1
|
Li F, Mou M, Li X, Xu W, Yin J, Zhang Y, Zhu F. DrugMAP 2.0: molecular atlas and pharma-information of all drugs. Nucleic Acids Res 2024:gkae791. [PMID: 39271119 DOI: 10.1093/nar/gkae791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
The escalating costs and high failure rates have decelerated the pace of drug development, which amplifies the research interests in developing combinatorial/repurposed drugs and understanding off-target adverse drug reaction (ADR). In other words, it is demanded to delineate the molecular atlas and pharma-information for the combinatorial/repurposed drugs and off-target interactions. However, such invaluable data were inadequately covered by existing databases. In this study, a major update was thus conducted to the DrugMAP, which accumulated (a) 20831 combinatorial drugs and their interacting atlas involving 1583 pharmacologically important molecules; (b) 842 repurposed drugs and their interacting atlas with 795 molecules; (c) 3260 off-targets relevant to the ADRs of 2731 drugs and (d) various types of pharmaceutical information, including diverse ADMET properties, versatile diseases, and various ADRs/off-targets. With the growing demands for discovering combinatorial/repurposed therapies and the rapidly emerging interest in AI-based drug discovery, DrugMAP was highly expected to act as an indispensable supplement to existing databases facilitating drug discovery, which was accessible at: https://idrblab.org/drugmap/.
Collapse
Affiliation(s)
- Fengcheng Li
- College of Pharmaceutical Sciences, Children's Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, Children's Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Xiaoyi Li
- College of Pharmaceutical Sciences, Children's Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou 310058, China
| | - Weize Xu
- College of Pharmaceutical Sciences, Children's Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Yin
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yang Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Children's Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou 310058, China
- State Key Lab of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
2
|
Jin Q, Zhang X, Huo D, Xie H, Zhang D, Liu L, Zhao Y, Chen X. Predicting drug synergy using a network propagation inspired machine learning framework. Brief Funct Genomics 2024; 23:429-440. [PMID: 38183214 DOI: 10.1093/bfgp/elad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/14/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024] Open
Abstract
Combination therapy is a promising strategy for cancers, increasing therapeutic options and reducing drug resistance. Yet, systematic identification of efficacious drug combinations is limited by the combinatorial explosion caused by a large number of possible drug pairs and diseases. At present, machine learning techniques have been widely applied to predict drug combinations, but most studies rely on the response of drug combinations to specific cell lines and are not entirely satisfactory in terms of mechanism interpretability and model scalability. Here, we proposed a novel network propagation-based machine learning framework to predict synergistic drug combinations. Based on the topological information of a comprehensive drug-drug association network, we innovatively introduced an affinity score between drug pairs as one of the features to train machine learning models. We applied network-based strategy to evaluate their therapeutic potential to different cancer types. Finally, we identified 17 specific-, 21 general- and 40 broad-spectrum antitumor drug combinations, in which 69% drug combinations were validated by vitro cellular experiments, 83% drug combinations were validated by literature reports and 100% drug combinations were validated by biological function analyses. By quantifying the network relationships between drug targets and cancer-related driver genes in the human protein-protein interactome, we show the existence of four distinct patterns of drug-drug-disease relationships. We also revealed that 32 biological pathways were correlated with the synergistic mechanism of broad-spectrum antitumor drug combinations. Overall, our model offers a powerful scalable screening framework for cancer treatments.
Collapse
Affiliation(s)
- Qing Jin
- Department of Pharmacogenomics, College of Bioinformatics and Science Technology, Harbin Medical University, Harbin, China
| | - Xianze Zhang
- Department of Pharmacogenomics, College of Bioinformatics and Science Technology, Harbin Medical University, Harbin, China
| | - Diwei Huo
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongbo Xie
- Department of Pharmacogenomics, College of Bioinformatics and Science Technology, Harbin Medical University, Harbin, China
| | - Denan Zhang
- Department of Pharmacogenomics, College of Bioinformatics and Science Technology, Harbin Medical University, Harbin, China
| | - Lei Liu
- Department of Pharmacogenomics, College of Bioinformatics and Science Technology, Harbin Medical University, Harbin, China
| | - Yashuang Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, China
| | - Xiujie Chen
- Department of Pharmacogenomics, College of Bioinformatics and Science Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Abbasi F, Rousu J. New methods for drug synergy prediction: A mini-review. Curr Opin Struct Biol 2024; 86:102827. [PMID: 38705070 DOI: 10.1016/j.sbi.2024.102827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
In this mini-review, we explore the new prediction methods for drug combination synergy relying on high-throughput combinatorial screens. The fast progress of the field is witnessed in the more than thirty original machine learning methods published since 2021, a clear majority of them based on deep learning techniques. We aim to put these articles under a unifying lens by highlighting the core technologies, the data sources, the input data types and synergy scores used in the methods, as well as the prediction scenarios and evaluation protocols that the articles deal with. Our finding is that the best methods accurately solve the synergy prediction scenarios involving known drugs or cell lines while the scenarios involving new drugs or cell lines still fall short of an accurate prediction level.
