1
|
Zhang Y, Gong L, Ding R, Chen W, Rong H, Li Y, Shameem F, Ali KA, Li L, Liao Q. eRNA-IDO: A One-stop Platform for Identification, Interactome Discovery, and Functional Annotation of Enhancer RNAs. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae059. [PMID: 39178387 PMCID: PMC11514848 DOI: 10.1093/gpbjnl/qzae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/20/2024] [Accepted: 08/05/2024] [Indexed: 08/25/2024]
Abstract
Growing evidence supports the transcription of enhancer RNAs (eRNAs) and their important roles in gene regulation. However, their interactions with other biomolecules and their corresponding functionality remain poorly understood. In an attempt to facilitate mechanistic research, this study presents eRNA-IDO, the first integrative computational platform for the identification, interactome discovery, and functional annotation of human eRNAs. eRNA-IDO comprises two modules: eRNA-ID and eRNA-Anno. Functionally, eRNA-ID can identify eRNAs from de novo assembled transcriptomes. eRNA-ID includes eight kinds of enhancer makers, enabling users to customize enhancer regions flexibly and conveniently. In addition, eRNA-Anno provides cell-/tissue-specific functional annotation for both new and known eRNAs by analyzing the eRNA interactome from prebuilt or user-defined networks between eRNAs and protein-coding genes. The prebuilt networks include the Genotype-Tissue Expression (GTEx)-based co-expression networks in normal tissues, The Cancer Genome Atlas (TCGA)-based co-expression networks in cancer tissues, and omics-based eRNA-centric regulatory networks. eRNA-IDO can facilitate research on the biogenesis and functions of eRNAs. The eRNA-IDO server is freely available at http://bioinfo.szbl.ac.cn/eRNA_IDO/.
Collapse
Affiliation(s)
- Yuwei Zhang
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
- Biomedical Big Data Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lihai Gong
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Ruofan Ding
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Wenyan Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Hao Rong
- School of Clinical Medicine, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yanguo Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Fawziya Shameem
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | | | - Lei Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Qi Liao
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Babic T, Ugrin M, Jeremic S, Kojic M, Dinic J, Banovic Djeri B, Zoidakis J, Nikolic A. Dysregulation of transcripts SMAD4-209 and SMAD4-213 and their respective promoters in colon cancer cell lines. J Cancer 2024; 15:5118-5131. [PMID: 39132157 PMCID: PMC11310865 DOI: 10.7150/jca.98911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024] Open
Abstract
Background: The pervasive role of alternative promoters in context-specific isoform expression and the importance of promoter choice over its level of transcriptional activity have been recently implied based on pan-cancer in silico studies. We aimed to explore this phenomenon at the cellular level on the example of a major tumor suppressor SMAD4 in search of molecular mechanisms in colorectal cancer that could be exploited for novel biomarkers or therapeutic approaches. Methods: Multi-omics technologies, in silico tools and in vitro functional assays were applied to analyze the transcripts expression and the alternative promoters' function of the SMAD4 gene in colon cell lines HCEC-1CT, HCT116, DLD-1, SW480 and SW620. Results: High expression of the transcript SMAD4-213 emerged as a hallmark of colon cancer cells, while in silico tools point to its possible additional role and potential for sponging miRNAs. Based on the observed dysregulation of SMAD4-209 and SMAD4-213 in malignant vs. non-malignant colon cells, we propose that their expression ratio might be a solid biomarker candidate for colorectal cancer detection. Conclusions: A differential pattern of the respective promoters' activity was observed that corresponds to the expression of transcripts, confirming the role of alternative promoters in context-specific isoform expression. The investigated SMAD4 promoters and transcripts harbor translational potential that should be further investigated.
Collapse
Affiliation(s)
- Tamara Babic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | - Milena Ugrin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | - Sanja Jeremic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | - Milan Kojic
- Institute of Virology, Vaccines and Sera “Torlak”, 11152 Belgrade, Serbia
| | - Jelena Dinic
- Institute for Biological Research “Siniša Stanković” — National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Bojana Banovic Djeri
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | - Jerome Zoidakis
- Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
- Proteomics Laboratory, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Aleksandra Nikolic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| |
Collapse
|
3
|
Wakabayashi Y, Shimono A, Terauchi Y, Zeng C, Hamada M, Semba K, Watanabe S, Ishikawa K. Identification of a novel RNA transcript TISPL upregulated by stressors that stimulate ATF4. Gene 2024; 917:148464. [PMID: 38615981 DOI: 10.1016/j.gene.2024.148464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Cells sense, respond, and adapt to environmental conditions that cause stress. In a previous study using HeLa cells, we isolated reporter cells responding to the endoplasmic reticulum (ER) stress inducers, thapsigargin and tunicamycin, using a highly sensitive promoter trap vector system. Splinkerette PCR and 5' rapid amplification of cDNA ends (5' RACE) identified a novel transcript that is upregulated by ER stress. Its endogenous expression increased approximately 10-fold in response to thapsigargin and tunicamycin within 1 h, but was down-regulated after 4 h. Because the transcript starts from an intron of a long noncoding RNA known as LINC-PINT, we designated the newly identified transcript TISPL (transcript induced by stressors from LINC-PINTlocus). TISPL was also expressed under several other stress conditions. It was particularly increased > 10-fold upon glucose starvation and 7-fold by arsenite exposure. Furthermore, in silico analyses, including a ChIP-atlas search, revealed that there is an ATF4-binding region with a c/ebp-Atf response element (CARE) downstream of the transcription start site of TISPL. Based on these results, we hypothesized that TISPL may be induced by the phospho-eIF2α and ATF4- axis of the integrated stress response pathway, which is known to be activated by the stress conditions listed above. As expected, knockout of ATF4 abolished the stress-induced upregulation of TISPL. Our results indicate that TISPL may be a useful biomarker for detecting stress conditions that activate ATF4. Our highly sensitive trap vector system proved beneficial in discovering new biomarkers.
Collapse
Affiliation(s)
- Yutaro Wakabayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Aika Shimono
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yuki Terauchi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Chao Zeng
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Michiaki Hamada
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Shinya Watanabe
- Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Kosuke Ishikawa
- Japan Biological Informatics Consortium (JBiC), 2-4-32 Aomi, Koto-ku, Tokyo 135-8073, Japan.
| |
Collapse
|
4
|
Sun M, Chang L, He L, Wang L, Jiang Z, Si Y, Yu J, Ma Y. Combining single-cell profiling and functional analysis explores the role of pseudogenes in human early embryonic development. J Genet Genomics 2024:S1673-8527(24)00189-9. [PMID: 39032861 DOI: 10.1016/j.jgg.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
More and more studies have demonstrated that pseudogenes possess coding ability, and the functions of their transcripts in the development of diseases have been partially revealed. However, the role of pseudogenes in maintenance of normal physiological states and life activities has long been neglected. Here, we identify pseudogenes that are dynamically expressed during human early embryogenesis, showing different expression pattern from that of adult tissues. We explore the expression correlation between pseudogenes and the parent genes, part due to their shared gene regulatory elements or the potential regulation network between them. The essential role of three pseudogenes, PI4KAP1, TMED10P1, and FBXW4P1, in maintaining self-renewal of human embryonic stem cells is demonstrated. We further find that the three pseudogenes might perform their regulatory functions by binding to proteins or microRNAs. The pseudogene-related single-nucleotide polymorphisms are significantly associated with human congenital disease, further illustrating their importance during early embryonic development. Overall, this study is an excavation and exploration of functional pseudogenes during early human embryonic development, suggesting that pseudogenes are not only capable of being specifically activated in pathological states, but also play crucial roles in the maintenance of normal physiological states.
Collapse
Affiliation(s)
- Mengyao Sun
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan 610052, China
| | - Le Chang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Liu He
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Li Wang
- Department of Obstetrics, Haidian District Maternity and Child Health Hospital, Beijing 100080, China
| | - Zhengyang Jiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yanmin Si
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan 610052, China; Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
| | - Yanni Ma
- State Key Laboratory of Common Mechanism Research for Major Diseases, Key Laboratory of RNA and Hematopoietic Regulation, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan 610052, China.
| |
Collapse
|
5
|
Sánchez-Marín D, Silva-Cázares MB, Porras-Reyes FI, García-Román R, Campos-Parra AD. Breaking paradigms: Long non-coding RNAs forming gene fusions with potential implications in cancer. Genes Dis 2024; 11:101136. [PMID: 38292185 PMCID: PMC10825296 DOI: 10.1016/j.gendis.2023.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/16/2023] [Accepted: 09/10/2023] [Indexed: 02/01/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs longer than 200 nucleotides with dynamic regulatory functions. They interact with a wide range of molecules such as DNA, RNA, and proteins to modulate diverse cellular functions through several mechanisms and, if deregulated, they can lead to cancer development and progression. Recently, it has been described that lncRNAs are susceptible to form gene fusions with mRNAs or other lncRNAs, breaking the paradigm of gene fusions consisting mainly of protein-coding genes. However, their biological significance in the tumor phenotype is still uncertain. Therefore, their recent identification opens a new line of research to study their biological role in tumorigenesis, and their potential as biomarkers with clinical relevance or as therapeutic targets. The present study aimed to review the lncRNA fusions identified so far and to know which of them have been associated with a potential function. We address the current challenges to deepen their study as well as the reasons why they represent a future therapeutic window in cancer.
