by carrying out the gene enrichment analysis was implemented. We further screened the key genes of ceRNA network and constructed a protein-protein interaction (PPI) network, and predicted and generated the transcription factors (TFs) network of signature miRNAs. The expression of characteristic miRNA in clinical samples was verified by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS A total of 131 GBC-related DE-miRNAs were obtained. The hsa-miR-4770 was defined as characteristic miRNA for GBC. The ceRNA network containing 211 mRNAs, one miRNA, two lncRNAs, and 48 circRNAs was created. Gene enrichment analysis suggested that the downstream genes were mainly involved in actin filament organization, cell-substrate adhesion, cell-matrix adhesion, reactive oxygen species metabolic process, glutamine metabolic process and extracellular matrix (ECM)-receptor interaction pathway. 10 key genes in the network were found to be most correlated with disease, and involved in cell cycle-related processes, p53, and extrinsic apoptotic signaling pathways. The qRT-PCR result demonstrated that hsa-miR-4770 is down-regulated in GBC, and the expression trend is consistent with the public database. CONCLUSIONS We identified hsa-miR-4770 as the characteristic miRNA for GBC. The ceRNA network of hsa-miR-4770 may play key roles in GBC. This study provided some basis for potential pathogenesis of GBC.
Collapse
Affiliation(s)
- Hanrui Shao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wu Hua District, Kunming, 650106, Yunnan, P.R. China
| | - Jiahai Zhu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wu Hua District, Kunming, 650106, Yunnan, P.R. China
| | - Ya Zhu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wu Hua District, Kunming, 650106, Yunnan, P.R. China
| | - Lixin Liu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wu Hua District, Kunming, 650106, Yunnan, P.R. China
| | - Songling Zhao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wu Hua District, Kunming, 650106, Yunnan, P.R. China
| | - Qiang Kang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wu Hua District, Kunming, 650106, Yunnan, P.R. China
| | - Yunxia Liu
- Experiment Teaching Center, Basic Medical School, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, P.R. China.
| | - Hao Zou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Wu Hua District, Kunming, 650106, Yunnan, P.R. China.
| |
Collapse
|
37
|
Witarto BS, Visuddho V, Aldian FM, Atmaja MSS, Ariyanto MV, Witarto AP, Wungu CDK, Susilo H, Alsagaff MY, Rohman MS. Blood-based circulating microRNAs as diagnostic biomarkers for subclinical carotid atherosclerosis: A systematic review and meta-analysis with bioinformatics analysis. Diabetes Metab Syndr 2023; 17:102860. [PMID: 37742360 DOI: 10.1016/j.dsx.2023.102860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Atherosclerosis in carotid arteries can remain clinically undetected in its early development until an acute cerebrovascular event such as stroke emerges. Recently, microRNAs (miRNAs) circulating in blood have emerged as potential diagnostic biomarkers, but their performance in detecting subclinical carotid atherosclerosis has yet to be systematically researched. AIM To investigate the diagnostic performance of circulating miRNAs in detecting subclinical carotid atherosclerosis. METHODS We systematically searched five electronic databases from inception to July 23, 2022. Subclinical carotid atherosclerosis was defined using carotid intima-media thickness (CIMT). Diagnostic accuracy parameters and correlation coefficients were pooled. A gene network visualisation and enrichment bioinformatics analysis were additionally conducted to search for potential target genes and pathway regulations of the miRNAs. RESULTS Fifteen studies (15 unique miRNAs) comprising 2542 subjects were identified. Circulating miRNAs had a pooled sensitivity of 85% (95% CI 80%-89%), specificity of 84% (95% CI 78%-88%), positive likelihood ratio of 5.19 (95% CI 3.97-6.80), negative likelihood ratio of 0.18 (95% CI 0.13-0.23), diagnostic odds ratio of 29.48 (95% CI 21.15-41.11), and area under the summary receiver operating characteristic curve of 0.91 (95% CI 0.88-0.93), with a strong correlation to CIMT (pooled coefficient 0.701; 95% CI 0.664-0.731). Bioinformatics analysis revealed a major role of the miRNAs, as shown by their relation with CCND1, KCTD15, SPARC, WWTR1, VEGFA genes, and multiple pathways involved in the pathogenesis of carotid atherosclerosis. CONCLUSION Circulating miRNAs had excellent accuracy in detecting subclinical carotid atherosclerosis, suggesting their utilisation as novel diagnostic tools.