Collapse
Affiliation(s)
- Fatemeh Abbasi
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Juho Rousu
- Department of Computer Science, Aalto University, Espoo, Finland.
| |
Collapse
|
4
|
Bashi AC, Coker EA, Bulusu KC, Jaaks P, Crafter C, Lightfoot H, Milo M, McCarten K, Jenkins DF, van der Meer D, Lynch JT, Barthorpe S, Andersen CL, Barry ST, Beck A, Cidado J, Gordon JA, Hall C, Hall J, Mali I, Mironenko T, Mongeon K, Morris J, Richardson L, Smith PD, Tavana O, Tolley C, Thomas F, Willis BS, Yang W, O'Connor MJ, McDermott U, Critchlow SE, Drew L, Fawell SE, Mettetal JT, Garnett MJ. Large-scale Pan-cancer Cell Line Screening Identifies Actionable and Effective Drug Combinations. Cancer Discov 2024; 14:846-865. [PMID: 38456804 PMCID: PMC11061612 DOI: 10.1158/2159-8290.cd-23-0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/01/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024]
Abstract
Oncology drug combinations can improve therapeutic responses and increase treatment options for patients. The number of possible combinations is vast and responses can be context-specific. Systematic screens can identify clinically relevant, actionable combinations in defined patient subtypes. We present data for 109 anticancer drug combinations from AstraZeneca's oncology small molecule portfolio screened in 755 pan-cancer cell lines. Combinations were screened in a 7 × 7 concentration matrix, with more than 4 million measurements of sensitivity, producing an exceptionally data-rich resource. We implement a new approach using combination Emax (viability effect) and highest single agent (HSA) to assess combination benefit. We designed a clinical translatability workflow to identify combinations with clearly defined patient populations, rationale for tolerability based on tumor type and combination-specific "emergent" biomarkers, and exposures relevant to clinical doses. We describe three actionable combinations in defined cancer types, confirmed in vitro and in vivo, with a focus on hematologic cancers and apoptotic targets. SIGNIFICANCE We present the largest cancer drug combination screen published to date with 7 × 7 concentration response matrices for 109 combinations in more than 750 cell lines, complemented by multi-omics predictors of response and identification of "emergent" combination biomarkers. We prioritize hits to optimize clinical translatability, and experimentally validate novel combination hypotheses. This article is featured in Selected Articles from This Issue, p. 695.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marta Milo
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | | | | | - Syd Barthorpe
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | | | | | | | | | - Caitlin Hall
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - James Hall
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Iman Mali
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | | | - James Morris
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Paul D. Smith
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Omid Tavana
- Oncology R&D, AstraZeneca, Waltham, Massachusetts
| | | | | | | | - Wanjuan Yang
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | | | | | - Lisa Drew
- Oncology R&D, AstraZeneca, Waltham, Massachusetts
| | | | | | | |
Collapse
|
5
|
Liu M, Srivastava G, Ramanujam J, Brylinski M. Augmented drug combination dataset to improve the performance of machine learning models predicting synergistic anticancer effects. Sci Rep 2024; 14:1668. [PMID: 38238448 PMCID: PMC10796434 DOI: 10.1038/s41598-024-51940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
Combination therapy has gained popularity in cancer treatment as it enhances the treatment efficacy and overcomes drug resistance. Although machine learning (ML) techniques have become an indispensable tool for discovering new drug combinations, the data on drug combination therapy currently available may be insufficient to build high-precision models. We developed a data augmentation protocol to unbiasedly scale up the existing anti-cancer drug synergy dataset. Using a new drug similarity metric, we augmented the synergy data by substituting a compound in a drug combination instance with another molecule that exhibits highly similar pharmacological effects. Using this protocol, we were able to upscale the AZ-DREAM Challenges dataset from 8798 to 6,016,697 drug combinations. Comprehensive performance evaluations show that ML models trained on the augmented data consistently achieve higher accuracy than those trained solely on the original dataset. Our data augmentation protocol provides a systematic and unbiased approach to generating more diverse and larger-scale drug combination datasets, enabling the development of more precise and effective ML models. The protocol presented in this study could serve as a foundation for future research aimed at discovering novel and effective drug combinations for cancer treatment.