Collapse
Affiliation(s)
- David Sánchez-Marín
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04360, México
| | - Macrina Beatriz Silva-Cázares
- Unidad Académica Multidisciplinaria Región Altiplano, Universidad Autónoma de San Luis Potosí (UASLP), Carretera a Cedral Km 5+600, Ejido San José de la Trojes, Matehuala, San Luis Potosí, C.P. 78760, México
| | - Fany Iris Porras-Reyes
- Servicio de Anatomía Patológica, Instituto Nacional de Cancerología (INCan), Niño Jesús, Tlalpan, Ciudad de México, C.P. 14080, México
| | - Rebeca García-Román
- Instituto de Salud Pública, Universidad Veracruzana (UV), Av. Dr Luis, Dr. Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa, Veracruz, C.P. 91190, México
| | - Alma D. Campos-Parra
- Instituto de Salud Pública, Universidad Veracruzana (UV), Av. Dr Luis, Dr. Castelazo Ayala s/n, Col. Industrial Ánimas, Xalapa, Veracruz, C.P. 91190, México
| |
Collapse
|
6
|
Bonilauri B, Ribeiro AL, Spangenberg L, Dallagiovanna B. Unveiling Polysomal Long Non-Coding RNA Expression on the First Day of Adipogenesis and Osteogenesis in Human Adipose-Derived Stem Cells. Int J Mol Sci 2024; 25:2013. [PMID: 38396700 PMCID: PMC10888724 DOI: 10.3390/ijms25042013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Understanding the intricate molecular mechanisms governing the fate of human adipose-derived stem cells (hASCs) is essential for elucidating the delicate balance between adipogenic and osteogenic differentiation in both healthy and pathological conditions. Long non-coding RNAs (lncRNAs) have emerged as key regulators involved in lineage commitment and differentiation of stem cells, operating at various levels of gene regulation, including transcriptional, post-transcriptional, and post-translational processes. To gain deeper insights into the role of lncRNAs' in hASCs' differentiation, we conducted a comprehensive analysis of the lncRNA transcriptome (RNA-seq) and translatome (polysomal-RNA-seq) during a 24 h period of adipogenesis and osteogenesis. Our findings revealed distinct expression patterns between the transcriptome and translatome during both differentiation processes, highlighting 90 lncRNAs that are exclusively regulated in the polysomal fraction. These findings underscore the significance of investigating lncRNAs associated with ribosomes, considering their unique expression patterns and potential mechanisms of action, such as translational regulation and potential coding capacity for microproteins. Additionally, we identified specific lncRNA gene expression programs associated with adipogenesis and osteogenesis during the early stages of cell differentiation. By shedding light on the expression and potential functions of these polysome-associated lncRNAs, we aim to deepen our understanding of their involvement in the regulation of adipogenic and osteogenic differentiation, ultimately paving the way for novel therapeutic strategies and insights into regenerative medicine.
Collapse
Affiliation(s)
- Bernardo Bonilauri
- Stem Cell Basic Biology Laboratory (LABCET), Carlos Chagas Institute—Fiocruz/PR, Curitiba 81350-010, PR, Brazil;
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Annanda Lyra Ribeiro
- Stem Cell Basic Biology Laboratory (LABCET), Carlos Chagas Institute—Fiocruz/PR, Curitiba 81350-010, PR, Brazil;
| | - Lucía Spangenberg
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
| | - Bruno Dallagiovanna
- Stem Cell Basic Biology Laboratory (LABCET), Carlos Chagas Institute—Fiocruz/PR, Curitiba 81350-010, PR, Brazil;
| |
Collapse
|
7
|
Hou Y, Yang S, Zhao Z, Huang Y, Zhang Y, Ruan W, Duan X. Long Noncoding RNA lnc-TCEA1-3 Affects Osteoclastic Function by Regulating ATP6V1H. Crit Rev Eukaryot Gene Expr 2024; 34:15-26. [PMID: 37824389 DOI: 10.1615/critreveukaryotgeneexpr.2023048669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
H subunit of V-ATPase (ATP6V1H) is specifically expressed in osteoclasts and its deficiency lead to osteoporosis. Our group previously found four intronic SNPs of ATP6V1H related to reduced bone mineral density, but the mechanisms was not clear. In this study, we found that the above four SNPs were located at lncRNA lnc-TCEA1-3 by using bioinformatics analysis. We further detected the function of lnc-TCEA1-3 on regulating ATP6V1H and osteoclast function using Atp6v1h knockout mice, lentivirus transfection and qPCR analysis. Over expression of lnc-TCEA1-3 up regulated the expression of ATP6V1H in HEK293 cells, HOS cells and primarily cultured osteoclasts, and increased the number of primarily cultured osteoclasts. In addition, over expression of lnc-TCEA1-3 exerted distinct effect on two transcripts of ATP6V1H in HEK293, HOS and osteoclasts. This study will facilitate the in-depth analysis of the effects of ATP6V1H on bone diseases, and discover new therapeutic strategies.
Collapse
Affiliation(s)
- Yuzhuan Hou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; College of Stomatology, Ningxia Medical University, Yinchuan 750004, China
| | - Shaoqing Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Zanyan Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yongqing Huang
- College of Stomatology, Ningxia Medical University, Yinchuan 750004, China
| | - Yanli Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Wenyan Ruan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China; College of Stomatology, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Oral Biology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
8
|
Jovanovic E, Babic T, Dragicevic S, Kmezic S, Nikolic A. Transcript CD81-215 may be a long noncoding RNA of stromal origin with tumor-promoting role in colon cancer. Cell Biochem Funct 2023; 41:1503-1513. [PMID: 38014564 DOI: 10.1002/cbf.3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
The role of tetraspanin CD81 in malignant transformation is best studied in colorectal cancer, and it appears that other transcripts beside the fully coding mRNA may also be dysregulated in malignant cells. Recent data from a comprehensive pan-cancer transcriptome analysis demonstrated differential activity of two alternative CD81 gene promoters in malignant versus nonmalignant gut mucosa. The promoter active in gut mucosa gives rise to transcripts CD81-203 and CD81-213, while the promoter active in colon and rectal cancer gives rise to transcripts CD81-205 and CD81-215. Our study aimed to explore the biomarker potential of the transcripts from the alternative CD81 gene promoters in colon cancer, as well as to investigate their structure and potential function using in silico tools. The analysis of the transcripts' expression in several colon cell lines cultivated in 2D and 3D and a set of colon cancer and healthy gut mucosa samples by qPCR and RNA sequencing suggested their low expression and stromal origin. Expression patterns in tumor and nontumor tissue along with in silico data suppose that the transcript CD81-215 may be a noncoding RNA of stromal origin with possible involvement in signaling related to malignant transformation.
Collapse
Affiliation(s)
- Emilija Jovanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Tamara Babic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sandra Dragicevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Stefan Kmezic
- Clinic for Digestive Surgery, Clinical Center of Serbia, Belgrade, Serbia
| | - Aleksandra Nikolic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Yang T, Tian S, Zhao J, Pei M, Zhao M, Yang X. LncRNA ABHD11-AS1 activates EGFR signaling to promote cervical cancer progression by preventing FUS-mediated degradation of ABHD11 mRNA. Cell Cycle 2023; 22:2538-2551. [PMID: 38146687 PMCID: PMC10936639 DOI: 10.1080/15384101.2023.2297591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023] Open
Abstract
Cervical cancer is one of the most common gynecological cancers with high metastasis, poor prognosis and conventional chemotherapy. The long non-coding RNA (lncRNA) ABHD11 antisense RNA 1 (ABHD11-AS1) plays a vital role in tumorigenesis and is involved in cell proliferation, differentiation, and apoptosis. Especially for cervical cancer, the functions and mechanisms of ABHD11-AS1 are still undetermined. In this study, we explored the role and underlying mechanism of ABHD11-AS1 in cervical cancer. We found that ABHD11-AS1 is highly expressed in cervical cancer tissue. The roles of ABHD11-AS1 and EGFR have investigated the loss of function analysis and cell movability in SiHa and Hela cells. Knockdown of ABHD11-AS1 and EGFR significantly inhibited the proliferation, migration, and invasion and promoted apoptosis of SiHa and Hela cells by up-regulating p21 and Bax and down-regulating cyclin D1, Bcl2, MMP9, and Vimentin. ABHD11-AS1 knockdown could decrease the expression of EGFR. In addition, ABHD11-AS1 could regulate the EGFR signaling pathway, including p-EGFR, p-AKT, and p-ERK. Spearman's correlation analysis and cell experiments demonstrated that ABHD11 was highly expressed in tumor tissue and partially offset the effect of shABHD11-AS1 on the proliferation, migration, and invasion of SiHa and Hela cells. Then, RNA pulldown was used to ascertain the mechanisms of ABHD11-AS1 and FUS. ABHD11-AS1 inhibited ABHD11 mRNA degradation by bounding to FUS. A subcutaneous xenograft of SiHa cells was established to investigate the effect of ABHD11-AS1 in tumor tissue. Knockdown of ABDH11-AS1 inhibited tumor growth and decreased the tumor volume. ABHD11-AS1 knockdown inhibited the expression of Ki67 and Vimentin and up-regulated the expression of Tunel. Our data indicated that ABHD11-AS1 promoted cervical cancer progression by activating EGFR signaling, preventing FUS-mediated degradation of ABHD11 mRNA. Our findings provide novel insights into the potential role of lncRNA in cervical cancer therapy.
