1
|
Smart A, Gilmer O, Caliskan N. Translation Inhibition Mediated by Interferon-Stimulated Genes during Viral Infections. Viruses 2024; 16:1097. [PMID: 39066259 PMCID: PMC11281336 DOI: 10.3390/v16071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Viruses often pose a significant threat to the host through the exploitation of cellular machineries for their own benefit. In the context of immune responses, myriad host factors are deployed to target viral RNAs and inhibit viral protein translation, ultimately hampering viral replication. Understanding how "non-self" RNAs interact with the host translation machinery and trigger immune responses would help in the development of treatment strategies for viral infections. In this review, we explore how interferon-stimulated gene products interact with viral RNA and the translation machinery in order to induce either global or targeted translation inhibition.
Collapse
Affiliation(s)
- Alexandria Smart
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; (A.S.); (O.G.)
| | - Orian Gilmer
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; (A.S.); (O.G.)
| | - Neva Caliskan
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; (A.S.); (O.G.)
- Regensburg Center for Biochemistry (RCB), University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Scott S, Li Y, Bermek O, Griffith JD, Lemon SM, Choi K. Binding of microRNA-122 to the hepatitis C virus 5' untranslated region modifies interactions with poly(C) binding protein 2 and the NS5B viral polymerase. Nucleic Acids Res 2023; 51:12397-12413. [PMID: 37941151 PMCID: PMC10711565 DOI: 10.1093/nar/gkad1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Hepatitis C virus (HCV) requires two cellular factors, microRNA-122 (miR-122) and poly(C) binding protein 2 (PCBP2), for optimal replication. These host factors compete for binding to the 5' end of the single-stranded RNA genome to regulate the viral replication cycle. To understand how they interact with the RNA, we measured binding affinities of both factors for an RNA probe representing the 5' 45 nucleotides of the HCV genome (HCV45). Isothermal titration calorimetry revealed two, unequal miR-122 binding sites in HCV45, high-affinity (S1) and low-affinity (S2), differing roughly 100-fold in binding affinity. PCBP2 binds a site overlapping S2 with affinity similar to miR-122 binding to S2. PCBP2 circularizes the genome by also binding to the 3' UTR, bridging the 5' and 3' ends of the genome. By competing with PCBP2 for binding at S2, miR-122 disrupts PCBP2-mediated genome circularization. We show that the viral RNA-dependent RNA polymerase, NS5B, also binds to HCV45, and that the binding affinity of NS5B is increased in the presence of miR-122, suggesting miR-122 promotes recruitment of the polymerase. We propose that competition between miR-122 and PCBP2 for HCV45 functions as a translation-to-replication switch, determining whether the RNA genome templates protein synthesis or RNA replication.
Collapse
Affiliation(s)
- Seth Scott
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - You Li
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Oya Bermek
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Stanley M Lemon
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Kyung H Choi
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
3
|
Panigrahi M, Palmer MA, Wilson JA. Enhanced Virus Translation Enables miR-122-Independent Hepatitis C Virus Propagation. J Virol 2023:e0085821. [PMID: 37338370 PMCID: PMC10373559 DOI: 10.1128/jvi.00858-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
The 5' untranslated region (UTR) of the hepatitis C virus (HCV) genome forms RNA structures that regulate virus replication and translation. The region contains an internal ribosomal entry site (IRES) and a 5'-terminal region. Binding of the liver-specific microRNA (miRNA) miR-122 to two binding sites in the 5'-terminal region regulates viral replication, translation, and genome stability and is essential for efficient virus replication, but its precise mechanism of action is still unresolved. A current hypothesis is that miR-122 binding stimulates viral translation by facilitating the viral 5' UTR to form the translationally active HCV IRES RNA structure. While miR-122 is essential for detectable replication of wild-type HCV genomes in cell culture, several viral variants with 5' UTR mutations exhibit low-level replication in the absence of miR-122. We show that HCV mutants capable of replicating independently of miR-122 display an enhanced translation phenotype that correlates with their ability to replicate independently of miR-122. Further, we provide evidence that translation regulation is the major role for miR-122 and show that miR-122-independent HCV replication can be rescued to miR-122-dependent levels by the combined impacts of 5' UTR mutations that stimulate translation and by stabilizing the viral genome by knockdown of host exonucleases and phosphatases that degrade the genome. Finally, we show that HCV mutants capable of replicating independently of miR-122 also replicate independently of other microRNAs generated by the canonical miRNA synthesis pathway. Thus, we provide a model suggesting that translation stimulation and genome stabilization are the primary roles for miR-122 in promoting HCV. IMPORTANCE The unusual and essential role of miR-122 in promoting HCV propagation is incompletely understood. To better understand its role, we have analyzed HCV mutants capable of replicating independently of miR-122. Our data show that the ability of viruses to replicate independently of miR-122 correlates with enhanced virus translation but that genome stabilization is required to restore efficient HCV replication. This suggests that viruses must gain both abilities to escape the need for miR-122 and impacts the possibility that HCV can evolve to replicate outside the liver.