Collapse
Affiliation(s)
- Mengmeng Liu
- Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Gopal Srivastava
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - J Ramanujam
- Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
6
|
Hu C, Mi W, Li F, Zhu L, Ou Q, Li M, Li T, Ma Y, Zhang Y, Xu Y. Optimizing drug combination and mechanism analysis based on risk pathway crosstalk in pan cancer. Sci Data 2024; 11:74. [PMID: 38228620 PMCID: PMC10791624 DOI: 10.1038/s41597-024-02915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Combination therapy can greatly improve the efficacy of cancer treatment, so identifying the most effective drug combination and interaction can accelerate the development of combination therapy. Here we developed a computational network biological approach to identify the effective drug which inhibition risk pathway crosstalk of cancer, and then filtrated and optimized the drug combination for cancer treatment. We integrated high-throughput data concerning pan-cancer and drugs to construct miRNA-mediated crosstalk networks among cancer pathways and further construct networks for therapeutic drug. Screening by drug combination method, we obtained 687 optimized drug combinations of 83 first-line anticancer drugs in pan-cancer. Next, we analyzed drug combination mechanism, and confirmed that the targets of cancer-specific crosstalk network in drug combination were closely related to cancer prognosis by survival analysis. Finally, we save all the results to a webpage for query ( http://bio-bigdata.hrbmu.edu.cn/oDrugCP/ ). In conclusion, our study provided an effective method for screening precise drug combinations for various cancer treatments, which may have important scientific significance and clinical application value for tumor treatment.
Collapse
Affiliation(s)
- Congxue Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Wanqi Mi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Feng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Lun Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Qi Ou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Maohao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Tengyue Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yuheng Ma
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, 010100, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yingqi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
- Department of Pharmacy, Inner Mongolia Medical University, Jinshan Development Zone, Hohhot, 010100, China.
| |
Collapse
|
7
|
Wang W, Yuan G, Wan S, Zheng Z, Liu D, Zhang H, Li J, Zhou Y, Wang X. A granularity-level information fusion strategy on hypergraph transformer for predicting synergistic effects of anticancer drugs. Brief Bioinform 2023; 25:bbad522. [PMID: 38243692 PMCID: PMC10796255 DOI: 10.1093/bib/bbad522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/08/2023] [Accepted: 12/19/2023] [Indexed: 01/21/2024] Open
Abstract
Combination therapy has exhibited substantial potential compared to monotherapy. However, due to the explosive growth in the number of cancer drugs, the screening of synergistic drug combinations has become both expensive and time-consuming. Synergistic drug combinations refer to the concurrent use of two or more drugs to enhance treatment efficacy. Currently, numerous computational methods have been developed to predict the synergistic effects of anticancer drugs. However, there has been insufficient exploration of how to mine drug and cell line data at different granularity levels for predicting synergistic anticancer drug combinations. Therefore, this study proposes a granularity-level information fusion strategy based on the hypergraph transformer, named HypertranSynergy, to predict synergistic effects of anticancer drugs. HypertranSynergy introduces synergistic connections between cancer cell lines and drug combinations using hypergraph. Then, the Coarse-grained Information Extraction (CIE) module merges the hypergraph with a transformer for node embeddings. In the CIE module, Contranorm is a normalization layer that mitigates over-smoothing, while Gaussian noise addresses local information gaps. Additionally, the Fine-grained Information Extraction (FIE) module assesses fine-grained information's impact on predictions by employing similarity-aware matrices from drug/cell line features. Both CIE and FIE modules are integrated into HypertranSynergy. In addition, HypertranSynergy achieved the AUC of 0.93${\pm }$0.01 and the AUPR of 0.69${\pm }$0.02 in 5-fold cross-validation of classification task, and the RMSE of 13.77${\pm }$0.07 and the PCC of 0.81${\pm }$0.02 in 5-fold cross-validation of regression task. These results are better than most of the state-of-the-art models.
Collapse
Affiliation(s)
- Wei Wang
- College of Computer and Information Engineering, Henan Normal University, 453007 Xinxiang, China
- Key Laboratory of Artificial Intelligence and Personalized Learning in Education of Henan Province 453007, China
| | - Gaolin Yuan
- College of Computer and Information Engineering, Henan Normal University, 453007 Xinxiang, China
| | - Shitong Wan
- College of Computer and Information Engineering, Henan Normal University, 453007 Xinxiang, China
| | - Ziwei Zheng
- College of Computer and Information Engineering, Henan Normal University, 453007 Xinxiang, China
| | - Dong Liu
- College of Computer and Information Engineering, Henan Normal University, 453007 Xinxiang, China
- Key Laboratory of Artificial Intelligence and Personalized Learning in Education of Henan Province 453007, China
| | - Hongjun Zhang
- Hebi Instiute of Engineering and Technology, Henan Polytechnic University, 458030, China
| | - Juntao Li
- School of Mathematics and Information Science, Henan Normal University, 453007 Xinxiang, China
| | - Yun Zhou
- College of Computer and Information Engineering, Henan Normal University, 453007 Xinxiang, China
- Key Laboratory of Artificial Intelligence and Personalized Learning in Education of Henan Province 453007, China
| | - Xianfang Wang
- College of Computer Science and Technology Engineering, Henan Institute of Technology, 453000, China
| |
Collapse
|
8
|
Pan Y, Ren H, Lan L, Li Y, Huang T. Review of Predicting Synergistic Drug Combinations. Life (Basel) 2023; 13:1878. [PMID: 37763281 PMCID: PMC10533134 DOI: 10.3390/life13091878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The prediction of drug combinations is of great clinical significance. In many diseases, such as high blood pressure, diabetes, and stomach ulcers, the simultaneous use of two or more drugs has shown clear efficacy. It has greatly reduced the progression of drug resistance. This review presents the latest applications of methods for predicting the effects of drug combinations and the bioactivity databases commonly used in drug combination prediction. These studies have played a significant role in developing precision therapy. We first describe the concept of synergy. we study various publicly available databases for drug combination prediction tasks. Next, we introduce five algorithms applied to drug combinatorial prediction, which include traditional machine learning methods, deep learning methods, mathematical methods, systems biology methods and search algorithms. In the end, we sum up the difficulties encountered in prediction models.