Collapse
Affiliation(s)
| | - Visuddho Visuddho
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Fan Maitri Aldian
- Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | | | | | - Citrawati Dyah Kencono Wungu
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.
| | - Hendri Susilo
- Department of Cardiology and Vascular Medicine, Universitas Airlangga Hospital, Surabaya, Indonesia; Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia.
| | - Mochamad Yusuf Alsagaff
- Department of Cardiology and Vascular Medicine, Universitas Airlangga Hospital, Surabaya, Indonesia; Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
38
|
Vasu S, Saracino G, Darden CM, Kumano K, Liu Y, Lawrence MC, Naziruddin B. Clinical and biological significance of circulating miRNAs in chronic pancreatitis patients undergoing total pancreatectomy with islet autotransplantation. Clin Transl Med 2023; 13:e1434. [PMID: 37846205 PMCID: PMC10579997 DOI: 10.1002/ctm2.1434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Specific microRNAs (miRNAs) were elevated in chronic pancreatitis (CP) patients during islet infusion after total pancreatectomy (TPIAT). We aimed to identify circulating miRNA signatures of pancreatic damage, predict miRNA-mRNA networks to identify potential links to CP pathogenesis and identify islet isolation and transplantation functional outcomes. METHODS Small RNA sequencing was performed to identify distinct circulating miRNA signatures in CP. Plasma miRNAs were measured using miRCURY LNA SYBR green quantitative real-time polymerase chain reaction assays. Correlation analyses were performed using R software. The miRNA target and disease interactions were determined using miRNet and the miRNA enrichment and annotation tool. RESULTS Alterations were found in circulating miRNAs in CP patients compared to healthy controls. Further studies were conducted on 12 circulating miRNAs enriched in the pancreas, other tissues and other diseases including cancer and fibrosis. Approximately 2888 mRNAs in the pancreas were their targets, demonstrating interactions with 76 small molecules. Three miRNAs exhibited interactions with morphine and five exhibited interactions with glucose. The miRNA panel targeted 22 genes associated with pancreatitis. The islet-specific, acinar cell-specific and liver-specific miRNAs were elevated at 6 h after islet infusion and returned to baseline levels 3 months after TPIAT. Circulating levels of miRNAs returned to pre-transplant levels 1-year post-transplant. Circulating miRNAs measured before and 6 h after islet infusion were directly or inversely associated with metabolic outcomes at 3 and 6 months post-transplant. CONCLUSIONS miRNAs may contribute to CP pathogenesis, and elevated circulating levels may be specific to pancreatic inflammation and fibrosis, warranting further investigation.
Collapse
Affiliation(s)
- Srividya Vasu
- Islet Cell LaboratoryBaylor Scott and White Research InstituteDallasTexasUSA
| | - Giovanna Saracino
- Baylor Simmons Transplant InstituteBaylor University Medical CenterDallasTexasUSA
| | - Carly M. Darden
- Islet Cell LaboratoryBaylor Scott and White Research InstituteDallasTexasUSA
| | - Kenjiro Kumano
- Department of Gastroenterological SurgeryOkayama University Graduate School of MedicineDentistry and Pharmaceutical SciencesOkayamaJapan
| | - Yang Liu
- The University of Texas Southwestern Medical CenterDallasTexasUSA
| | - Michael C. Lawrence
- Islet Cell LaboratoryBaylor Scott and White Research InstituteDallasTexasUSA
| | - Bashoo Naziruddin
- Baylor Simmons Transplant InstituteBaylor University Medical CenterDallasTexasUSA
| |
Collapse
|
39
|
Niknam N, Nikooei S, Ghasemi H, Zadian SS, Goudarzi K, Ahmadi SM, Alipoor B. Circulating Levels of HOTAIR- lncRNA Are Associated with Disease Progression and Clinical Parameters in Type 2 Diabetes Patients. Rep Biochem Mol Biol 2023; 12:448-457. [PMID: 38618258 PMCID: PMC11015925 DOI: 10.61186/rbmb.12.3.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/27/2023] [Indexed: 04/16/2024]
Abstract
Background Recent studies have implicated dysregulated long non-coding RNA (lncRNA) levels in the pathogenesis of type 2 diabetes (T2D). This study aimed to assess the expression of circulating HOTAIR and uc.48+, examining their correlation with clinical and biochemical variables in T2D patients, pre-diabetic individuals, and healthy controls. Methods Peripheral blood levels of lncRNAs were quantified using QRT-PCR in 65 T2D patients, 63 pre-diabetic individuals, and 63 healthy subjects. Pathway enrichment analysis was conducted to explore the functional enrichment of lncRNA-miRNA targets. Results Analysis revealed a significantly elevated circulating level of HOTAIR in both T2D (P < 0.0001) and pre-diabetic patients (P = 0.04) compared to controls. ROC analysis demonstrated that, at a cutoff value of 9.1, with a sensitivity of 80% and specificity of 62%, HOTAIR could distinguish T2D patients from controls (AUC = 0.723, 95% CI 0.637-0.799, P < 0.0001). Spearman correlation analysis identified a significant positive correlation between HOTAIR expression, HbA1c, and insulin resistance (P < 0.005). MiRNA enrichment analysis indicated significant enrichment of diabetes-related pathways among HOTAIR's miRNA targets. Conversely, no significant difference in uc.48+ circulating levels between groups was observed, but a significant positive correlation emerged between uc.48+ and systolic blood pressure. Conclusions This study provides evidence that elevated HOTAIR expression levels are associated with T2D progression, suggesting their potential as biomarkers for early diagnosis and prognosis.
