1
|
Uribe C, Nery MF, Zavala K, Mardones GA, Riadi G, Opazo JC. Evolution of ion channels in cetaceans: a natural experiment in the tree of life. Sci Rep 2024; 14:17024. [PMID: 39043711 PMCID: PMC11266680 DOI: 10.1038/s41598-024-66082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Cetaceans represent a natural experiment within the tree of life in which a lineage changed from terrestrial to aquatic habitats. This shift involved phenotypic modifications, representing an opportunity to explore the genetic bases of phenotypic diversity. Among the different molecular systems that maintain cellular homeostasis, ion channels are crucial for the proper physiological functioning of all living species. This study aims to explore the evolution of ion channels during the evolutionary history of cetaceans. To do so, we created a bioinformatic pipeline to annotate the repertoire of ion channels in the genome of the species included in our sampling. Our main results show that cetaceans have, on average, fewer protein-coding genes and a higher percentage of annotated ion channels than non-cetacean mammals. Signals of positive selection were detected in ion channels related to the heart, locomotion, visual and neurological phenotypes. Interestingly, we predict that the NaV1.5 ion channel of most toothed whales (odontocetes) is sensitive to tetrodotoxin, similar to NaV1.7, given the presence of tyrosine instead of cysteine, in a specific position of the ion channel. Finally, the gene turnover rate of the cetacean crown group is more than three times faster than that of non-cetacean mammals.
Collapse
Affiliation(s)
- Cristóbal Uribe
- Department of Bioinformatics, Program in Sciences Mention Modeling of Chemical and Biological Systems, School of Bioinformatics Engineering, Center for Bioinformatics, Simulation and Modeling, CBSM, Faculty of Engineering, University of Talca, Campus Talca, Talca, Chile
| | - Mariana F Nery
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, Cidade Universitária, Campinas, Brazil
| | - Kattina Zavala
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Gonzalo A Mardones
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
- Integrative Biology Group, Valdivia, Chile
| | - Gonzalo Riadi
- Department of Bioinformatics, Center for Bioinformatics, Simulation and Modeling, Faculty of Engineering, CBSM, University of Talca, Talca, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile.
| | - Juan C Opazo
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
- Integrative Biology Group, Valdivia, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile.
| |
Collapse
|
2
|
Gupta A, Mirarab S, Turakhia Y. Accurate, scalable, and fully automated inference of species trees from raw genome assemblies using ROADIES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596098. [PMID: 38854139 PMCID: PMC11160643 DOI: 10.1101/2024.05.27.596098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Inference of species trees plays a crucial role in advancing our understanding of evolutionary relationships and has immense significance for diverse biological and medical applications. Extensive genome sequencing efforts are currently in progress across a broad spectrum of life forms, holding the potential to unravel the intricate branching patterns within the tree of life. However, estimating species trees starting from raw genome sequences is quite challenging, and the current cutting-edge methodologies require a series of error-prone steps that are neither entirely automated nor standardized. In this paper, we present ROADIES, a novel pipeline for species tree inference from raw genome assemblies that is fully automated, easy to use, scalable, free from reference bias, and provides flexibility to adjust the tradeoff between accuracy and runtime. The ROADIES pipeline eliminates the need to align whole genomes, choose a single reference species, or pre-select loci such as functional genes found using cumbersome annotation steps. Moreover, it leverages recent advances in phylogenetic inference to allow multi-copy genes, eliminating the need to detect orthology. Using the genomic datasets released from large-scale sequencing consortia across three diverse life forms (placental mammals, pomace flies, and birds), we show that ROADIES infers species trees that are comparable in quality with the state-of-the-art approaches but in a fraction of the time. By incorporating optimal approaches and automating all steps from assembled genomes to species and gene trees, ROADIES is poised to improve the accuracy, scalability, and reproducibility of phylogenomic analyses.