Collapse
Affiliation(s)
- Ting Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Sijuan Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Juan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Meili Pei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | - Minyi Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China
| | | |
Collapse
|
10
|
Tao S, Hou Y, Diao L, Hu Y, Xu W, Xie S, Xiao Z. Long noncoding RNA study: Genome-wide approaches. Genes Dis 2023; 10:2491-2510. [PMID: 37554208 PMCID: PMC10404890 DOI: 10.1016/j.gendis.2022.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/09/2022] [Accepted: 10/23/2022] [Indexed: 11/30/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been confirmed to play a crucial role in various biological processes across several species. Though many efforts have been devoted to the expansion of the lncRNAs landscape, much about lncRNAs is still unknown due to their great complexity. The development of high-throughput technologies and the constantly improved bioinformatic methods have resulted in a rapid expansion of lncRNA research and relevant databases. In this review, we introduced genome-wide research of lncRNAs in three parts: (i) novel lncRNA identification by high-throughput sequencing and computational pipelines; (ii) functional characterization of lncRNAs by expression atlas profiling, genome-scale screening, and the research of cancer-related lncRNAs; (iii) mechanism research by large-scale experimental technologies and computational analysis. Besides, primary experimental methods and bioinformatic pipelines related to these three parts are summarized. This review aimed to provide a comprehensive and systemic overview of lncRNA genome-wide research strategies and indicate a genome-wide lncRNA research system.
Collapse
Affiliation(s)
- Shuang Tao
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Yarui Hou
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Liting Diao
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Yanxia Hu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Wanyi Xu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Shujuan Xie
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
- Institute of Vaccine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Zhendong Xiao
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| |
Collapse
|
11
|
Triantaphyllopoulos KA. Long Non-Coding RNAs and Their "Discrete" Contribution to IBD and Johne's Disease-What Stands out in the Current Picture? A Comprehensive Review. Int J Mol Sci 2023; 24:13566. [PMID: 37686376 PMCID: PMC10487966 DOI: 10.3390/ijms241713566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Non-coding RNAs (ncRNA) have paved the way to new perspectives on the regulation of gene expression, not only in biology and medicine, but also in associated fields and technologies, ensuring advances in diagnostic means and therapeutic modalities. Critical in this multistep approach are the associations of long non-coding RNA (lncRNA) with diseases and their causal genes in their networks of interactions, gene enrichment and expression analysis, associated pathways, the monitoring of the involved genes and their functional roles during disease progression from one stage to another. Studies have shown that Johne's Disease (JD), caused by Mycobacterium avium subspecies partuberculosis (MAP), shares common lncRNAs, clinical findings, and other molecular entities with Crohn's Disease (CD). This has been a subject of vigorous investigation owing to the zoonotic nature of this condition, although results are still inconclusive. In this review, on one hand, the current knowledge of lncRNAs in cells is presented, focusing on the pathogenesis of gastrointestinal-related pathologies and MAP-related infections and, on the other hand, we attempt to dissect the associated genes and pathways involved. Furthermore, the recently characterized and novel lncRNAs share common pathologies with IBD and JD, including the expression, molecular networks, and dataset analysis results. These are also presented in an attempt to identify potential biomarkers pertinent to cattle and human disease phenotypes.
Collapse
Affiliation(s)
- Kostas A Triantaphyllopoulos
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos St., 11855 Athens, Greece
| |
Collapse
|
12
|
Yi E, Lin B, Zhang Y, Wang X, Zhang J, Liu Y, Jin J, Hong W, Lin Z, Cao W, Mei X, Bai G, Bing Li B, Zhou Y, Ran P. Smad3-mediated lncRNA HSALR1 enhances the non-classic signalling pathway of TGF-β1 in human bronchial fibroblasts by binding to HSP90AB1. Clin Transl Med 2023; 13:e1292. [PMID: 37317677 PMCID: PMC10267427 DOI: 10.1002/ctm2.1292] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is one of the diseases with high mortality and morbidity with complex pathogenesis. Airway remodeling is an unavoidable pathological characteristic. However, the molecular mechanisms of airway remodeling are incompletely defined. METHODS lncRNAs highly correlated with transforming growth factor beta 1(TGF-β1) expression were chosen, the lncRNA ENST00000440406 (named HSP90AB1 Assoicated LncRNA 1, HSALR1) was chosen for further functional experiments. Dual luciferase and ChIP assay were used to detect the upstream of HSALR1, transcriptome sequencing, Cck-8, Edu, cell proliferation, cell cycle assay, and WB detection of pathway levels confirmed the effect of HSALR1 on fibroblast proliferation and phosphorylation levels of related pathways. Mice was infected with adeno-associated virus (AAV) to express HSALR1 by intratracheal instillation under anesthesia and was exposure to cigarette smoke, then mouse lung function was performed and the pathological sections of lung tissues were analyzed. RESULTS Herein, lncRNA HSALR1 was identified as highly correlated with the TGF-β1 and mainly expressed in human lung fibroblasts. HSALR1 was induced by Smad3 and promoted fibroblasts proliferation. Mechanistically, it could directly bind to HSP90AB1 protein, and acted as a scaffold to stabilize the binding between Akt and HSP90AB1 to promote Akt phosphorylation. In vivo, mice expressed HSALR1 by AAV was exposure to cigarette smoke (CS) for COPD modeling. We found that lung function was worse and airway remodeling was more pronounced in HSLAR1 mice compare to wild type (WT) mice. CONCLUSION Our results suggest that lncRNA HSALR1 binds to HSP90AB1 and Akt complex component, and enhances activity of the TGF-β1 smad3-independent pathway. This finding described here suggest that lncRNA can participate in COPD development, and HSLAR1 is a promising molecular target of COPD therapy.
Collapse
Affiliation(s)
- Erkang Yi
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Biting Lin
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Yi Zhang
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xiaoyu Wang
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jiahuan Zhang
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Yu Liu
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jing Jin
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Wei Hong
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhiwei Lin
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Weitao Cao
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xinyue Mei
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Ge Bai
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Bing Bing Li
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Yumin Zhou
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Pixin Ran
- Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease & National Center for Respiratory MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- Guangzhou LaboratoryBiolandGuangzhouGuangdongChina
| |
Collapse
|
13
|
Gandhi S, Bhushan A, Shukla U, Pundir A, Singh S, Srivastava T. Downregulation of lncRNA SNHG1 in hypoxia and stem cells is associated with poor disease prognosis in gliomas. Cell Cycle 2023; 22:1135-1153. [PMID: 36945177 PMCID: PMC10081076 DOI: 10.1080/15384101.2023.2191411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/15/2023] [Accepted: 03/12/2023] [Indexed: 03/23/2023] Open
Abstract
Gliomas are brain tumors associated with high morbidity, relapse and lethality despite improvement in therapeutic regimes. The hypoxic tumor microenvironment is a key feature associated with such poor outcomes in gliomas. The Hypoxia Inducible Factor (HIF) family of transcription factors are master regulators of cellular proliferation, high metabolic rates and angiogenesis via aberrant expression of downstream genes. Recent studies have implicated long non-coding RNAs (lncRNAs) as potential prognostic and diagnostic biomarkers. In this study, identification of hypoxia regulated lncRNA with a bioinformatic pipeline consisting of a newly developed tool "GenOx" was utilized for the identification of Hypoxia Response Element (HRE) and Hypoxia Ancillary Sequence (HAS) motifs in the promoter regions of lncRNAs. This was coupled with molecular, functional and interactome-based analyses of these hypoxia-relevant lncRNAs in primary tumors and cell-line models. We report on the identification of novel hypoxia regulated lncRNAs SNHG12, CASC7 and MF12-AS1. A strong association of RNA splicing mechanisms was observed with enriched lncRNAs. Several lncRNAs have emerged as prognostic biomarkers, of which TP53TG1 and SNHG1 were identified as highly relevant lncRNAs in glioma progression and validated in hypoxia cultured cells. Significantly, we determined that SNHG1 expression in tumor (vs. normal) is different from glioma stem cells, GSC (vs. tumors) and in hypoxia (vs. normoxia), positioning downregulation of SNHG1 to be associated with worsened prognosis.
Collapse
Affiliation(s)
- Sanchit Gandhi
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Ashish Bhushan
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Unmesh Shukla
- Institute of Informatics and Communication, University of Delhi South Campus, New Delhi, India
| | - Amit Pundir
- Department of Electronics, Maharaja Agrasen College, University of Delhi, Delhi, India
| | - Sanjeev Singh
- Institute of Informatics and Communication, University of Delhi South Campus, New Delhi, India
| | - Tapasya Srivastava
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
14
|
Jin N, Kan CM, Pei XM, Cheung WL, Ng SSM, Wong HT, Cheng HYL, Leung WW, Wong YN, Tsang HF, Chan AKC, Wong YKE, Cho WCS, Chan JKC, Tai WCS, Chan TF, Wong SCC, Yim AKY, Yu ACS. Cell-free circulating tumor RNAs in plasma as the potential prognostic biomarkers in colorectal cancer. Front Oncol 2023; 13:1134445. [PMID: 37091184 PMCID: PMC10115432 DOI: 10.3389/fonc.2023.1134445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
BackgroundCell free RNA (cfRNA) contains transcript fragments from multiple cell types, making it useful for cancer detection in clinical settings. However, the pathophysiological origins of cfRNAs in plasma from colorectal cancer (CRC) patients remain unclear.MethodsTo identify the tissue-specific contributions of cfRNAs transcriptomic profile, we used a published single-cell transcriptomics profile to deconvolute cell type abundance among paired plasma samples from CRC patients who underwent tumor-ablative surgery. We further validated the differentially expressed cfRNAs in 5 pairs of CRC tumor samples and adjacent tissue samples as well as 3 additional CRC tumor samples using RNA-sequencing.ResultsThe transcriptomic component from intestinal secretory cells was significantly decreased in the in-house post-surgical cfRNA. The HPGD, PACS1, and TDP2 expression was consistent across cfRNA and tissue samples. Using the Cancer Genome Atlas (TCGA) CRC datasets, we were able to classify the patients into two groups with significantly different survival outcomes.ConclusionsThe three-gene signature holds promise in applying minimal residual disease (MRD) testing, which involves profiling remnants of cancer cells after or during treatment. Biomarkers identified in the present study need to be validated in a larger cohort of samples in order to ascertain their possible use in early diagnosis of CRC.