Collapse
Affiliation(s)
- Nafiseh Niknam
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Shekoofeh Nikooei
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hassan Ghasemi
- Department of Clinical Biochemistry, Abadan School of Medical Sciences, Abadan, Iran.
| | - Seyed Sajjad Zadian
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kamran Goudarzi
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| | | | - Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
40
|
Ma Q, Hu L, Luo Y, Wang M, Yu S, Lu A, Zhang L, Zeng H. Identification of apoptosis-related key genes and the associated regulation mechanism in thoracic aortic aneurysm. BMC Cardiovasc Disord 2023; 23:481. [PMID: 37770840 PMCID: PMC10540322 DOI: 10.1186/s12872-023-03516-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND This study investigated the role of apoptosis-related genes in thoracic aortic aneurysms (TAA) and provided more insights into TAA's pathogenesis and molecular mechanisms. MATERIAL/METHODS Two gene expression datasets (GSE9106 and GSE26155) were retrieved from the Gene Expression Omnibus (GEO) database. Apoptosis-related genes were obtained from the KEGG apoptosis pathway (hsa04210). Differentially expressed apoptosis-related genes were identified by performing differential expression analysis using limma for TAA blood and tissue samples. GO and KEGG enrichment analysis of the differentially expressed apoptosis genes was performed using the Metascape web tool. The miRNA-mRNA regulatory network was reconstructed using the ENCORI and miRDB databases, and functional enrichment analysis was performed on the related miRNAs using the miEAA tool. The correlation between the expression levels of differentially expressed apoptosis-related genes and genes involved in immune infiltration in TAA was calculated using the CIBERSORT algorithm. The apoptosis modification patterns mediated by differentially expressed apoptosis-related genes were systematically assessed in TAA samples. RESULTS A total of 9 differentially-expressed apoptosis-related genes were identified in TAA samples compared with normal samples. 150 miRNAs and 6 mRNAs regulatory networks were reconstructed using the ENCORI and miRDB databases. Immune infiltration analysis revealed that the GZMB had the strongest positive correlation with activated NK cells and the DFFA presented the strongest positive correlation with T cells follicular helper. 3 distinct apoptosis modification patterns mediated by 9 differentially-expressed apoptosis-related genes were identified. They differ in immune characteristics and drug sensitivity, and their biological functions in these subtypes were further studied. CONCLUSIONS This study identified key apoptosis-related genes related to TAA and evaluated the modification patterns of key apoptosis genes in TAA, providing insights into potential targets and mechanisms of TAA pathogenesis and progression.
Collapse
Affiliation(s)
- Qi Ma
- Department of Anesthesiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Long Hu
- XJTLU Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yingwan Luo
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Miao Wang
- Department of Pediatrics, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100000, China
| | - Shui Yu
- Department of Pediatrics, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100000, China
| | - Aidong Lu
- Department of Pediatrics, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100000, China
| | - Leping Zhang
- Department of Pediatrics, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100000, China
| | - Huimin Zeng
- Department of Pediatrics, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100000, China.