Collapse
Affiliation(s)
- Anshu Gupta
- Department of Computer Science and Engineering, University of California, San Diego; San Diego, CA 92093, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California, San Diego; San Diego, CA 92093, USA
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California, San Diego; San Diego, CA 92093, USA
| |
Collapse
|
3
|
Jorstad NL, Song JH, Exposito-Alonso D, Suresh H, Castro-Pacheco N, Krienen FM, Yanny AM, Close J, Gelfand E, Long B, Seeman SC, Travaglini KJ, Basu S, Beaudin M, Bertagnolli D, Crow M, Ding SL, Eggermont J, Glandon A, Goldy J, Kiick K, Kroes T, McMillen D, Pham T, Rimorin C, Siletti K, Somasundaram S, Tieu M, Torkelson A, Feng G, Hopkins WD, Höllt T, Keene CD, Linnarsson S, McCarroll SA, Lelieveldt BP, Sherwood CC, Smith K, Walsh CA, Dobin A, Gillis J, Lein ES, Hodge RD, Bakken TE. Comparative transcriptomics reveals human-specific cortical features. Science 2023; 382:eade9516. [PMID: 37824638 PMCID: PMC10659116 DOI: 10.1126/science.ade9516] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
The cognitive abilities of humans are distinctive among primates, but their molecular and cellular substrates are poorly understood. We used comparative single-nucleus transcriptomics to analyze samples of the middle temporal gyrus (MTG) from adult humans, chimpanzees, gorillas, rhesus macaques, and common marmosets to understand human-specific features of the neocortex. Human, chimpanzee, and gorilla MTG showed highly similar cell-type composition and laminar organization as well as a large shift in proportions of deep-layer intratelencephalic-projecting neurons compared with macaque and marmoset MTG. Microglia, astrocytes, and oligodendrocytes had more-divergent expression across species compared with neurons or oligodendrocyte precursor cells, and neuronal expression diverged more rapidly on the human lineage. Only a few hundred genes showed human-specific patterning, suggesting that relatively few cellular and molecular changes distinctively define adult human cortical structure.
Collapse
Affiliation(s)
| | - Janet H.T. Song
- Allen Discovery Center for Human Brain Evolution, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | - David Exposito-Alonso
- Allen Discovery Center for Human Brain Evolution, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Hamsini Suresh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Fenna M. Krienen
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jennie Close
- Allen Institute for Brain Science; Seattle, WA, 98109, USA
| | - Emily Gelfand
- Allen Institute for Brain Science; Seattle, WA, 98109, USA
| | - Brian Long
- Allen Institute for Brain Science; Seattle, WA, 98109, USA
| | | | | | - Soumyadeep Basu
- LKEB, Dept of Radiology, Leiden University Medical Center; Leiden, The Netherlands
- Computer Graphics and Visualization Group, Delft University of Technology, Delft, Netherlands
| | - Marc Beaudin
- Allen Discovery Center for Human Brain Evolution, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | - Megan Crow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Song-Lin Ding
- Allen Institute for Brain Science; Seattle, WA, 98109, USA
| | - Jeroen Eggermont
- LKEB, Dept of Radiology, Leiden University Medical Center; Leiden, The Netherlands
| | | | - Jeff Goldy
- Allen Institute for Brain Science; Seattle, WA, 98109, USA
| | - Katelyn Kiick
- Allen Institute for Brain Science; Seattle, WA, 98109, USA
| | - Thomas Kroes
- LKEB, Dept of Radiology, Leiden University Medical Center; Leiden, The Netherlands
| | | | | | | | - Kimberly Siletti
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Michael Tieu
- Allen Institute for Brain Science; Seattle, WA, 98109, USA
| | - Amy Torkelson
- Allen Institute for Brain Science; Seattle, WA, 98109, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William D. Hopkins
- Keeling Center for Comparative Medicine and Research, University of Texas, MD Anderson Cancer Center, Houston, TX 78602, USA
| | - Thomas Höllt
- Computer Graphics and Visualization Group, Delft University of Technology, Delft, Netherlands
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 981915, USA
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Steven A. McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Boudewijn P. Lelieveldt
- LKEB, Dept of Radiology, Leiden University Medical Center; Leiden, The Netherlands
- Pattern Recognition and Bioinformatics group, Delft University of Technology, Delft, Netherlands
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC 20037, USA
| | - Kimberly Smith
- Allen Institute for Brain Science; Seattle, WA, 98109, USA
| | - Christopher A. Walsh
- Allen Discovery Center for Human Brain Evolution, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alexander Dobin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jesse Gillis