Collapse
Affiliation(s)
- Yichen Pan
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Y.P.); (H.R.)
| | - Haotian Ren
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Y.P.); (H.R.)
| | - Liang Lan
- Department of Interactive Media, Hong Kong Baptist University, Hong Kong, China;
| | - Yixue Li
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Y.P.); (H.R.)
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Guangzhou Laboratory, Guangzhou 510005, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200433, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Y.P.); (H.R.)
| |
Collapse
|
9
|
Zhou JB, Tang D, He L, Lin S, Lei JH, Sun H, Xu X, Deng CX. Machine learning model for anti-cancer drug combinations: Analysis, prediction, and validation. Pharmacol Res 2023; 194:106830. [PMID: 37343647 DOI: 10.1016/j.phrs.2023.106830] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/10/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Drug combination therapy is a highly effective approach for enhancing the therapeutic efficacy of anti-cancer drugs and overcoming drug resistance. However, the innumerable possible drug combinations make it impractical to screen all synergistic drug pairs. Moreover, biological insights into synergistic drug pairs are still lacking. To address this challenge, we systematically analyzed drug combination datasets curated from multiple databases to identify drug pairs more likely to show synergy. We classified drug pairs based on their MoA and discovered that 110 MoA pairs were significantly enriched in synergy in at least one type of cancer. To improve the accuracy of predicting synergistic effects of drug pairs, we developed a suite of machine learning models that achieve better predictive performance. Unlike most previous methods that were rarely validated by wet-lab experiments, our models were validated using two-dimensional cell lines and three-dimensional tumor slice culture (3D-TSC) models, implying their practical utility. Our prediction and validation results indicated that the combination of the RTK inhibitors Lapatinib and Pazopanib exhibited a strong therapeutic effect in breast cancer by blocking the downstream PI3K/AKT/mTOR signaling pathway. Furthermore, we incorporated molecular features to identify potential biomarkers for synergistic drug pairs, and almost all potential biomarkers found connections between drug targets and corresponding molecular features using protein-protein interaction network. Overall, this study provides valuable insights to complement and guide rational efforts to develop drug combination treatments.
Collapse
Affiliation(s)
- Jing-Bo Zhou
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Dongyang Tang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lin He
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shiqi Lin
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Josh Haipeng Lei
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Heng Sun
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xiaoling Xu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
10
|
Liu H, Fan Z, Lin J, Yang Y, Ran T, Chen H. The recent progress of deep-learning-based in silico prediction of drug combination. Drug Discov Today 2023:103625. [PMID: 37236526 DOI: 10.1016/j.drudis.2023.103625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/24/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Drug combination therapy has become a common strategy for the treatment of complex diseases. There is an urgent need for computational methods to efficiently identify appropriate drug combinations owing to the high cost of experimental screening. In recent years, deep learning has been widely used in the field of drug discovery. Here, we provide a comprehensive review on deep-learning-based drug combination prediction algorithms from multiple aspects. Current studies highlight the flexibility of this technology in integrating multimodal data and the ability to achieve state-of-art performance; it is expected that deep-learning-based prediction of drug combinations should play an important part in future drug discovery.