Collapse
Affiliation(s)
- Nana Jin
- R&D, Codex Genetics Limited, Hong Kong, Hong Kong SAR, China
| | - Chau-Ming Kan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Xiao Meng Pei
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Wing Lam Cheung
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Simon Siu Man Ng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Heong Ting Wong
- Department of Pathology, Kiang Wu Hospital, Macau, Macau SAR, China
| | - Hennie Yuk-Lin Cheng
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Wing Wa Leung
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yee Ni Wong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | | | - Yin Kwan Evelyn Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR, China
| | | | - William Chi Shing Tai
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- *Correspondence: Allen Chi-Shing Yu, ; Aldrin Kay-Yuen Yim, ; Sze Chuen Cesar Wong,
| | - Aldrin Kay-Yuen Yim
- R&D, Codex Genetics Limited, Hong Kong, Hong Kong SAR, China
- *Correspondence: Allen Chi-Shing Yu, ; Aldrin Kay-Yuen Yim, ; Sze Chuen Cesar Wong,
| | - Allen Chi-Shing Yu
- R&D, Codex Genetics Limited, Hong Kong, Hong Kong SAR, China
- *Correspondence: Allen Chi-Shing Yu, ; Aldrin Kay-Yuen Yim, ; Sze Chuen Cesar Wong,
| |
Collapse
|
15
|
Yang W, Bai Q, Li Y, Chen J, Liu C. Epigenetic modifications: Allusive clues of lncRNA functions in plants. Comput Struct Biotechnol J 2023; 21:1989-1994. [PMID: 36950220 PMCID: PMC10025020 DOI: 10.1016/j.csbj.2023.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/25/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been verified as flexible and important factors in various biological processes of multicellular eukaryotes, including plants. The respective intricate crosstalk among multiple epigenetic modifications has been examined to some extent. However, only a small proportion of lncRNAs has been functionally well characterized. Moreover, the relationship between lncRNAs and other epigenetic modifications has not been systematically studied. In this mini-review, we briefly summarize the representative biological functions of lncRNAs in developmental programs and environmental responses in plants. In addition, we particularly discuss the intimate relationship between lncRNAs and other epigenetic modifications, and we outline the underlying avenues and challenges for future research on plant lncRNAs.
Collapse
Affiliation(s)
- Wenjing Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Yunnan Key Laboratory of Crop Wild Relatives Omics, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanzi Bai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Yunnan Key Laboratory of Crop Wild Relatives Omics, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yan Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Yunnan Key Laboratory of Crop Wild Relatives Omics, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Yunnan Key Laboratory of Crop Wild Relatives Omics, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Yunnan Key Laboratory of Crop Wild Relatives Omics, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, China
- Corresponding author at: CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Yunnan Key Laboratory of Crop Wild Relatives Omics, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
16
|
Ren W, Yuan Y, Peng J, Mutti L, Jiang X. The function and clinical implication of circular RNAs in lung cancer. Front Oncol 2022; 12:862602. [PMID: 36338714 PMCID: PMC9629004 DOI: 10.3389/fonc.2022.862602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Despite the recent advent of promising new targeted therapies, lung cancer diagnostic strategies still have difficulty in identifying the disease at an early stage. Therefore, the characterizations of more sensible and specific cancer biomarkers have become an important goal for clinicians. Circular RNAs are covalently close, endogenous RNAs without 5' end caps or 3'poly (A) tails and have been characterized by high stability, abundance, and conservation as well as display cell/tissue/developmental stage-specific expressions. Numerous studies have confirmed that circRNAs act as microRNA (miRNA) sponges, RNA-binding protein, and transcriptional regulators; some circRNAs even act as translation templates that participate in multiple pathophysiological processes. Growing evidence have confirmed that circRNAs are involved in the pathogenesis of lung cancers through the regulation of proliferation and invasion, cell cycle, autophagy, apoptosis, stemness, tumor microenvironment, and chemotherapy resistance. Moreover, circRNAs have emerged as potential biomarkers for lung cancer diagnosis and prognosis and targets for developing new treatments. In this review, we will summarize recent progresses in identifying the biogenesis, biological functions, potential mechanisms, and clinical applications of these molecules for lung cancer diagnosis, prognosis, and targeted therapy.
Collapse
Affiliation(s)
- Wenjun Ren
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yixiao Yuan
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Peng
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Luciano Mutti
- The Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Xiulin Jiang
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Ma T, Li H, Liu H, Peng Y, Lin T, Deng Z, Jia N, Chen Z, Wang P. Neat1 promotes acute kidney injury to chronic kidney disease by facilitating tubular epithelial cells apoptosis via sequestering miR-129-5p. Mol Ther 2022; 30:3313-3332. [PMID: 35619557 PMCID: PMC9552914 DOI: 10.1016/j.ymthe.2022.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/21/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022] Open
Abstract
Acute kidney injury (AKI) is increasingly identified as a crucial risk factor for progression to CKD. However, the factors governing AKI to CKD progression remain largely unknown. By high-throughput RNA sequencing, we found that Neat1_2, a transcript variant of Neat1, was upregulated in 40-min ischemia/reperfusion injury (IRI), which resulted in the development of renal fibrotic lesions. The upregulation of Neat1_2 in hypoxia-treated TECs was attributed to p53 transcriptional regulation. Gain- and loss-of-function studies, both in vitro and in vivo, demonstrated that Neat1_2 promoted apoptosis of injured TECs induced by IRI and caused tubulointerstitial inflammation and fibrosis. Mechanistically, Neat1_2 shares miRNA response elements with FADD, CASP-8, and CASP-3. Neat1_2 competitively binds to miR-129-5p and prevents miR-129-5p from decreasing the levels of FADD, CASP-8, and CASP-3, and ultimately facilitates TEC apoptosis. Increased expression of Neat1_2 associated with kidney injury and TEC apoptosis was recapitulated in human AKI, highlighting its clinical relevance. These findings suggest that preventing TEC apoptosis by hindering Neat1_2 expression may be a potential therapeutic strategy for AKI to CKD progression.
Collapse
Affiliation(s)
- Tongtong Ma
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongwei Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Hui Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yili Peng
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Tong Lin
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Zhiya Deng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Nan Jia
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou 510515, China.
| |
Collapse
|
18
|
Lin J, Xie Z, Zhang Z, Li M, Ye G, Yu W, Li J, Ye F, Su Z, Che Y, Xu P, Zeng C, Wang P, Wu Y, Shen H. LncRNA MRF drives the regulatory function on monocyte recruitment and polarization through HNRNPD-MCP1 axis in mesenchymal stem cells. J Biomed Sci 2022; 29:73. [PMID: 36127734 PMCID: PMC9490984 DOI: 10.1186/s12929-022-00858-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) exhibit two bidirectional immunomodulatory abilities: proinflammatory and anti-inflammatory regulatory effects. Long noncoding RNAs (lncRNAs) have important functions in the immune system. Previously, we performed high-throughput sequencing comparing lncRNA expression profiles between MSCs cocultured with or without CD14+ monocytes and screened out a new lncRNA termed lncRNA MCP1 regulatory factor (MRF). However, the mechanism of MRF in MSCs is still unknown. Methods MRF expression was quantified via qRT–PCR. RNA interference and lentiviruses were used to regulate MRF expression. The immunomodulatory effects of MSCs on monocytes were evaluated via monocyte migration and macrophage polarization assays. RNA pull-down and mass spectrometry were utilized to identify downstream factors of MRF. A dual-luciferase reporter assay was applied to analyze the transcription factors regulating MRF. qRT–PCR, western blotting and ELISAs were used to assess MCP1 expression. A human monocyte adoptive transfer mouse model was applied to verify the function of MRF in vivo. Results MRF was upregulated in MSCs during coculture with CD14+ monocytes. MRF increased monocyte recruitment by upregulating the expression of monocyte chemotactic protein (MCP1). Knockdown of MRF enhanced the regulatory effect of MSCs on restraining M1 polarization and facilitating M2 polarization. Mechanistically, MRF bound to the downstream protein heterogeneous nuclear ribonucleoprotein D (HNRNPD) to upregulate MCP1 expression, and the transcription factor interferon regulatory factor 1 (IRF1) activated MRF transcription early during coculture. The human monocyte adoptive transfer model showed that MRF downregulation in MSCs inhibited monocyte chemotaxis and enhanced the effects of MSCs to inhibit M1 macrophage polarization and promote M2 polarization in vivo. Conclusion We identified the new lncRNA MRF, which exhibits proinflammatory characteristics. MRF regulates the ability of MSCs to accelerate monocyte recruitment and modulate macrophage polarization through the HNRNPD-MCP1 axis and initiates the proinflammatory regulatory process in MSCs, suggesting that MRF is a potential target to improve the clinical effect of MSC-based therapy or correct MSC-related immunomodulatory dysfunction under pathological conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00858-3.
Collapse
Affiliation(s)
- Jiajie Lin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Zhaoqiang Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Ming Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Guiwen Ye
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Wenhui Yu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Feng Ye
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Zepeng Su
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Yunshu Che
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Peitao Xu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Chenying Zeng
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China.