| |
Collapse
|
41
|
Liu R, Huang B, Shao Y, Cai Y, Liu X, Ren Z. Identification of memory B-cell-associated miRNA signature to establish a prognostic model in gastric adenocarcinoma. J Transl Med 2023; 21:648. [PMID: 37735667 PMCID: PMC10515266 DOI: 10.1186/s12967-023-04366-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Memory B cells and microRNAs (miRNAs) play important roles in the progression of gastric adenocarcinoma (GAC), also known as stomach adenocarcinoma (STAD). However, few studies have investigated the use of memory B-cell-associated miRNAs in predicting the prognosis of STAD. METHODS We identified the marker genes of memory B cells by single-cell RNA sequencing (scRNA-seq) and identified the miRNAs associated with memory B cells by constructing an mRNA‒miRNA coexpression network. Then, univariate Cox, random survival forest (RSF), and stepwise multiple Cox regression (StepCox) algorithms were used to identify memory B-cell-associated miRNAs that were significantly related to overall survival (OS). A prognostic risk model was constructed and validated using these miRNAs, and patients were divided into a low-risk group and a high-risk group. In addition, the differences in clinicopathological features, tumour microenvironment, immune blocking therapy, and sensitivity to anticancer drugs in the two groups were analysed. RESULTS Four memory B-cell-associated miRNAs (hsa-mir-145, hsa-mir-125b-2, hsa-mir-100, hsa-mir-221) with significant correlations to OS were identified and used to construct a prognostic model. Time-dependent receiver operating characteristic (ROC) curve analysis confirmed the feasibility of the model. Kaplan‒Meier (K‒M) survival curve analysis showed that the prognosis was poor in the high-risk group. Comprehensive analysis showed that patients in the high-risk group had higher immune scores, matrix scores, and immune cell infiltration and a poor immune response. In terms of drug screening, we predicted eight drugs with higher sensitivity in the high-risk group, of which CGP-60474 was associated with the greatest sensitivity. CONCLUSIONS In summary, we identified memory B-cell-associated miRNA prognostic features and constructed a novel risk model for STAD based on scRNA-seq data and bulk RNA-seq data. Among patients in the high-risk group, STAD showed the highest sensitivity to CGP-60474. This study provides prognostic insights into individualized and precise treatment for STAD patients.
Collapse
Affiliation(s)
- Ruquan Liu
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China
| | - Biaojie Huang
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongzhao Shao
- Department of Population Health, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Yongming Cai
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China
| | - Xi Liu
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Zhonglu Ren
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China.
| |
Collapse
|
42
|
Gialeli A, Spaull R, Plösch T, Uney J, Llana OC, Heep A. The miRNA transcriptome of cerebrospinal fluid in preterm infants reveals the signaling pathways that promote reactive gliosis following cerebral hemorrhage. Front Mol Neurosci 2023; 16:1211373. [PMID: 37790884 PMCID: PMC10544345 DOI: 10.3389/fnmol.2023.1211373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/22/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction Germinal Matrix-Intraventricular Haemorrhage (GM-IVH) is one of the most common neurological complications in preterm infants, which can lead to accumulation of cerebrospinal fluid (CSF) and is a major cause of severe neurodevelopmental impairment in preterm infants. However, the pathophysiological mechanisms triggered by GM-IVH are poorly understood. Analyzing the CSF that accumulates following IVH may allow the molecular signaling and intracellular communication that contributes to pathogenesis to be elucidated. Growing evidence suggests that miRs, due to their key role in gene expression, have a significant utility as new therapeutics and biomarkers. Methods The levels of 2,083 microRNAs (miRs) in 15 CSF samples from 10 infants with IVH were measured using miRNA whole transcriptome sequencing. Gene ontology (GO) and miR family analysis were used to uncover dysregulated signalling which were then validated in vitro in human foetal neural progenitor cells treated with IVH-CSF. Results Five hundred eighty-seven miRs were differentially expressed in the CSF extracted at least 2 months after injury, compared to CSF extracted within the first month of injury. GO uncovered key pathways targeted by differentially expressed miRs including the MAPK cascade and the JAK/STAT pathway. Astrogliosis is known to occur in preterm infants, and we hypothesized that this could be due to abnormal CSF-miR signaling resulting in dysregulation of the JAK/STAT pathway - a key controller of astrocyte differentiation. We then confirmed that treatment with IVH-CSF promotes astrocyte differentiation from human fetal NPCs and that this effect could be prevented by JAK/STAT inhibition. Taken together, our results provide novel insights into the CSF/NPCs crosstalk following perinatal brain injury and reveal novel targets to improve neurodevelopmental outcomes in preterm infants.