Collapse
Affiliation(s)
- Haoyang Liu
- Department of Drug and Vaccine Research, Guangzhou Laboratory, Guangzhou 513000, China; College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhiguang Fan
- Department of Drug and Vaccine Research, Guangzhou Laboratory, Guangzhou 513000, China; School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
| | - Jie Lin
- Department of Drug and Vaccine Research, Guangzhou Laboratory, Guangzhou 513000, China
| | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China.
| | - Ting Ran
- Department of Drug and Vaccine Research, Guangzhou Laboratory, Guangzhou 513000, China.
| | - Hongming Chen
- Department of Drug and Vaccine Research, Guangzhou Laboratory, Guangzhou 513000, China.
| |
Collapse
|
11
|
Zhang G, Gao Z, Yan C, Wang J, Liang W, Luo J, Luo H. KGANSynergy: knowledge graph attention network for drug synergy prediction. Brief Bioinform 2023; 24:7147878. [PMID: 37130580 DOI: 10.1093/bib/bbad167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 05/04/2023] Open
Abstract
Combination therapy is widely used to treat complex diseases, particularly in patients who respond poorly to monotherapy. For example, compared with the use of a single drug, drug combinations can reduce drug resistance and improve the efficacy of cancer treatment. Thus, it is vital for researchers and society to help develop effective combination therapies through clinical trials. However, high-throughput synergistic drug combination screening remains challenging and expensive in the large combinational space, where an array of compounds are used. To solve this problem, various computational approaches have been proposed to effectively identify drug combinations by utilizing drug-related biomedical information. In this study, considering the implications of various types of neighbor information of drug entities, we propose a novel end-to-end Knowledge Graph Attention Network to predict drug synergy (KGANSynergy), which utilizes neighbor information of known drugs/cell lines effectively. KGANSynergy uses knowledge graph (KG) hierarchical propagation to find multi-source neighbor nodes for drugs and cell lines. The knowledge graph attention network is designed to distinguish the importance of neighbors in a KG through a multi-attention mechanism and then aggregate the entity's neighbor node information to enrich the entity. Finally, the learned drug and cell line embeddings can be utilized to predict the synergy of drug combinations. Experiments demonstrated that our method outperformed several other competing methods, indicating that our method is effective in identifying drug combinations.
Collapse
Affiliation(s)
- Ge Zhang
- School of Computer and Information Engineering, Henan University, Jinming Street, 475004 Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Jinming Street, 475004 Kaifeng, China
| | - Zhijie Gao
- School of Computer and Information Engineering, Henan University, Jinming Street, 475004 Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Jinming Street, 475004 Kaifeng, China
| | - Chaokun Yan
- School of Computer and Information Engineering, Henan University, Jinming Street, 475004 Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Jinming Street, 475004 Kaifeng, China
| | - Jianlin Wang
- School of Computer and Information Engineering, Henan University, Jinming Street, 475004 Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Jinming Street, 475004 Kaifeng, China
| | - Wenjuan Liang
- School of Computer and Information Engineering, Henan University, Jinming Street, 475004 Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Jinming Street, 475004 Kaifeng, China
| | - Junwei Luo
- College of Computer Science and Technology, Henan Polytechnic University, Shiji Street, 454003 Jiaozuo, China
| | - Huimin Luo
- School of Computer and Information Engineering, Henan University, Jinming Street, 475004 Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Jinming Street, 475004 Kaifeng, China
| |
Collapse
|
12
|
Zhang H, Wang Z, Nan Y, Zagidullin B, Yi D, Tang J, Guan Y. Harmonizing across datasets to improve the transferability of drug combination prediction. Commun Biol 2023; 6:397. [PMID: 37041243 PMCID: PMC10090076 DOI: 10.1038/s42003-023-04783-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/30/2023] [Indexed: 04/13/2023] Open
Abstract
Combination treatment has multiple advantages over traditional monotherapy in clinics, thus becoming a target of interest for many high-throughput screening (HTS) studies, which enables the development of machine learning models predicting the response of new drug combinations. However, most existing models have been tested only within a single study, and these models cannot generalize across different datasets due to significantly variable experimental settings. Here, we thoroughly assessed the transferability issue of single-study-derived models on new datasets. More importantly, we propose a method to overcome the experimental variability by harmonizing dose-response curves of different studies. Our method improves the prediction performance of machine learning models by 184% and 1367% compared to the baseline models in intra-study and inter-study predictions, respectively, and shows consistent improvement in multiple cross-validation settings. Our study addresses the crucial question of the transferability in drug combination predictions, which is fundamental for such models to be extrapolated to new drug combination discovery and clinical applications that are de facto different datasets.
Collapse
Affiliation(s)
- Hanrui Zhang
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ziyan Wang
- Department of Electrical Engineering and Computer Science (EECS) - CSE Division, University of Michigan, Ann Arbor, MI, USA
| | - Yiyang Nan
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Bulat Zagidullin
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Daiyao Yi
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
He H, Duo H, Hao Y, Zhang X, Zhou X, Zeng Y, Li Y, Li B. Computational drug repurposing by exploiting large-scale gene expression data: Strategy, methods and applications. Comput Biol Med 2023; 155:106671. [PMID: 36805225 DOI: 10.1016/j.compbiomed.2023.106671] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
De novo drug development is an extremely complex, time-consuming and costly task. Urgent needs for therapies of various diseases have greatly accelerated searches for more effective drug development methods. Luckily, drug repurposing provides a new and effective perspective on disease treatment. Rapidly increased large-scale transcriptome data paints a detailed prospect of gene expression during disease onset and thus has received wide attention in the field of computational drug repurposing. However, how to efficiently mine transcriptome data and identify new indications for old drugs remains a critical challenge. This review discussed the irreplaceable role of transcriptome data in computational drug repurposing and summarized some representative databases, tools and strategies. More importantly, it proposed a practical guideline through establishing the correspondence between three gene expression data types and five strategies, which would facilitate researchers to adopt appropriate strategies to deeply mine large-scale transcriptome data and discover more effective therapies.
