1
|
Yan G, Pan M, Keller AM, Santiago AG, Lofgren M, Banerjee R, Chen P, Chen TY. Conformation-gated binding drives negative cooperativity in ATP:cob(I)alamin Adenosyltransferase for optimized cobalamin handling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631765. [PMID: 39829891 PMCID: PMC11741278 DOI: 10.1101/2025.01.07.631765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Vitamin B 12 (cobalamin) is a high-value yet scarce cofactor required for various metabolic processes, making its efficient handling important for maintaining metabolic homeostasis. While the involvement of ATP:cob(I)alamin adenosyltransferases (MMAB) in the synthesis, delivery, and repair of 5'-deoxyadenosylcobalamin (AdoCbl) is well established, the kinetic mechanisms that regulate this process, particularly its negative cooperativity, remain poorly understood. Understanding these mechanisms is key to clarifying how MMAB efficiently uses AdoCbl, prevents resource wastage, and supports bacterial survival in nutrient-limited environments. Using single-molecule relative fluorescence (SRF) spectroscopy, we found that conformation-gated binding is the driving force behind MMAB's preference for AdoCbl over hydroxocobalamin and is the underlying mechanism for negative cooperativity. This mechanism significantly slows down the binding of the second equivalent of AdoCbl, favoring the singly bound state. Our findings indicate that MMAB predominantly binds a single AdoCbl, optimizing the AdoCbl loading to methylmalonyl-CoA mutase. Additionally, our SRF approach also serves as a tool to explore other cofactor interactions, such as those between riboswitches and cobalamin derivatives, to provide insights into regulatory mechanisms of cobalamin sensing and gene regulation, which are crucial for bacterial adaptation to changing nutrient conditions. Significance Statement MMAB is important for B 12 -dependent propionate metabolism in bacteria. Our findings reveal that conformation-driven binding mechanism underlines the negative cooperativity of MMAB, as it favors the binding of the first AdoCbl while limiting further binding. The larger k on for the first site, combined with similar unbinding rates for both sites, could provide a solution for optimizing cobalamin handling and minimize unnecessary waste. Our single-molecule fluorescence approach offers a powerful tool for investigating other dynamic cofactor interactions, providing new insights into regulatory mechanisms in bacterial metabolism.
Collapse
|
3
|
Saville L, Wu L, Habtewold J, Cheng Y, Gollen B, Mitchell L, Stuart-Edwards M, Haight T, Mohajerani M, Zovoilis A. NERD-seq: a novel approach of Nanopore direct RNA sequencing that expands representation of non-coding RNAs. Genome Biol 2024; 25:233. [PMID: 39198865 PMCID: PMC11351768 DOI: 10.1186/s13059-024-03375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are frequently documented RNA modification substrates. Nanopore Technologies enables the direct sequencing of RNAs and the detection of modified nucleobases. Ordinarily, direct RNA sequencing uses polyadenylation selection, studying primarily mRNA gene expression. Here, we present NERD-seq, which enables detection of multiple non-coding RNAs, excluded by the standard approach, alongside natively polyadenylated transcripts. Using neural tissues as a proof of principle, we show that NERD-seq expands representation of frequently modified non-coding RNAs, such as snoRNAs, snRNAs, scRNAs, srpRNAs, tRNAs, and rRFs. NERD-seq represents an RNA-seq approach to simultaneously study mRNA and ncRNA epitranscriptomes in brain tissues and beyond.
Collapse
Affiliation(s)
- Luke Saville
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Li Wu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
| | - Jemaneh Habtewold
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
| | - Yubo Cheng
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Babita Gollen
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Liam Mitchell
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Matthew Stuart-Edwards
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Travis Haight
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Majid Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Athanasios Zovoilis
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada.
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada.
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada.
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada.
| |
Collapse
|
4
|
Srivastava Y, Blau ME, Jenkins JL, Wedekind JE. Full-Length NAD +-I Riboswitches Bind a Single Cofactor but Cannot Discriminate against Adenosine Triphosphate. Biochemistry 2023; 62:3396-3410. [PMID: 37947391 PMCID: PMC10702441 DOI: 10.1021/acs.biochem.3c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
Bacterial riboswitches are structured RNAs that bind small metabolites to control downstream gene expression. Two riboswitch classes have been reported to sense nicotinamide adenine dinucleotide (NAD+), which plays a key redox role in cellular metabolism. The NAD+-I (class I) riboswitch stands out because it comprises two homologous, tandemly arranged domains. However, previous studies examined the isolated domains rather than the full-length riboswitch. Crystallography and ligand binding analyses led to the hypothesis that each domain senses NAD+ but with disparate equilibrium binding constants (KD) of 127 μM (domain I) and 3.4 mM (domain II). Here, we analyzed individual domains and the full-length riboswitch by isothermal titration calorimetry to quantify the cofactor affinity and specificity. Domain I senses NAD+ with a KD of 24.6 ± 8.4 μM but with a reduced ligand-to-receptor stoichiometry, consistent with nonproductive domain self-association observed by gel-filtration chromatography; domain II revealed no detectable binding. By contrast, the full-length riboswitch binds a single NAD+ with a KD of 31.5 ± 1.5 μM; dinucleotides NADH and AP2-ribavirin also bind with one-to-one stoichiometry. Unexpectedly, the full-length riboswitch also binds a single ATP equivalent (KD = 11.0 ± 3.5 μM). The affinity trend of the full-length riboswitch is ADP = ATP > NAD+ = AP2-ribavirin > NADH. Although our results support riboswitch sensing of a single NAD+ at concentrations significantly below the intracellular levels of this cofactor, our findings do not support the level of specificity expected for a riboswitch that exclusively senses NAD+. Gene regulatory implications and future challenges are discussed.