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China.
| |
Collapse
|
19
|
Ren W, Yuan Y, Chen X, Zhai H, An Y, Tang L, Wang J, Zhang D, Zhang L, Cheng W, Wang X, Duan L, Mutti L, Han B, Wang P. Identification and Validation of Long Non-Coding RNA LCIIAR as a Biomarker in LUAD. Front Oncol 2022; 12:933071. [PMID: 35860557 PMCID: PMC9293053 DOI: 10.3389/fonc.2022.933071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Therapies for lung cancer have relatively poor outcomes and need to be improved. Lung cancer immune cell infiltration associated RNA (LCIIAR) is a long noncoding RNA (lncRNA), which is overexpressed in human cancers. However, the clinical significance and functional role of LCIIAR in Lung Adenocarcinoma remain unclear. Here, we identified a novel long non-coding RNA (ENSG00000256802), termed LCIIAR (lung cancer immune cell infiltration associated lncRNA), up-regulated in lung cancer tissue and cell lines. We show that increase LCIIAR expression correlated with poor clinical stage and adverse clinical outcomes and that could also serve as an independent unfavorable prognostic factor in patients with Lung Adenocarcinima. GSEA analysis demonstrated that LCIIAR is mainly involved in the regulation of the immune response. We uncovered that elevate LCIIAR expression positively correlated with immune infiltration and immune modulator in Lung Adenocarcinoma. More importantly, we confirmed that silencing of LCIIAR expression significantly inhibits the proliferation, and migration abilities of these tumour cells. We also demonstrated that the LCIIAR/hsa-miR184/SLC16A3/CDCP1 network regulates SLC16A3/CDCP1 overexpression in and is associated with poor prognosis in this tumour. Therefore our findings revealed the critical role of LCIIAR in Lung Adenocarcinoma progression, which may also serve as a prognostic biomarker and novel therapeutic target.
Collapse
Affiliation(s)
- Wenjun Ren
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yixiao Yuan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Chen
- First Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haoqing Zhai
- First Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yin An
- Department of Gastroenterology, The First People's Hospital of Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Lin Tang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dahang Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liren Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wanli Cheng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xin Wang
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Lincan Duan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
- *Correspondence: Ping Wang, ; Bin Han, ; Luciano Mutti,
| | - Bin Han
- Department of Emergency, The First People’s Hospital Yunnan Province/The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- *Correspondence: Ping Wang, ; Bin Han, ; Luciano Mutti,
| | - Ping Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Ping Wang, ; Bin Han, ; Luciano Mutti,
| |
Collapse
|
20
|
Wang J, Yuan Y, Tang L, Zhai H, Zhang D, Duan L, Jiang X, Li C. Long Non-Coding RNA-TMPO-AS1 as ceRNA Binding to let-7c-5p Upregulates STRIP2 Expression and Predicts Poor Prognosis in Lung Adenocarcinoma. Front Oncol 2022; 12:921200. [PMID: 35774125 PMCID: PMC9237420 DOI: 10.3389/fonc.2022.921200] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/09/2022] [Indexed: 01/28/2023] Open
Abstract
Background Striatin-interacting protein 2 (STRIP2), also called Fam40b, has been reported to regulate tumor cell growth. But the role of STRIP2 in lung adenocarcinoma (LUAD) has not been discovered clearly. Thus, the aim of our study is to explore the function and underlying mechanism of STRIP2 in LUAD. Methods Expression of STRIP2 was determined using the Cancer Genome Atlas (TCGA), GTEx, Ualcan, and the Human Protein Altas databases. The Correlation of STRIP2 and survival was detected by PrognoScan and Kaplan-Meier plotter databases. Besides, the correlation between STRIP2 expression and tumor immune infiltration as well as immune checkpoints were analyzed by the ssGSEA method. The biological function of STRIP2 and its co-expression genes was determined by gene ontology (GO) and Genes and Genomes (KEGG), respectively. Finally, the expression level and biological function of STRIP2 in LUAD were determined by qPCR, CCK8, transwell, and wound healing assays. Results This manuscript revealed a significantly increased expression of mRNA and protein of STRIP2 in lung adenocarcinoma compared with the adjacent normal tissues. GEO and Kaplan-Meier plotter databases showed higher STRIP2 expression levels were correlated with poor prognosis survival of LUAD. Moreover, Cox regression analysis suggested that a higher STRIP2 level served as an independent risk factor in predicting deteriorative overall survival (OS) for LUAD patients. SsGSEA results showed STRIP2 expression level was positively correlated with infiltrating levels of Th2 cells in LUAD. Lastly, GO analysis indicated the biological processes were enriched in nuclear division and positive regulation of the cell cycle. KEGG signaling pathway analysis showed STRIP2 was correlated with the MAPK signaling pathway and the TNF signaling pathway. The GSEA database showed that STRIP2 was positively associated with the epithelial-mesenchymal transition, cell cycle, and TNF signaling pathway. The QRT-PCR assay showed that STRIP2 was upregulated in LUAD cell lines. Cell proliferation and migration were inhibited in LUAD by knockdown of STRIP2. Moreover, we confirmed that the TMPO-AS1/let-7c-5p/STRIP2 network regulates STRIP2 overexpression in LUAD and is associated with poor prognosis. Conclusion Our findings indicated that STRIP2 acted as a crucial oncogene in LUAD and was correlated with unfavorable survival and tumor infiltration inflation.
Collapse
Affiliation(s)
- Juan Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yixiao Yuan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lin Tang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haoqing Zhai
- Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Dahang Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lincan Duan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China,*Correspondence: Chen Li, ; Xiulin Jiang, ; Lincan Duan,
| | - Xiulin Jiang
- Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China,*Correspondence: Chen Li, ; Xiulin Jiang, ; Lincan Duan,
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany,*Correspondence: Chen Li, ; Xiulin Jiang, ; Lincan Duan,
| |
Collapse
|
21
|
Jiang X, Chen X, Guo J, Zhou F, Pu J, Mutti L, Niu X. Identification and Validation of lncRNA-AC087588.2 in Lung Adenocarcinoma: A Novel Prognostic and Diagnostic Indicator. Front Mol Biosci 2022; 9:923584. [PMID: 35769906 PMCID: PMC9234292 DOI: 10.3389/fmolb.2022.923584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common histological lung cancer, and it is the leading cause of cancer-related deaths worldwide. Long non-coding RNAs (lncRNAs) have been implicated in the initiation and progression of various cancers. LncRNA-AC087588.2 (ENSG00000274976) is a novel lncRNA that is abnormally expressed in diverse cancer types, including LUAD. However, the clinical significance, prognostic value, diagnostic value, immune role, and the potential biological function of AC087588.2 LUAD remain elusive. In this study, we found that AC087588.2 was upregulated and associated with a poor prognosis in LUAD. In addition, univariate and multivariate Cox regression analysis indicated that AC087588.2 could be an independent prognostic factor for LUAD. Functionally, the knockdown of AC087588.2 restrained LUAD cell proliferation and migration in vitro. Finally, we constructed a ceRNA network that included hsa-miR-30a-5p and four mRNAs (ANLN, POLR3G, EHBP1, and ERO1A) specific to AC087588.2 in LUAD. The Kaplan–Meier survival analysis showed that lower expression of hsa-miR-30a-5p and higher expression of ANLN, POLR3G, EHBP1, and ERO1A were associated with adverse clinical outcomes in patients with LUAD. This finding provided a comprehensive view of the AC087588.2-mediated ceRNA network in LUAD, thereby highlighting its potential role in the diagnosis and prognosis of LUAD.
Collapse
Affiliation(s)
- Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xi Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jishu Guo
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Fan Zhou
- Hematology and Rheumatology Department, The Pu’er People’s Hospital, Puer, China
| | - Jun Pu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
- *Correspondence: Luciano Mutti, ; Xiaoqun Niu,
| | - Xiaoqun Niu
- Department of Respiratory Medicine, Second Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Luciano Mutti, ; Xiaoqun Niu,
| |
Collapse
|
22
|
Chen X, Guo J, Zhou F, Ren W, Pu J, Mutti L, Niu X, Jiang X. Over-Expression of Long Non-Coding RNA-AC099850.3 Correlates With Tumor Progression and Poor Prognosis in Lung Adenocarcinoma. Front Oncol 2022; 12:895708. [PMID: 35646670 PMCID: PMC9132095 DOI: 10.3389/fonc.2022.895708] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common histological lung cancer, and it is the leading cause of cancer-related deaths worldwide. Long noncoding RNAs (lncRNAs) have been implicated in the initiation and progression of various cancers. LncRNA-AC099850.3 is a novel lncRNA that is abnormally expressed in diverse cancer types including LUAD. However, the clinical significance, prognostic value, diagnostic value, immune role, and potential biological function of AC099850.3 LUAD remain elusive. In this study, we found that AC099850.3 was highly expressed in LUAD and associated with an advanced tumor stage, poor prognosis, and immune infiltration. Receiver operating curve analysis revealed the significant diagnostic ability of AC099850.3 (AUC=0.888). Functionally, the knockdown of AC099850.3 restrained LUAD cell proliferation and migration in vitro. Finally, we constructed a competitive endogenous RNAs (ceRNA) network that included hsa-miR-101-3p and 4 mRNAs (ESPL1, AURKB, BUB3, and FAM83D) specific to AC099850.3 in LUAD. Kaplan-Meier survival analysis showed that a lower expression of miR-101-3p and a higher expression of ESPL1, AURKB, BUB3, and FAM83D, were associated with adverse clinical outcomes in patients with LUAD. This finding provided a comprehensive view of the AC099850.3-mediated ceRNA network in LUAD, thereby highlighting its potential role in the diagnosis and prognosis of LUAD.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jishu Guo
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Fan Zhou
- Hematology and Rheumatology Department, The Pu'er People's Hospital, Pu'er, China
| | - Wenjun Ren
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China
| | - Jun Pu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Xiaoqun Niu
- Department of Respiratory Medicine, Second Hospital of Kunming Medical University, Kunming, China
| | - Xiulin Jiang
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Wang J, Dong Z, Sheng Z, Cai Y. Hypoxia-induced PVT1 promotes lung cancer chemoresistance to cisplatin by autophagy via PVT1/miR-140-3p/ATG5 axis. Cell Death Dis 2022; 8:104. [PMID: 35256612 PMCID: PMC8901807 DOI: 10.1038/s41420-022-00886-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 01/05/2023]
Abstract
Lung cancer is one of the most common and lethal malignant tumors and the cases increased rapidly. Elevated chemoresistance during chemotherapy resistance remains a challenge. Hypoxia is one of the components that lead to chemoresistance. PVT1 participates in various tumor drug resistance and is associated with hypoxia conditions. The present study aimed to analyze the regulatory relationship of hypoxia and PVT1 and the mechanism of PVT1 in the hypoxia-induced chemoresistance process of lung cancer. The expression of PVT1 in lung cancer and adjacent tissues, and cell lines were analyzed using the TCGA database and qPCR. The regulatory relationship between hypoxia and PVT1 was validated and analyzed with qPCR, luciferase reporter system, and CHIP-qPCR. The role of PVT1 in chemoresistance ability induced by hypoxia was analyzed with CCK-8 assay and flow cytometry. The roles of PVT1, hypoxia, and chemoresistance were also analyzed with LC3-GFP transfection, WB, and IHC. Finally, the results were further validated in xenograft models. PVT1 is highly expressed in lung cancer and cell lines, and the expression of PVT1 is regulated by HIF-1α, and the luciferase reporter assay and CHIP-qPCR analysis indicated that HIF-1α could bind to the promoter region of PVT1 and regulate PVT1 expression. PVT1 participated in hypoxia-induced chemoresistance and induced higher viability and lower apoptosis rate by the autophagy signaling pathway via PVT1/miR-140-3p/ATG5 axis. All the findings were validated in the xenograft models. In conclusion, these results suggest that the expression of PVT1 is regulated by HIF-1α and participates in hypoxia-induced chemoresistance.