Collapse
Affiliation(s)
- Hao He
- College of Life Sciences, Chongqing Normal University, Chongqing, 400044, PR China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, PR China
| | - Hongrui Duo
- College of Life Sciences, Chongqing Normal University, Chongqing, 400044, PR China
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing, 400044, PR China
| | - Xiaoxi Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing, 400044, PR China
| | - Xinyi Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing, 400044, PR China
| | - Yujie Zeng
- College of Life Sciences, Chongqing Normal University, Chongqing, 400044, PR China
| | - Yinghong Li
- The Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing, 400044, PR China.
| |
Collapse
|
14
|
Lv J, Liu G, Dong W, Ju Y, Sun Y. ACDB: An Antibiotic Combination DataBase. Front Pharmacol 2022; 13:869983. [PMID: 35370670 PMCID: PMC8971807 DOI: 10.3389/fphar.2022.869983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 02/28/2022] [Indexed: 01/22/2023] Open
Affiliation(s)
- Ji Lv
- College of Computer Science and Technology, Jilin University, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Guixia Liu
- College of Computer Science and Technology, Jilin University, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Guixia Liu,
| | - Wenxuan Dong
- College of Computer Science, Sichuan University, Chengdu, China
| | - Yuan Ju
- Sichuan University Library, Sichuan University, Chengdu, China
| | - Ying Sun
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Wu L, Wen Y, Leng D, Zhang Q, Dai C, Wang Z, Liu Z, Yan B, Zhang Y, Wang J, He S, Bo X. Machine learning methods, databases and tools for drug combination prediction. Brief Bioinform 2021; 23:6363058. [PMID: 34477201 PMCID: PMC8769702 DOI: 10.1093/bib/bbab355] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Combination therapy has shown an obvious efficacy on complex diseases and can greatly reduce the development of drug resistance. However, even with high-throughput screens, experimental methods are insufficient to explore novel drug combinations. In order to reduce the search space of drug combinations, there is an urgent need to develop more efficient computational methods to predict novel drug combinations. In recent decades, more and more machine learning (ML) algorithms have been applied to improve the predictive performance. The object of this study is to introduce and discuss the recent applications of ML methods and the widely used databases in drug combination prediction. In this study, we first describe the concept and controversy of synergism between drug combinations. Then, we investigate various publicly available data resources and tools for prediction tasks. Next, ML methods including classic ML and deep learning methods applied in drug combination prediction are introduced. Finally, we summarize the challenges to ML methods in prediction tasks and provide a discussion on future work.
Collapse
Affiliation(s)
- Lianlian Wu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yuqi Wen
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Dongjin Leng
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | - Chong Dai
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zhongming Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Ziqi Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, AMMS, Beijing, China
| | - Bowei Yan
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yixin Zhang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Jing Wang
- School of Medicine, Tsinghua University, Beijing, China
| | - Song He
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaochen Bo
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
16
|
Wang B, Warden AR, Ding X. The optimization of combinatorial drug therapies: Strategies and laboratorial platforms. Drug Discov Today 2021; 26:2646-2659. [PMID: 34332097 DOI: 10.1016/j.drudis.2021.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/19/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022]
Abstract
Designing optimal combinatorial drug therapies is challenging, because the drug interactions depend not only on the drugs involved, but also on their doses. With recent advances, combinatorial drug therapy is closer than ever to clinical application. Herein, we summarize approaches and advances over the past decade for identifying and optimizing drug combination therapies, with innovations across research fields, covering physical laboratory platforms for combination screening to computational models and algorithms designed for synergism prediction and optimization. By comparing different types of approach, we detail a three-step workflow that could maximize the overall optimization efficiency, thus enabling the application of personalized optimization of combinatorial drug therapy.