Collapse
Affiliation(s)
- Andriana Gialeli
- School of Medicine and Health Science, Research Centre Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Robert Spaull
- Bristol Medical School, Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom
| | - Torsten Plösch
- School of Medicine and Health Science, Research Centre Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - James Uney
- Bristol Medical School, Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom
| | - Oscar Cordero Llana
- Bristol Medical School, Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, United Kingdom
| | - Axel Heep
- School of Medicine and Health Science, Research Centre Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
43
|
Szakats S, McAtamney A, Cross H, Wilson MJ. Sex-biased gene and microRNA expression in the developing mouse brain is associated with neurodevelopmental functions and neurological phenotypes. Biol Sex Differ 2023; 14:57. [PMID: 37679839 PMCID: PMC10486049 DOI: 10.1186/s13293-023-00538-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Sex differences pose a challenge and an opportunity in biomedical research. Understanding how sex chromosomes and hormones affect disease-causing mechanisms will shed light on the mechanisms underlying predominantly idiopathic sex-biased neurodevelopmental disorders such as ADHD, schizophrenia, and autism. Gene expression is a crucial conduit for the influence of sex on developmental processes; therefore, this study focused on sex differences in gene expression and the regulation of gene expression. The increasing interest in microRNAs (miRNAs), small, non-coding RNAs, for their contribution to normal and pathological neurodevelopment prompted us to test how miRNA expression differs between the sexes in the developing brain. METHODS High-throughput sequencing approaches were used to identify transcripts, including miRNAs, that showed significantly different expression between male and female brains on day 15.5 of development (E15.5). RESULTS Robust sex differences were identified for some genes and miRNAs, confirming the influence of biological sex on RNA. Many miRNAs that exhibit the greatest differences between males and females have established roles in neurodevelopment, implying that sex-biased expression may drive sex differences in developmental processes. In addition to highlighting sex differences for individual miRNAs, gene ontology analysis suggested several broad categories in which sex-biased RNAs might act to establish sex differences in the embryonic mouse brain. Finally, mining publicly available SNP data indicated that some sex-biased miRNAs reside near the genomic regions associated with neurodevelopmental disorders. CONCLUSIONS Together, these findings reinforce the importance of cataloguing sex differences in molecular biology research and highlight genes, miRNAs, and pathways of interest that may be important for sexual differentiation in the mouse and possibly the human brain.
Collapse
Affiliation(s)
- Susanna Szakats
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Alice McAtamney
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Hugh Cross
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Megan J Wilson
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
44
|
Mondal D, Shinde S, Paul S, Thakur S, Velu GSK, Tiwari AK, Dixit V, Amit A, Vishvakarma NK, Shukla D. Diagnostic significance of dysregulated miRNAs in T-cell malignancies and their metabolic roles. Front Oncol 2023; 13:1230273. [PMID: 37637043 PMCID: PMC10448964 DOI: 10.3389/fonc.2023.1230273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
T-cell malignancy is a broad term used for a diverse group of disease subtypes representing dysfunctional malignant T cells transformed at various stages of their clonal evolution. Despite having similar clinical manifestations, these disease groups have different disease progressions and diagnostic parameters. The effective diagnosis and prognosis of such a diverse disease group demands testing of molecular entities that capture footprints of the disease physiology in its entirety. MicroRNAs (miRNAs) are a group of noncoding RNA molecules that regulate the expression of genes and, while doing so, leave behind specific miRNA signatures corresponding to cellular expression status in an altered stage of a disease. Using miRNAs as a diagnostic tool is justified, as they can effectively distinguish expressional diversity between various tumors and within subtypes of T-cell malignancies. As global attention for cancer diagnosis shifts toward liquid biopsy, diagnosis using miRNAs is more relevant in blood cancers than in solid tumors. We also lay forward the diagnostic significance of miRNAs that are indicative of subtype, progression, severity, therapy response, and relapse. This review discusses the potential use and the role of miRNAs, miRNA signatures, or classifiers in the diagnosis of major groups of T-cell malignancies like T-cell acute lymphoblastic lymphoma (T-ALL), peripheral T-cell lymphoma (PTCL), extranodal NK/T-cell lymphoma (ENKTCL), and cutaneous T-cell lymphoma (CTCL). The review also briefly discusses major diagnostic miRNAs having prominent metabolic roles in these malignancies to highlight their importance among other dysregulated miRNAs.