Collapse
Affiliation(s)
- Jiying Wang
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Zhiyi Dong
- Department of Traditional Chinese Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Zhaoying Sheng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Yong Cai
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China.
| |
Collapse
|
24
|
Rey F, Pandini C, Messa L, Launi R, Barzaghini B, Zangaglia R, Raimondi MT, Gagliardi S, Cereda C, Zuccotti GV, Carelli S. α-Synuclein antisense transcript SNCA-AS1 regulates synapses- and aging-related genes suggesting its implication in Parkinson's disease. Aging Cell 2021; 20:e13504. [PMID: 34799977 PMCID: PMC8672788 DOI: 10.1111/acel.13504] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/26/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
SNCA protein product, α‐synuclein, is widely renowned for its role in synaptogenesis and implication in both aging and Parkinson's disease (PD), but research efforts are still needed to elucidate its physiological functions and mechanisms of regulation. In this work, we aim to characterize SNCA‐AS1, antisense transcript to the SNCA gene, and its implications in cellular processes. The overexpression of SNCA‐AS1 upregulates both SNCA and α‐synuclein and, through RNA‐sequencing analysis, we investigated the transcriptomic changes of which both genes are responsible. We highlight how they impact neurites' extension and synapses' biology, through specific molecular signatures. We report a reduced expression of markers associated with synaptic plasticity, and we specifically focus on GABAergic and dopaminergic synapses, for their relevance in aging processes and PD, respectively. A reduction in SNCA‐AS1 expression leads to the opposite effect. As part of this signature is co‐regulated by the two genes, we discriminate between functions elicited by genes specifically altered by SNCA‐AS1 or SNCA's overexpression, observing a relevant role for SNCA‐AS1 in synaptogenesis through a shared molecular signature with SNCA. We also highlight how numerous deregulated pathways are implicated in aging‐related processes, suggesting that SNCA‐AS1 could be a key player in cellular senescence, with implications for aging‐related diseases. Indeed, the upregulation of SNCA‐AS1 leads to alterations in numerous PD‐specific genes, with an impact highly comparable to that of SNCA's upregulation. Our results show that SNCA‐AS1 elicits its cellular functions through the regulation of SNCA, with a specific modulation of synaptogenesis and senescence, presenting implications in PD.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences "L. Sacco" University of Milan Milan Italy
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi” University of Milan Milan Italy
| | - Cecilia Pandini
- Genomic and post‐Genomic Center IRCCS Mondino Foundation Pavia Italy
- Department of Biology and Biotechnology “L. Spallanzani” University of Pavia Pavia Italy
| | - Letizia Messa
- Department of Chemistry, Materials and Chemical Engineering Politecnico di Milano Milan Italy
| | - Rossella Launi
- Department of Biomedical and Clinical Sciences "L. Sacco" University of Milan Milan Italy
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi” University of Milan Milan Italy
| | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering Politecnico di Milano Milan Italy
| | - Roberta Zangaglia
- Parkinson's Disease and Movement Disorders Unit IRCCS Mondino Foundation Pavia Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering Politecnico di Milano Milan Italy
| | - Stella Gagliardi
- Genomic and post‐Genomic Center IRCCS Mondino Foundation Pavia Italy
| | - Cristina Cereda
- Genomic and post‐Genomic Center IRCCS Mondino Foundation Pavia Italy
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences "L. Sacco" University of Milan Milan Italy
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi” University of Milan Milan Italy
- Department of Pediatrics Children's Hospital "V. Buzzi" Milan Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences "L. Sacco" University of Milan Milan Italy
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi” University of Milan Milan Italy
| |
Collapse
|
25
|
Upregulation of a novel LncRNA AC104958.2 stabilized by PCBP2 promotes proliferation and microvascular invasion in hepatocellular carcinoma. Exp Cell Res 2021; 407:112791. [PMID: 34418457 DOI: 10.1016/j.yexcr.2021.112791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022]
Abstract
Long non-coding RNAs (lncRNAs) were reported to be involved in tumorigenesis and progression of hepatocellular carcinoma (HCC). Microvascular invasion (MVI) is an independent predictor for early recurrence and overall survival in postoperative patients with HCC. However, the mechanisms how lncRNAs affect HCC and MVI remain elusive. By RNA sequencing (RNA-seq) in a series of 65 HCC samples and 30 paired adjacent non-tumor liver tissue, we identified a novel lncRNA AC104958.2 that was significantly upregulated in HCC tissues and associated with MVI. Overexpression of AC104958.2 obviously elevated cell viability, metastasis, invasion and epithelial-mesenchymal transition (EMT), while knockout of AC104958.2 mediated by CRISPR/Cas9 technique showed the opposite effects. In addition, the interaction between AC104958.2 and Poly (rC) binding protein 2 (PCBP2) was identified by RNA pull down and mass spectrometry (MS), which was further validated by RNA immunoprecipitation (RIP). PCBP2 was also upregulated in HCC and associated with MVI. High expression of both AC104958.2 and PCBP2 was correlated with tumor size, TNM stage and MVI in HCC. Overexpression of PCBP2 greatly increased the cell viability, metastasis, invasion and EMT. Moreover, actinomycin D assay showed that overexpression of PCBP2 enhanced the RNA stability of AC104958.2. In conclusion, our study showed that a novel lncRNA AC104958.2 exerted oncogenic roles in HCC and might be a promising biomarker and therapeutic target.
Collapse
|
26
|
Wozniak M, Czyz M. The Functional Role of Long Non-Coding RNAs in Melanoma. Cancers (Basel) 2021; 13:cancers13194848. [PMID: 34638331 PMCID: PMC8508152 DOI: 10.3390/cancers13194848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the most lethal skin cancer, with increasing incidence worldwide. The molecular events that drive melanoma development and progression have been extensively studied, resulting in significant improvements in diagnostics and therapeutic approaches. However, a high drug resistance to targeted therapies and adverse effects of immunotherapies are still a major challenge in melanoma treatment. Therefore, the elucidation of molecular mechanisms of melanomagenesis and cancer response to treatment is of great importance. Recently, many studies have revealed the close association of long noncoding RNAs (lncRNAs) with the development of many cancers, including melanoma. These RNA molecules are able to regulate a plethora of crucial cellular processes including proliferation, differentiation, migration, invasion and apoptosis through diverse mechanisms, and even slight dysregulation of their expression may lead to tumorigenesis. lncRNAs are able to bind to protein complexes, DNA and RNAs, affecting their stability, activity, and localization. They can also regulate gene expression in the nucleus. Several functions of lncRNAs are context-dependent. This review summarizes current knowledge regarding the involvement of lncRNAs in melanoma. Their possible role as prognostic markers of melanoma response to treatment and in resistance to therapy is also discussed.