Collapse
Affiliation(s)
- Boqian Wang
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China
| | - Antony R Warden
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China
| | - Xianting Ding
- Institute for Personalized Medicine, State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China.
| |
Collapse
|
17
|
Zheng S, Aldahdooh J, Shadbahr T, Wang Y, Aldahdooh D, Bao J, Wang W, Tang J. DrugComb update: a more comprehensive drug sensitivity data repository and analysis portal. Nucleic Acids Res 2021; 49:W174-W184. [PMID: 34060634 PMCID: PMC8218202 DOI: 10.1093/nar/gkab438] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/18/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Combinatorial therapies that target multiple pathways have shown great promises for treating complex diseases. DrugComb (https://drugcomb.org/) is a web-based portal for the deposition and analysis of drug combination screening datasets. Since its first release, DrugComb has received continuous updates on the coverage of data resources, as well as on the functionality of the web server to improve the analysis, visualization and interpretation of drug combination screens. Here, we report significant updates of DrugComb, including: (i) manual curation and harmonization of more comprehensive drug combination and monotherapy screening data, not only for cancers but also for other diseases such as malaria and COVID-19; (ii) enhanced algorithms for assessing the sensitivity and synergy of drug combinations; (iii) network modelling tools to visualize the mechanisms of action of drugs or drug combinations for a given cancer sample and (iv) state-of-the-art machine learning models to predict drug combination sensitivity and synergy. These improvements have been provided with more user-friendly graphical interface and faster database infrastructure, which make DrugComb the most comprehensive web-based resources for the study of drug sensitivities for multiple diseases.
Collapse
Affiliation(s)
- Shuyu Zheng
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki FI-00290, Finland
| | - Jehad Aldahdooh
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki FI-00290, Finland
| | - Tolou Shadbahr
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki FI-00290, Finland
| | - Yinyin Wang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki FI-00290, Finland
| | - Dalal Aldahdooh
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki FI-00290, Finland
| | - Jie Bao
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki FI-00290, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki FI-00290, Finland
| | - Wenyu Wang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki FI-00290, Finland
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki FI-00290, Finland
| |
Collapse
|
18
|
Using response surface models to analyze drug combinations. Drug Discov Today 2021; 26:2014-2024. [PMID: 34119666 DOI: 10.1016/j.drudis.2021.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/09/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022]
Abstract
Quantitative evaluation of how drugs combine to elicit a biological response is crucial for drug development. Evaluations of drug combinations are often performed using index-based methods, which are known to be biased and unstable. We examine how these methods can produce misleadingly structured patterns of bias, leading to erroneous judgments of synergy or antagonism. By contrast, response surface models are less prone to these defects and can be applied to a wide range of data that have appeared in recent literature, including the measurement of combination therapeutic windows and the analysis of discrete experimental measures, three-way drug combinations, and atypical response behaviors.
Collapse
|
19
|
Luna A, Elloumi F, Varma S, Wang Y, Rajapakse VN, Aladjem MI, Robert J, Sander C, Pommier Y, Reinhold WC. CellMiner Cross-Database (CellMinerCDB) version 1.2: Exploration of patient-derived cancer cell line pharmacogenomics. Nucleic Acids Res 2021; 49:D1083-D1093. [PMID: 33196823 DOI: 10.1093/nar/gkaa968] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
CellMiner Cross-Database (CellMinerCDB, discover.nci.nih.gov/cellminercdb) allows integration and analysis of molecular and pharmacological data within and across cancer cell line datasets from the National Cancer Institute (NCI), Broad Institute, Sanger/MGH and MD Anderson Cancer Center (MDACC). We present CellMinerCDB 1.2 with updates to datasets from NCI-60, Broad Cancer Cell Line Encyclopedia and Sanger/MGH, and the addition of new datasets, including NCI-ALMANAC drug combination, MDACC Cell Line Project proteomic, NCI-SCLC DNA copy number and methylation data, and Broad methylation, genetic dependency and metabolomic datasets. CellMinerCDB (v1.2) includes several improvements over the previously published version: (i) new and updated datasets; (ii) support for pattern comparisons and multivariate analyses across data sources; (iii) updated annotations with drug mechanism of action information and biologically relevant multigene signatures; (iv) analysis speedups via caching; (v) a new dataset download feature; (vi) improved visualization of subsets of multiple tissue types; (vii) breakdown of univariate associations by tissue type; and (viii) enhanced help information. The curation and common annotations (e.g. tissues of origin and identifiers) provided here across pharmacogenomic datasets increase the utility of the individual datasets to address multiple researcher question types, including data reproducibility, biomarker discovery and multivariate analysis of drug activity.