Collapse
Affiliation(s)
- Deepankar Mondal
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Sapnita Shinde
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Souvik Paul
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Suresh Thakur
- Centre for Excellence in Genomics, Trivitron Healthcare Pvt. Ltd., Chennai, India
| | - GSK Velu
- Centre for Excellence in Genomics, Trivitron Healthcare Pvt. Ltd., Chennai, India
| | - Atul Kumar Tiwari
- Department of Zoology, Dr. Bhawan Singh Porte Government College, Pendra, Chhattisgarh, India
| | - Vineeta Dixit
- Department of Botany, Sri Satguru Jagjit Singh Namdhari College, Gharwa, Jharkhand, India
| | - Ajay Amit
- Department of Forensic Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| |
Collapse
|
45
|
Gregg JT, Himes BE, Asselbergs FW, Moore JH. Improving Genetic Association Studies with a Novel Methodology that Unveils the Hidden Complexity of All-Cause Heart Failure. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.02.23293567. [PMID: 37577697 PMCID: PMC10418568 DOI: 10.1101/2023.08.02.23293567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Motivation Genome-Wide Association Studies (GWAS) commonly assume phenotypic and genetic homogeneity that is not present in complex conditions. We designed Transformative Regression Analysis of Combined Effects (TRACE), a GWAS methodology that better accounts for clinical phenotype heterogeneity and identifies gene-by-environment (GxE) interactions. We demonstrated with UK Biobank (UKB) data that TRACE increased the variance explained in All-Cause Heart Failure (AHF) via the discovery of novel single nucleotide polymorphism (SNP) and SNP-by-environment (i.e. GxE) interaction associations. First, we transformed 312 AHF-related ICD10 codes (including AHF) into continuous low-dimensional features (i.e., latent phenotypes) for a more nuanced disease representation. Then, we ran a standard GWAS on our latent phenotypes to discover main effects and identified GxE interactions with target encoding. Genes near associated SNPs subsequently underwent enrichment analysis to explore potential functional mechanisms underlying associations. Latent phenotypes were regressed against their SNP hits and the estimated latent phenotype values were used to measure the amount of AHF variance explained. Results Our method identified over 100 main GWAS effects that were consistent with prior studies and hundreds of novel gene-by-smoking interactions, which collectively accounted for approximately 10% of AHF variance. This represents an improvement over traditional GWAS whose results account for a negligible proportion of AHF variance. Enrichment analyses suggested that hundreds of miRNAs mediated the SNP effect on various AHF-related biological pathways. The TRACE framework can be applied to decode the genetics of other complex diseases. Availability All code is available at https://github.com/EpistasisLab/latent_phenotype_project.
Collapse
Affiliation(s)
- John T. Gregg
- Department of Biostatistics Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Blanca E. Himes
- Department of Biostatistics Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jason H. Moore
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
46
|
Temilola DO, Wium M, Paccez J, Salukazana AS, Otu HH, Carbone GM, Kaestner L, Cacciatore S, Zerbini LF. Potential of miRNAs in Plasma Extracellular Vesicle for the Stratification of Prostate Cancer in a South African Population. Cancers (Basel) 2023; 15:3968. [PMID: 37568783 PMCID: PMC10417259 DOI: 10.3390/cancers15153968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Prostate cancer (PCa) is the most common cause of cancer death among African men. The analysis of microRNAs (miRNAs) in plasma extracellular vesicles (EVs) can be utilized as a non-invasive tool for the diagnosis of PCa. In this study, we used small RNA sequencing to profile miRNAs cargo in plasma EVs from South African PCa patients. We evaluated the differential expression of miRNAs between low and high Gleason scores in the plasma EVs of South African patients and in the prostatic tissue from data available in the Cancer Genome Atlas (TCGA) Data Portal. We identified 7 miRNAs differently expressed in both EVs and prostatic tissues. We evaluated their expression using qPCR in a larger cohort of 10 patients with benign prostatic hyperplasia (BPH) and 24 patients with PCa. Here, we reported that the ratio between two of these miRNAs (i.e., miR-194-5p/miR-16-5p) showed a higher concentration in PCa compared to BPH and in metastatic PCa compared to localized PCa. We explored for the first time the profiling of miRNAs cargo in plasma EVs as a tool for the identification of putative markers in the South African population. Our finding indicated the ratio miR-194-5p/miR-16-5p as a non-invasive marker for the evaluation of PCa aggressiveness in this population.