Collapse
|
27
|
Rey F, Messa L, Pandini C, Barzaghini B, Micheletto G, Raimondi MT, Bertoli S, Cereda C, Zuccotti GV, Cancello R, Carelli S. Transcriptional characterization of subcutaneous adipose tissue in obesity affected women highlights metabolic dysfunction and implications for lncRNAs. Genomics 2021; 113:3919-3934. [PMID: 34555498 DOI: 10.1016/j.ygeno.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
Obesity is a complex disease with multifactorial causes, and its prevalence is becoming a serious health crisis. For this reason, there is a crucial need to identify novel targets and players. With this aim in mind, we analyzed via RNA-sequencing the subcutaneous adipose tissue of normal weight and obesity-affected women, highlighting the differential expression in the two tissues. We specifically focused on long non-coding RNAs, as 6 of these emerged as dysregulated in the diseased-tissue (COL4A2-AS2, RPS21-AS, PELATON, ITGB2-AS1, ACER2-AS and CTEPHA1). For each of them, we performed both a thorough in silico dissection and in vitro validation, to predict their function during adipogenesis. We report the lncRNAs expression during adipose derived stem cells differentiation to adipocytes as model of adipogenesis and their potential modulation by adipogenesis-related transcription factors (C/EBPs and PPARγ). Moreover, inhibiting CTEPHA1 expression we investigated its impact on adipogenesis-related transcription factors, showing its significative dysregulation of C/EBPα expression. Lastly, we dissected the subcellular localization, pathway involvement and disease-correlation for coding differentially expressed genes. Together, these findings highlight a transcriptional deregulation at the basis of obesity, impacted by both coding and long non-coding RNAs.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Via Grassi 74, 20157 Milan, Italy; Pediatric Clinical Research Centre Fondazione "Romeo ed Enrica Invernizzi", University of Milano, Milano, Italy
| | - Letizia Messa
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Cecilia Pandini
- Genomic and post-Genomic Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Giancarlo Micheletto
- Department of Pathophysiology and Transplantation, INCO, Department of General Surgery, Istituto Clinico Sant'Ambrogio, University of Milan, Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Simona Bertoli
- Obesity Unit, Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy; International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Cristina Cereda
- Genomic and post-Genomic Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Via Grassi 74, 20157 Milan, Italy; Pediatric Clinical Research Centre Fondazione "Romeo ed Enrica Invernizzi", University of Milano, Milano, Italy; Department of Pediatrics, Children's Hospital "V. Buzzi", Milan, Italy
| | - Raffaella Cancello
- Obesity Unit, Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Via Grassi 74, 20157 Milan, Italy; Pediatric Clinical Research Centre Fondazione "Romeo ed Enrica Invernizzi", University of Milano, Milano, Italy.
| |
Collapse
|
28
|
Neural Precursor Cells Expanded Inside the 3D Micro-Scaffold Nichoid Present Different Non-Coding RNAs Profiles and Transcript Isoforms Expression: Possible Epigenetic Modulation by 3D Growth. Biomedicines 2021; 9:biomedicines9091120. [PMID: 34572306 PMCID: PMC8472193 DOI: 10.3390/biomedicines9091120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/24/2022] Open
Abstract
Non-coding RNAs show relevant implications in various biological and pathological processes. Thus, understanding the biological implications of these molecules in stem cell biology still represents a major challenge. The aim of this work is to study the transcriptional dysregulation of 357 non-coding genes, found through RNA-Seq approach, in murine neural precursor cells expanded inside the 3D micro-scaffold Nichoid versus standard culture conditions. Through weighted co-expression network analysis and functional enrichment, we highlight the role of non-coding RNAs in altering the expression of coding genes involved in mechanotransduction, stemness, and neural differentiation. Moreover, as non-coding RNAs are poorly conserved between species, we focus on those with human homologue sequences, performing further computational characterization. Lastly, we looked for isoform switching as possible mechanism in altering coding and non-coding gene expression. Our results provide a comprehensive dissection of the 3D scaffold Nichoid's influence on the biological and genetic response of neural precursor cells. These findings shed light on the possible role of non-coding RNAs in 3D cell growth, indicating that also non-coding RNAs are implicated in cellular response to mechanical stimuli.
Collapse
|
29
|
Yang H, Pan Y, Zhang J, Jin L, Zhang X. LncRNA FOXD3-AS1 Promotes the Malignant Progression of Nasopharyngeal Carcinoma Through Enhancing the Transcription of YBX1 by H3K27Ac Modification. Front Oncol 2021; 11:715635. [PMID: 34395290 PMCID: PMC8359730 DOI: 10.3389/fonc.2021.715635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) can affect the progression of various tumors, including nasopharyngeal carcinoma (NPC). Here, lncRNA FOXD3-AS1 is highly expressed in NPC tissues through bioinformatics analysis and related to the malignant progression of NPC. METHODS Bioinformatics analysis and real-time reverse transcription quantitative PCR(RT-qPCR) assay were applied to identify the expression of FOXD3-AS1 in NPC tissues and cells. Specific short hairpin RNAs (shRNAs) or overexpression plasmids were used to knockdown or upregulate FOXD3-AS1 in NPC cells. The effect of FOXD3-AS1 on proliferation and metastasis of NPC was confirmed by CCK8, colony formation, transwell assays in vitro and mouse tumor growth and metastasis models in vivo, of which the mechanism was explored by RNA pull down, mass spectrometry (MS), RNA Immunoprecipitation (RIP), chromatin immunoprecipitation (CHIP) and luciferase assays. RESULTS FOXD3-AS1 was highly expressed in NPC tissues and cells. Knockdown of FOXD3-AS1 significantly inhibited proliferation, migration, and invasion of NPC cells in vitro and vivo. FOXD3-AS1 could specifically bind to YBX1 and have a positive effect on the expression of YBX1. Bioinformatics analysis showed that the promoter of YBX1 had a high enrichment of H3K27ac, which promote mRNA transcription and protein translation of YBX1. Moreover, overexpression of YBX1 could reverse the proliferation, migration and invasion arrest caused by FOXD3-AS1 knockdown. CONCLUSION LncRNA FOXD3-AS1 is highly expressed and promotes malignant phenotype in NPC, which may provide a new molecular mechanism for NPC.
Collapse
Affiliation(s)
- Huiyun Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuliang Pan
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jun Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Long Jin
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Ren Y, Wang TY, Anderton LC, Cao Q, Yang R. LncGSEA: a versatile tool to infer lncRNA associated pathways from large-scale cancer transcriptome sequencing data. BMC Genomics 2021; 22:574. [PMID: 34315441 PMCID: PMC8314497 DOI: 10.1186/s12864-021-07900-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are a growing focus in cancer research. Deciphering pathways influenced by lncRNAs is important to understand their role in cancer. Although knock-down or overexpression of lncRNAs followed by gene expression profiling in cancer cell lines are established approaches to address this problem, these experimental data are not available for a majority of the annotated lncRNAs. Results As a surrogate, we present lncGSEA, a convenient tool to predict the lncRNA associated pathways through Gene Set Enrichment Analysis of gene expression profiles from large-scale cancer patient samples. We demonstrate that lncGSEA is able to recapitulate lncRNA associated pathways supported by literature and experimental validations in multiple cancer types. Conclusions LncGSEA allows researchers to infer lncRNA regulatory pathways directly from clinical samples in oncology. LncGSEA is written in R, and is freely accessible at https://github.com/ylab-hi/lncGSEA. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07900-y.
Collapse
Affiliation(s)
- Yanan Ren
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Ting-You Wang
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Leah C Anderton
- Department of Biology, Cedarville University, Cedarville, OH, 45314, USA
| | - Qi Cao
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
| |
Collapse
|
31
|
Zhang Y, Bu D, Huo P, Wang Z, Rong H, Li Y, Liu J, Ye M, Wu Y, Jiang Z, Liao Q, Zhao Y. ncFANs v2.0: an integrative platform for functional annotation of non-coding RNAs. Nucleic Acids Res 2021; 49:W459-W468. [PMID: 34050762 PMCID: PMC8262724 DOI: 10.1093/nar/gkab435] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/18/2021] [Accepted: 05/05/2021] [Indexed: 02/01/2023] Open
Abstract
Increasing evidence proves the essential regulatory roles of non-coding RNAs (ncRNAs) in biological processes. However, characterizing the specific functions of ncRNAs remains a challenging task, owing to the intensive consumption of the experimental approaches. Here, we present an online platform ncFANs v2.0 that is a significantly enhanced version of our previous ncFANs to provide multiple computational methods for ncRNA functional annotation. Specifically, ncFANs v2.0 was updated to embed three functional modules, including ncFANs-NET, ncFANs-eLnc and ncFANs-CHIP. ncFANs-NET is a new module designed for data-free functional annotation based on four kinds of pre-built networks, including the co-expression network, co-methylation network, long non-coding RNA (lncRNA)-centric regulatory network and random forest-based network. ncFANs-eLnc enables the one-stop identification of enhancer-derived lncRNAs from the de novo assembled transcriptome based on the user-defined or our pre-annotated enhancers. Moreover, ncFANs-CHIP inherits the original functions for microarray data-based functional annotation and supports more chip types. We believe that our ncFANs v2.0 carries sufficient convenience and practicability for biological researchers and facilitates unraveling the regulatory mechanisms of ncRNAs. The ncFANs v2.0 server is freely available at http://bioinfo.org/ncfans or http://ncfans.gene.ac.
Collapse
Affiliation(s)
- Yuwei Zhang
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, 315000, China.,Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Dechao Bu
- Pervasive Computing Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peipei Huo
- Luoyang Branch of Institute of Computing Technology, Chinese Academy of Sciences, Henan, 471000, China
| | - Zhihao Wang
- Luoyang Branch of Institute of Computing Technology, Chinese Academy of Sciences, Henan, 471000, China
| | - Hao Rong
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, 315000, China.,Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Yanguo Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Jingjia Liu
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315000, China
| | - Meng Ye
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Yang Wu
- Pervasive Computing Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qi Liao
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, 315000, China.,Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315000, China
| | - Yi Zhao
- Pervasive Computing Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
32
|
Gao S, Wang Z. Comprehensive Analysis of Regulatory Network for LINC00472 in Clear Cell Renal Cell Carcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:3533608. [PMID: 34221297 PMCID: PMC8211516 DOI: 10.1155/2021/3533608] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
Renal cell carcinoma (RCC) accounts for about 2% to 3% of adult malignancies, and clear cell renal cell carcinoma (ccRCC) is the most common and aggressive type of kidney cancer. It accounts for 75% of all kidney tumors. Although new targeted drugs continue to appear, they are still not suitable for all patients. Therefore, an in-depth study of the molecular mechanism of the development of ccRCC and exploration of new targets for the treatment of ccRCC will help to achieve precise treatment for ccRCC. With the development of molecular research, the study of long noncoding RNA (LncRNA) has given us a new understanding of tumors. Although LncRNA does not encode proteins, it directly interacts with proteins in various signaling pathways and affects cell functions. Therefore, it is of great significance to study the mechanism of LncRNA in ccRCC. The expression level of Linc00472 in ccRCC tissues is significantly lower than adjacent normal tissues, and its low expression is closely related to Furman's high grade. The low expression of Linc00472 is associated with poor prognosis in patients with ccRCC. The results of protein interaction and functional enrichment analysis indicate that genes upregulated in renal clear cell carcinoma may play a major role. Analysis of target gene prediction results showed that Linc00472 may be used as ceRNA in the miR-24-3p-HLA-DPB1 pathway, miR-24-3p-CXCL9 pathway, miR-221-3p-C3aR1-VEGFR2 pathway, miR-17-5p-HLA-DQA1/HLA-DQB1 pathway, and miR-17-5p-C3aR1/C5aR1-VEGFR2 pathway which play important functions. In addition, the regulatory relationship between miR-24-3p and TNFR2 (TNFRSF1B), CD36, and COL4A1 should also be noted. The value of Linc00472 in the diagnosis and treatment of ccRCC is worthy of further study.