Collapse
Affiliation(s)
- Augustin Luna
- cBio Center, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Fathi Elloumi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.,General Dynamics Information Technology Inc., Fairfax, VA 22042, USA
| | - Sudhir Varma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.,HiThru Analytics LLC, Princeton, NJ 08540, USA
| | - Yanghsin Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.,General Dynamics Information Technology Inc., Fairfax, VA 22042, USA
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jacques Robert
- Inserm unité 1218, Université de Bordeaux, Bordeaux 33076, France
| | - Chris Sander
- cBio Center, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - William C Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Pulkkinen OI, Gautam P, Mustonen V, Aittokallio T. Multiobjective optimization identifies cancer-selective combination therapies. PLoS Comput Biol 2020; 16:e1008538. [PMID: 33370253 PMCID: PMC7793282 DOI: 10.1371/journal.pcbi.1008538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/08/2021] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Combinatorial therapies are required to treat patients with advanced cancers that have become resistant to monotherapies through rewiring of redundant pathways. Due to a massive number of potential drug combinations, there is a need for systematic approaches to identify safe and effective combinations for each patient, using cost-effective methods. Here, we developed an exact multiobjective optimization method for identifying pairwise or higher-order combinations that show maximal cancer-selectivity. The prioritization of patient-specific combinations is based on Pareto-optimization in the search space spanned by the therapeutic and nonselective effects of combinations. We demonstrate the performance of the method in the context of BRAF-V600E melanoma treatment, where the optimal solutions predicted a number of co-inhibition partners for vemurafenib, a selective BRAF-V600E inhibitor, approved for advanced melanoma. We experimentally validated many of the predictions in BRAF-V600E melanoma cell line, and the results suggest that one can improve selective inhibition of BRAF-V600E melanoma cells by combinatorial targeting of MAPK/ERK and other compensatory pathways using pairwise and third-order drug combinations. Our mechanism-agnostic optimization method is widely applicable to various cancer types, and it takes as input only measurements of a subset of pairwise drug combinations, without requiring target information or genomic profiles. Such data-driven approaches may become useful for functional precision oncology applications that go beyond the cancer genetic dependency paradigm to optimize cancer-selective combinatorial treatments.
Collapse
Affiliation(s)
- Otto I Pulkkinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Helsinki Institute for Information Technology (HIIT), Department of Computer Science, University of Helsinki, Helsinki, Finland.,Computational Physics Laboratory, Tampere University, Tampere, Finland.,Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Prson Gautam
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Ville Mustonen
- Helsinki Institute for Information Technology (HIIT), Department of Computer Science, University of Helsinki, Helsinki, Finland.,Organismal and Evolutionary Biology Research Programme, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Mathematics and Statistics, University of Turku, Turku, Finland.,Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway.,Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
Tsirvouli E, Touré V, Niederdorfer B, Vázquez M, Flobak Å, Kuiper M. A Middle-Out Modeling Strategy to Extend a Colon Cancer Logical Model Improves Drug Synergy Predictions in Epithelial-Derived Cancer Cell Lines. Front Mol Biosci 2020; 7:502573. [PMID: 33195403 PMCID: PMC7581946 DOI: 10.3389/fmolb.2020.502573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 09/22/2020] [Indexed: 11/23/2022] Open
Abstract
Cancer is a heterogeneous and complex disease and one of the leading causes of death worldwide. The high tumor heterogeneity between individuals affected by the same cancer type is accompanied by distinct molecular and phenotypic tumor profiles and variation in drug treatment response. In silico modeling of cancer as an aberrantly regulated system of interacting signaling molecules provides a basis to enhance our biological understanding of disease progression, and it offers the means to use computer simulations to test and optimize drug therapy designs on particular cancer types and subtypes. This sets the stage for precision medicine: the design of treatments tailored to individuals or groups of patients based on their tumor-specific molecular cancer profiles. Here, we show how a relatively large manually curated logical model can be efficiently enhanced further by including components highlighted by a multi-omics data analysis of data from Consensus Molecular Subtypes covering colorectal cancer. The model expansion was performed in a pathway-centric manner, following a partitioning of the model into functional subsystems, named modules. The resulting approach constitutes a middle-out modeling strategy enabling a data-driven expansion of a model from a generic and intermediate level of molecular detail to a model better covering relevant processes that are affected in specific cancer subtypes, comprising 183 biological entities and 603 interactions between them, partitioned in 25 functional modules of varying size and structure. We tested this model for its ability to correctly predict drug combination synergies, against a dataset of experimentally determined cell growth responses with 18 drugs in all combinations, on eight cancer cell lines. The results indicate that the extended model had an improved accuracy for drug synergy prediction for the majority of the experimentally tested cancer cell lines, although significant improvements of the model's predictive performance are still needed. Our study demonstrates how a tumor-data driven middle-out approach toward refining a logical model of a biological system can further customize a computer model to represent specific cancer cell lines and provide a basis for identifying synergistic effects of drugs targeting specific regulatory proteins. This approach bridges between preclinical cancer model data and clinical patient data and may thereby ultimately be of help to develop patient-specific in silico models that can steer treatment decisions in the clinic.
Collapse
Affiliation(s)
- Eirini Tsirvouli
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Vasundra Touré
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Barbara Niederdorfer
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Miguel Vázquez
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Åsmund Flobak
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- The Cancer Clinic, St. Olav’s University Hospital, Trondheim, Norway
| | - Martin Kuiper
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|