Collapse
Affiliation(s)
- Yoshita Srivastava
- Department
of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642, United States
| | - Maya E. Blau
- Department
of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642, United States
| | - Jermaine L. Jenkins
- Department
of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642, United States
| | - Joseph E. Wedekind
- Department
of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642, United States
| |
Collapse
|
5
|
Procknow RR, Kennedy KJ, Kluba M, Rodriguez LJ, Taga ME. Genetic dissection of regulation by a repressing and novel activating corrinoid riboswitch enables engineering of synthetic riboswitches. mBio 2023; 14:e0158823. [PMID: 37823641 PMCID: PMC10653944 DOI: 10.1128/mbio.01588-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE In addition to proteins, microbes can use structured RNAs such as riboswitches for the important task of regulating gene expression. Riboswitches control gene expression by changing their structure in response to binding a small molecule and are widespread among bacteria. Here we determine the mechanism of regulation in a riboswitch that responds to corrinoids-a family of coenzymes related to vitamin B12. We report the alternative RNA secondary structures that couple corrinoid sensing with response in a repressing and novel activating corrinoid riboswitch. We then applied this knowledge to flipping the regulatory sign by constructing synthetic riboswitches that activate expression to a higher level than the natural one. In the process, we observed patterns in which sequence, in addition to structure, impacts function in paired RNA regions. The synthetic riboswitches we describe here have potential applications as biosensors.
Collapse
Affiliation(s)
- Rebecca R. Procknow
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Kristopher J. Kennedy
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Maxwell Kluba
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Lesley J. Rodriguez
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Michiko E. Taga
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
6
|
Lennon SR, Wierzba AJ, Siwik SH, Gryko D, Palmer AE, Batey RT. Targeting Riboswitches with Beta-Axial-Substituted Cobalamins. ACS Chem Biol 2023; 18:1136-1147. [PMID: 37094176 PMCID: PMC10395008 DOI: 10.1021/acschembio.2c00939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
RNA-targeting small-molecule therapeutics is an emerging field hindered by an incomplete understanding of the basic principles governing RNA-ligand interactions. One way to advance our knowledge in this area is to study model systems where these interactions are better understood, such as riboswitches. Riboswitches bind a wide array of small molecules with high affinity and selectivity, providing a wealth of information on how RNA recognizes ligands through diverse structures. The cobalamin-sensing riboswitch is a particularly useful model system, as similar sequences show highly specialized binding preferences for different biological forms of cobalamin. This riboswitch is also widely dispersed across bacteria and therefore holds strong potential as an antibiotic target. Many synthetic cobalamin forms have been developed for various purposes including therapeutics, but their interaction with cobalamin riboswitches is yet to be explored. In this study, we characterize the interactions of 11 cobalamin derivatives with three representative cobalamin riboswitches using in vitro binding experiments (both chemical footprinting and a fluorescence-based assay) and a cell-based reporter assay. The derivatives show productive interactions with two of the three riboswitches, demonstrating simultaneous plasticity and selectivity within these RNAs. The observed plasticity is partially achieved through a novel structural rearrangement within the ligand binding pocket, providing insight into how similar RNA structures can be targeted. As the derivatives also show in vivo functionality, they serve as several potential lead compounds for further drug development.
Collapse
Affiliation(s)
- Shelby R. Lennon
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Aleksandra J. Wierzba
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303 – 0596, USA
| | - Shea H. Siwik
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Amy E. Palmer
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303 – 0596, USA
| | - Robert T. Batey
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| |
Collapse
|
7
|
Cobalamin Riboswitches Are Broadly Sensitive to Corrinoid Cofactors to Enable an Efficient Gene Regulatory Strategy. mBio 2022; 13:e0112122. [PMID: 35993747 PMCID: PMC9600662 DOI: 10.1128/mbio.01121-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In bacteria, many essential metabolic processes are controlled by riboswitches, gene regulatory RNAs that directly bind and detect metabolites. Highly specific effector binding enables riboswitches to respond to a single biologically relevant metabolite. Cobalamin riboswitches are a potential exception because over a dozen chemically similar but functionally distinct cobalamin variants (corrinoid cofactors) exist in nature. Here, we measured cobalamin riboswitch activity in vivo using a Bacillus subtilis fluorescent reporter system and found, among 38 tested riboswitches, a subset responded to corrinoids promiscuously, while others were semiselective. Analyses of chimeric riboswitches and structural models indicate, unlike other riboswitch classes, cobalamin riboswitches indirectly differentiate among corrinoids by sensing differences in their structural conformation. This regulatory strategy aligns riboswitch-corrinoid specificity with cellular corrinoid requirements in a B. subtilis model. Thus, bacteria can employ broadly sensitive riboswitches to cope with the chemical diversity of essential metabolites. IMPORTANCE Some bacterial mRNAs contain a region called a riboswitch which controls gene expression by binding to a metabolite in the cell. Typically, riboswitches sense and respond to a limited range of cellular metabolites, often just one type. In this work, we found the cobalamin (vitamin B12) riboswitch class is an exception, capable of sensing and responding to multiple variants of B12-collectively called corrinoids. We found cobalamin riboswitches vary in corrinoid specificity with some riboswitches responding to each of the corrinoids we tested, while others responding only to a subset of corrinoids. Our results suggest the latter class of riboswitches sense intrinsic conformational differences among corrinoids in order to support the corrinoid-specific needs of the cell. These findings provide insight into how bacteria sense and respond to an exceptionally diverse, often essential set of enzyme cofactors.
Collapse
|