Collapse
Affiliation(s)
- Dada Oluwaseyi Temilola
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Juliano Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Azola Samkele Salukazana
- Division of Urology, University of Cape Town, Groote Schuur Hospital, Cape Town 7925, South Africa
| | - Hasan H. Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Giuseppina M. Carbone
- Institute of Oncology Research (IOR), Università della Svizzera italiana, 6900 Bellinzona, Switzerland
| | - Lisa Kaestner
- Division of Urology, University of Cape Town, Groote Schuur Hospital, Cape Town 7925, South Africa
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Luiz Fernando Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| |
Collapse
|
47
|
Bulati M, Gallo A, Zito G, Busà R, Iannolo G, Cuscino N, Castelbuono S, Carcione C, Centi C, Martucci G, Bertani A, Baiamonte MP, Chinnici CM, Conaldi PG, Miceli V. 3D Culture and Interferon-γ Priming Modulates Characteristics of Mesenchymal Stromal/Stem Cells by Modifying the Expression of Both Intracellular and Exosomal microRNAs. BIOLOGY 2023; 12:1063. [PMID: 37626949 PMCID: PMC10451847 DOI: 10.3390/biology12081063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Mesenchymal stromal/stem cells (MSCs) have emerged as a therapeutic tool in regenerative medicine. Recent studies have shown that exosome (EXO)-derived microRNAs (miRNAs) play a crucial role in mediating MSC functions. Additionally, intracellular miRNAs have been found to regulate MSC therapeutic capacities. However, the molecular mechanisms underlying miRNA-mediated MSC effects are not fully understood. We used 3D culture and IFN-γ to prime/enhance the MSC therapeutic effects in terms of functional miRNAs. After priming, our analysis revealed stable variations in intracellular miRNA among the MSC biological replicates. Conversely, a significant variability of miRNA was observed among EXOs released from biological replicates of the priming treatment. For each priming, we observed distinct miRNA expression profiles between the MSCs and their EXOs. Moreover, in both types of priming, gene ontology (GO) analysis of deregulated miRNAs highlighted their involvement in tissue repair/regeneration pathways. In particular, the 3D culture enhanced angiogenic properties in both MSCs and EXOs, while IFN-γ treatment enriched miRNAs associated with immunomodulatory pathways. These findings suggest that 3D culture and IFN-γ treatment are promising strategies for enhancing the therapeutic potential of MSCs by modulating miRNA expression. Additionally, the identified miRNAs may contribute to understanding the molecular mechanisms underlying the miRNA-mediated therapeutic effects of MSCs.
Collapse
Affiliation(s)
- Matteo Bulati
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| | - Alessia Gallo
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| | - Giovanni Zito
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| | - Rosalia Busà
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| | - Gioacchin Iannolo
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| | - Nicola Cuscino
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| | - Salvatore Castelbuono
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| | | | - Claudio Centi
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| | - Gennaro Martucci
- Department of Anesthesia and Intensive Care, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy;
| | - Alessandro Bertani
- Thoracic Surgery and Lung Transplantation Unit, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy;
| | - Maria Pia Baiamonte
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| | | | - Pier Giulio Conaldi
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| | - Vitale Miceli
- Research Department, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (A.G.); (G.Z.); (R.B.); (G.I.); (N.C.); (S.C.); (C.C.); (M.P.B.); (P.G.C.)
| |
Collapse
|
48
|
Geng N, Qi Y, Qin W, Li S, Jin H, Jiang Y, Wang X, Wei S, Wang P. Two microRNAs of plasma-derived small extracellular vesicles as biomarkers for metastatic non-small cell lung cancer. BMC Pulm Med 2023; 23:259. [PMID: 37452310 PMCID: PMC10347730 DOI: 10.1186/s12890-023-02538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) of plasma-derived small extracellular vesicles (sEVs) have been proven to be associated with metastasis in several types of cancer. This study aimed to detect miRNAs of plasma-derived sEVs as potential biomarkers for metastatic non-small cell lung cancer (NSCLC). METHODS We assessed the miRNA profiles of plasma-derived sEVs from healthy individuals as the control group (CT group), NSCLC patients without distant organ metastasis as the NM-NSCLC group and patients with distant organ metastasis as the M-NSCLC group. Next-generation sequencing (NGS) was performed on samples, and differentially expressed miRNAs (DEMs) of the three groups were screened. Kyoto Encyclopedia of Genes and Genomes (KEGG) and ClueGO were used to predict potential pathways of DEMs. MiRNA enrichment analysis and annotation tool (miEAA) was used to understand changes in the tumour microenvironment in NSCLC. Quantitative reverse transcription polymerase chain reaction (qRT‒PCR) analysis was used to validate target miRNAs. RESULT NGS was performed on 38 samples of miRNAs of plasma-derived sEVs, and DEMs were screened out between the above three groups. Regarding the distribution of DEMs in the NM-NSCLC and M-NSCLC groups, KEGG pathway analysis showed enrichment in focal adhesion and gap junctions and ClueGO in the Rap1 and Hippo signaling pathways; miEAA found that fibroblasts were over-represented. From our screening, miRNA-200c-3p and miRNA-4429 were found to be predictive DEMs among the CT, NM-NSCLC and M-NSCLC groups, and qRT‒PCR was applied to verify the results. Finally, it was revealed that expression levels of miR-200c-3p and miR-4429 were significantly upregulated in M-NSCLC patients. CONCLUSION This study identified miRNA-200c-3p and miRNA-4429 as potential biomarkers for NSCLC metastasis.