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Ed S. Lein
- Allen Institute for Brain Science; Seattle, WA, 98109, USA
| | | | | |
Collapse
|
4
|
Chen HI, Turakhia Y, Bejerano G, Kingsley DM. Whole-genome Comparisons Identify Repeated Regulatory Changes Underlying Convergent Appendage Evolution in Diverse Fish Lineages. Mol Biol Evol 2023; 40:msad188. [PMID: 37739926 PMCID: PMC10516590 DOI: 10.1093/molbev/msad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Fins are major functional appendages of fish that have been repeatedly modified in different lineages. To search for genomic changes underlying natural fin diversity, we compared the genomes of 36 percomorph fish species that span over 100 million years of evolution and either have complete or reduced pelvic and caudal fins. We identify 1,614 genomic regions that are well-conserved in fin-complete species but missing from multiple fin-reduced lineages. Recurrent deletions of conserved sequences in wild fin-reduced species are enriched for functions related to appendage development, suggesting that convergent fin reduction at the organismal level is associated with repeated genomic deletions near fin-appendage development genes. We used sequencing and functional enhancer assays to confirm that PelA, a Pitx1 enhancer previously linked to recurrent pelvic loss in sticklebacks, has also been independently deleted and may have contributed to the fin morphology in distantly related pelvic-reduced species. We also identify a novel enhancer that is conserved in the majority of percomorphs, drives caudal fin expression in transgenic stickleback, is missing in tetraodontiform, syngnathid, and synbranchid species with caudal fin reduction, and alters caudal fin development when targeted by genome editing. Our study illustrates a broadly applicable strategy for mapping phenotypes to genotypes across a tree of vertebrate species and highlights notable new examples of regulatory genomic hotspots that have been used to evolve recurrent phenotypes across 100 million years of fish evolution.
Collapse
Affiliation(s)
- Heidi I Chen
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California, San Diego, CA, USA
| | - Gill Bejerano
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University School of Engineering, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Chen HI, Turakhia Y, Bejerano G, Kingsley DM. Whole-genome comparisons identify repeated regulatory changes underlying convergent appendage evolution in diverse fish lineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526059. [PMID: 36778215 PMCID: PMC9915506 DOI: 10.1101/2023.01.30.526059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fins are major functional appendages of fish that have been repeatedly modified in different lineages. To search for genomic changes underlying natural fin diversity, we compared the genomes of 36 wild fish species that either have complete or reduced pelvic and caudal fins. We identify 1,614 genomic regions that are well-conserved in fin-complete species but missing from multiple fin-reduced lineages. Recurrent deletions of conserved sequences (CONDELs) in wild fin-reduced species are enriched for functions related to appendage development, suggesting that convergent fin reduction at the organismal level is associated with repeated genomic deletions near fin-appendage development genes. We used sequencing and functional enhancer assays to confirm that PelA , a Pitx1 enhancer previously linked to recurrent pelvic loss in sticklebacks, has also been independently deleted and may have contributed to the fin morphology in distantly related pelvic-reduced species. We also identify a novel enhancer that is conserved in the majority of percomorphs, drives caudal fin expression in transgenic stickleback, is missing in tetraodontiform, s yngnathid, and synbranchid species with caudal fin reduction, and which alters caudal fin development when targeted by genome editing. Our study illustrates a general strategy for mapping phenotypes to genotypes across a tree of vertebrate species, and highlights notable new examples of regulatory genomic hotspots that have been used to evolve recurrent phenotypes during 100 million years of fish evolution.
Collapse
Affiliation(s)
- Heidi I. Chen
- Department of Developmental Biology, Stanford University School of Medicine, CA
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, CA
| | - Gill Bejerano
- Department of Developmental Biology, Stanford University School of Medicine, CA
- Department of Biomedical Data Science, Stanford University School of Medicine, CA
- Department of Computer Science, Stanford University School of Engineering, CA
- Department of Pediatrics, Stanford University School of Medicine, CA
| | - David M. Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, CA
- Howard Hughes Medical Institute, Stanford University, CA
| |
Collapse
|