Collapse
Affiliation(s)
- Shuoze Gao
- Institute of Gansu Nephro-Urological Clinical Center, Department of Urology, Institute of Urology, Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhiping Wang
- Institute of Gansu Nephro-Urological Clinical Center, Department of Urology, Institute of Urology, Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
33
|
Hu G, Ma J, Zhang J, Chen Y, Liu H, Huang Y, Zheng J, Xu Y, Xue W, Zhai W. Hypoxia-induced lncHILAR promotes renal cancer cell invasion and metastasis via ceRNA for the miR-613/206/1-1-3p/Jagged-1/Notch/CXCR4 signaling pathway. Mol Ther 2021; 29:2979-2994. [PMID: 34058384 DOI: 10.1016/j.ymthe.2021.05.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/05/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Hypoxia has been identified as a common driving factor that contributes to tumor progression, including invasion and metastasis. However, the underlying mechanisms of enhanced invasion and metastasis under hypoxia remain unclear. A hypoxic microenvironment promoted invasion and metastasis of RCC by upregulating the expression of LOC100506178, which we named Hypoxia-Induced lncRNA Associated with Renal Cell Carcinoma (lncHILAR). Knockdown of lncHILAR inhibited cell invasion and migration while overexpression of lncHILAR conversely facilitated cell invasion and migration of RCC cells. Notably, hypoxic RCC cells secreted exosomes packaged with lncHILAR which were taken up by normoxic RCC cells and then drove normoxic cell invasion. Mechanistically, hypoxia-induced-lncHILAR elevated RCC invasion and metastasis by acting as a competing endogenous (ce)RNA for miR-613/206/1-1-3p, which led to the upregulation of Jagged-1 and C-X-C Motif Chemokine Receptor 4 (CXCR4). Activation of the of Jagged-1/Notch/CXCR4 axis induced RCC metastasis. Hypoxia-induced lncHILAR promotes RCC cell invasion and metastasis via ceRNA for the miR-613/206/1-1-3p/Jagged-1/Notch/CXCR4 axis. The novel lncHILAR may thus serve as a potential biomarker and therapeutic target in RCC.
Collapse
Affiliation(s)
- Guanghui Hu
- State Key Laboratory of Oncogenes and Related Genes, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Junjie Ma
- Department of Urology, Shanghai General Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Jin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yonghui Chen
- State Key Laboratory of Oncogenes and Related Genes, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huan Liu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China
| | - Yiran Huang
- State Key Laboratory of Oncogenes and Related Genes, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Junhua Zheng
- Department of Urology, Shanghai General Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yunfei Xu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China.
| | - Wei Xue
- State Key Laboratory of Oncogenes and Related Genes, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Wei Zhai
- State Key Laboratory of Oncogenes and Related Genes, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
34
|
Zhang RY, Wu CM, Hu XM, Lin XM, Hua YN, Chen JJ, Ding L, He X, Yang B, Ping BH, Zheng L, Wang Q. LncRNA AC105942.1 Downregulates hnRNPA2/B1 to Attenuate Vascular Smooth Muscle Cells Proliferation. DNA Cell Biol 2021; 40:652-661. [PMID: 33781092 DOI: 10.1089/dna.2020.6451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The abnormal proliferation of vascular smooth muscle cells (VSMCs) is crucial in the atherosclerosis. Although long noncoding RNAs (lncRNAs) are implicated in a variety of diseases, their roles in activation of VSMCs proliferation and vascular disorder diseases are not well understood. In addition, heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) was reported to participate in lncRNAs-mediated function. Herein, we propose to investigate the role of lncRNA AC105942.1 and hnRNPA2/B1 in pathological VSMCs proliferation and the possible mechanisms in vitro. We have identified that lncRNA AC105942.1 was downregulated and hnRNPA2/B1 was upregulated in atherosclerotic plaques compared with normal artery tissues. Enhanced lncRNA AC105942.1 could noticeably inhibit Ang II-induced VSMCs proliferation. Further investigation suggested that lncRNA AC105942.1 could downregulate the expression of hnRNPA2/B1 and then regulate the level of CDK4 and p27. Taken together, our study indicated that lncRNA AC105942.1 downregulated hnRNPA2B1 to protect against the atherosclerosis by suppressing VSMCs proliferation. LncRNA AC105942.1 and hnRNPA2/B1 could represent potential therapeutic and diagnostic targets to atherosclerosis-related diseases.
Collapse
Affiliation(s)
- Ru-Yi Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chang-Meng Wu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiu-Mei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Min Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Neng Hua
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jun-Jiang Chen
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Li Ding
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin He
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Biao Yang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bao-Hong Ping
- Hui Qiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Guo M, Xiao ZD, Dai Z, Zhu L, Lei H, Diao LT, Xiong Y. The landscape of long noncoding RNA-involved and tumor-specific fusions across various cancers. Nucleic Acids Res 2021; 48:12618-12631. [PMID: 33275145 PMCID: PMC7736799 DOI: 10.1093/nar/gkaa1119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/15/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
The majority of the human genome encodes long noncoding RNA (lncRNA) genes, critical regulators of various cellular processes, which largely outnumber protein-coding genes. However, lncRNA-involved fusions have not been surveyed and characterized yet. Here, we present a systematic study of the lncRNA fusion landscape across cancer types and identify >30 000 high-confidence tumor-specific lncRNA fusions (using 8284 tumor and 6946 normal samples). Fusions positively correlated with DNA damage and cancer stemness and were specifically low in microsatellite instable (MSI)-High or virus-infected tumors. Moreover, fusions distribute differently among cancer molecular subtypes, but with shared enrichment in tumors that are microsatellite stable (MSS), with high somatic copy number alterations (SCNA), and with poor survival. Importantly, we find a potentially new mechanism, mediated by enhancer RNAs (eRNA), which generates secondary fusions that form densely connected fusion networks with many fusion hubs targeted by FDA-approved drugs. Finally, we experimentally validate functions of two tumor-promoting chimeric proteins derived from mRNA-lncRNA fusions, KDM4B-G039927 and EPS15L1-lncOR7C2-1. The EPS15L1 fusion protein may regulate (Gasdermin E) GSDME, critical in pyroptosis and anti-tumor immunity. Our study completes the fusion landscape in cancers, sheds light on fusion mechanisms, and enriches lncRNA functions in tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Mengbiao Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhen-Dong Xiao
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhiming Dai
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Zhu
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hang Lei
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Li-Ting Diao
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
36
|
Gu S, Zhang G, Si Q, Dai J, Song Z, Wang Y. Web tools to perform long non-coding RNAs analysis in oncology research. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6326500. [PMID: 34296748 PMCID: PMC8299716 DOI: 10.1093/database/baab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/21/2021] [Accepted: 07/11/2021] [Indexed: 11/14/2022]
Abstract
Accumulated evidence suggests that the widely expressed long-non-coding RNAs (lncRNAs) are involved in biogenesis. Some aberrant lncRNAs are closely related to pathological changes, for instance, in cancer. Both in tumorigenesis and cancer progression, depending on the interplay with cellular molecules, lncRNAs can modulate transcriptional interference, chromatin remodeling, post-translational regulation and protein modification, and further interfere with signaling pathways. Aiming to the diagnosis/ prognosis markers or potential therapeutical targets, it is important to figure out the specific mechanism and the tissue-specific expressing patterns of lncRNAs. Generally, the bioinformatics analysis is the first step. More and more in silico databases are increasing. But the existing integrative online platforms’ functions are not only having their unique features but also share some common features, which may lead to a waste of time for researchers. Here, we reviewed these web tools according to the functions. For each database, we clarified the data source, analysis method and the evidence that the analysis result is derived from. This review also illustrated examples in practical use for a specific lncRNA by these web tools. It will provide convenience for researchers to quickly choose the appropriate bioinformatics web tools in oncology studies.
Collapse
Affiliation(s)
- Shixing Gu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Road, Chengdu, Sichuan 611137, China
| | - Guangjie Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Road, Chengdu, Sichuan 611137, China.,Department of Clinical Laboratory, Chengdu Fifth People's Hospital, No.33 Mashi Street, Chengdu, Sichuan 611130, China
| | - Qin Si
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Road, Chengdu, Sichuan 611137, China
| | - Jiawen Dai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Road, Chengdu, Sichuan 611137, China
| | - Zhen Song
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Road, Chengdu, Sichuan 611137, China
| | - Yingshuang Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Road, Chengdu, Sichuan 611137, China
| |
Collapse
|