Collapse
Affiliation(s)
- Nan Geng
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Yaopu Qi
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Wenwen Qin
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Si Li
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Hao Jin
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Yifang Jiang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Xiuhuan Wang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Shanna Wei
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China
| | - Ping Wang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China.
| |
Collapse
|
49
|
Qiu J, Chen J, Deng G, Yuan S. Identification of MiR-223 Associated with Diagnosis in Ectopic Pregnancy. Int J Gen Med 2023; 16:2693-2705. [PMID: 37398511 PMCID: PMC10314770 DOI: 10.2147/ijgm.s412439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023] Open
Abstract
Background In this study, we conducted an integrated study of the diagnostic value of MiR-223 in ectopic pregnancy (EP). Methods We used GSE44731 downloaded from GEO and GEO2R to identify differentially expressed miRNA. The hub genes corresponding to the differential miRNA were then identified by using the Xiantao academic tool, GO (Gene Ontology), and KEGG (Kyoto Encyclopedia of Genes and Genomes). Afterward, we used the miEAA database to perform gene set enrichment analysis (GSEA) of differential miRNA, and used Xiantao academic tools again to conduct the ceRNA network based on the target genes. Protein-protein interaction (PPI) network construction and lncRNA of hub miRNA target genes were then predicted by the starbase database. For validation, the villus tissue from intrauterine pregnancy and tubal pregnancy was collected and assayed by qPCR. Results In total 19 differentially expressed miRNAs were screened out, of which MiR-223 had a relatively clear diagnostic significance. Hub genes were enriched and analyzed by GO, KEGG, and GSEA, and the results showed that regulation of NF-κB and other signaling pathways are primarily enriched in ectopic pregnancy. We also obtained 215 key genes from PPI analysis. Our ceRNA analysis indicated that LRRC75A-AS1 and PITPNA-AS1 were associated with MiR-223, and the expression of MiR-223 in qPCR was significantly high in tubal pregnancy group. Conclusion We found that MiR-223 can be used in the diagnosis of EP. Our findings provide valuable information and direction for future research into novel targets for EP diagnosis.
Collapse
Affiliation(s)
- Jiahan Qiu
- Department of Gynaecology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Jiaxun Chen
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Gaopi Deng
- Department of Gynaecology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Shuo Yuan
- Department of Gynaecology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
50
|
Rego N, Libisch MG, Rovira C, Tosar JP, Robello C. Comparative microRNA profiling of Trypanosoma cruzi infected human cells. Front Cell Infect Microbiol 2023; 13:1187375. [PMID: 37424776 PMCID: PMC10322668 DOI: 10.3389/fcimb.2023.1187375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Trypanosoma cruzi, the causative agent of Chagas disease, can infect almost any nucleated cell in the mammalian host. Although previous studies have described the transcriptomic changes that occur in host cells during parasite infection, the understanding of the role of post-transcriptional regulation in this process is limited. MicroRNAs, a class of short non-coding RNAs, are key players in regulating gene expression at the post-transcriptional level, and their involvement in the host-T. cruzi interplay is a growing area of research. However, to our knowledge, there are no comparative studies on the microRNA changes that occur in different cell types in response to T. cruzi infection. Methods and results Here we investigated microRNA changes in epithelial cells, cardiomyocytes and macrophages infected with T. cruzi for 24 hours, using small RNA sequencing followed by careful bioinformatics analysis. We show that, although microRNAs are highly cell type-specific, a signature of three microRNAs -miR-146a, miR-708 and miR-1246, emerges as consistently responsive to T. cruzi infection across representative human cell types. T. cruzi lacks canonical microRNA-induced silencing mechanisms and we confirm that it does not produce any small RNA that mimics known host microRNAs. We found that macrophages show a broad response to parasite infection, while microRNA changes in epithelial and cardiomyocytes are modest. Complementary data indicated that cardiomyocyte response may be greater at early time points of infection. Conclusions Our findings emphasize the significance of considering microRNA changes at the cellular level and complement previous studies conducted at higher organizational levels, such as heart samples. While miR-146a has been previously implicated in T. cruzi infection, similarly to its involvement in many other immunological responses, miR-1246 and miR-708 are demonstrated here for the first time. Given their expression in multiple cell types, we anticipate our work as a starting point for future investigations into their role in the post-transcriptional regulation of T. cruzi infected cells and their potential as biomarkers for Chagas disease.
Collapse
Affiliation(s)
- Natalia Rego
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Gabriela Libisch
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Carlos Rovira
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden
| | - Juan Pablo Tosar
- Laboratorio de Genómica Funcional, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Unidad de Bioquímica Analítica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|