Collapse
Affiliation(s)
- Mamata Panigrahi
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Michael A Palmer
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Joyce A Wilson
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
Yang L, Du X, Wang S, Lin C, Li Q, Li Q. A regulatory network controlling ovarian granulosa cell death. Cell Death Discov 2023; 9:70. [PMID: 36806197 PMCID: PMC9941584 DOI: 10.1038/s41420-023-01346-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Follicular atresia triggered by granulosa cell (GC) apoptosis severely reduces female fertility and accelerates reproductive aging. GC apoptosis is a complex process regulated by multiple factors, regulatory axes, and signaling pathways. Here, we report a novel, small regulatory network involved in GC apoptosis and follicular atresia. miR-187, a miRNA down-regulated during follicular atresia in sows, maintains TGFBR2 mRNA stability in sow GCs by directly binding to its 5'-UTR. miR-187 activates the transforming growth factor-β (TGF-β) signaling pathway and suppresses GC apoptosis via TGFBR2 activation. NORHA, a pro-apoptotic lncRNA expressed in sow GCs, inhibits TGFBR2-mediated activation of the TGF-β signaling pathway by sponging miR-187. In contrast, NORFA, a functional lncRNA associated with sow follicular atresia and GC apoptosis, enhances miR-187 and TGFBR2 expression by inhibiting NORHA and activating NFIX. Our findings define a simple regulatory network that controls GC apoptosis and follicular atresia, providing new insights into the mechanisms of GC apoptosis, follicular atresia, and female fertility.
Collapse
Affiliation(s)
- Liu Yang
- grid.27871.3b0000 0000 9750 7019College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xing Du
- grid.27871.3b0000 0000 9750 7019College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Siqi Wang
- grid.27871.3b0000 0000 9750 7019College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chenggang Lin
- grid.27871.3b0000 0000 9750 7019College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qiqi Li
- grid.27871.3b0000 0000 9750 7019College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Baig MS, Deepanshu, Prakash P, Alam P, Krishnan A. In silico analysis reveals hypoxia-induced miR-210-3p specifically targets SARS-CoV-2 RNA. J Biomol Struct Dyn 2023; 41:12305-12327. [PMID: 36752331 DOI: 10.1080/07391102.2023.2175255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/01/2023] [Indexed: 02/09/2023]
Abstract
Human coronaviruses (HCoVs) until the emergence of SARS in 2003 were associated with mild cold and upper respiratory tract infections. The ongoing pandemic caused by SARS-CoV-2 has enhanced the potential for infection and transmission as compared to other known members of this family. MicroRNAs (miRNA) are 21-25 nucleotides long non-coding RNA that bind to 3' UTR of genes and regulate almost every aspect of cellular function. Several human miRNAs have been known to target viral genomes, mostly to downregulate their expression and sometimes to upregulate also. In some cases, host miRNAs could be sequestered by the viral genome to create a condition for favourable virus existence. The ongoing SARS CoV-2 pandemic is unique based on its transmissibility and severity and we hypothesised that there could be a unique mechanism for its pathogenesis. In this study, we exploited in silico approach to identify human respiratory system-specific miRNAs targeting the viral genome of three highly pathogenic HCoVs (SARS-CoV-2 Wuhan strain, SARS-CoV, and MERS-CoV) and three low pathogenic HCoVs (OC43, NL63, and HKU1). We identified ten common microRNAs that target all HCoVs studied here. In addition, we identified unique miRNAs which targeted specifically one particular HCoV. miR-210-3p was the single unique lung-specific miRNA, which was found to target the NSP3, NSP4, and NSP13 genes of SARS-CoV-2. Further miR-210-NSP3, miR-210-NSP4, and miR-210-NSP13 SARS-CoV-2 duplexes were docked with the hAGO2 protein (PDB ID 4F3T) which showed Z-score values of -1.9, -1.7, and -1.6, respectively. The role of miR-210-3p as master hypoxia regulator and inflammation regulation may be important for SARS-CoV-2 pathogenesis. Overall, this analysis advocates that miR-210-3p be investigated experimentally in SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Deepanshu
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Prem Prakash
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Anuja Krishnan
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| |
Collapse
|
6
|
Micro RNAs—The Small Big Players in Hepatitis E Virus Infection: A Comprehensive Review. Biomolecules 2022; 12:biom12111543. [PMID: 36358893 PMCID: PMC9687951 DOI: 10.3390/biom12111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 12/02/2022] Open
Abstract
The molecular mechanism of hepatitis E virus (HEV) pathology is still unclear. The micro RNAs (miRNAs), of host or viral origin, interfere with virus replication and host environment in order to create an appropriate condition for the production of mature HEV progeny. Understanding the biogenesis and the interference of miRNAs with HEV will help to revile the mechanism of viral pathogenesis.
Collapse
|
7
|
Panigrahi M, Palmer MA, Wilson JA. MicroRNA-122 Regulation of HCV Infections: Insights from Studies of miR-122-Independent Replication. Pathogens 2022; 11:1005. [PMID: 36145436 PMCID: PMC9504723 DOI: 10.3390/pathogens11091005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Despite the advancement in antiviral therapy, Hepatitis C remains a global health challenge and one of the leading causes of hepatitis related deaths worldwide. Hepatitis C virus, the causative agent, is a positive strand RNA virus that requires a liver specific microRNA called miR-122 for its replication. Unconventional to the canonical role of miRNAs in translation suppression by binding to 3'Untranslated Region (UTR) of messenger RNAs, miR-122 binds to two sites on the 5'UTR of viral genome and promotes viral propagation. In this review, we describe the unique relationship between the liver specific microRNA and HCV, the current knowledge on the mechanisms by which the virus uses miR-122 to promote the virus life cycle, and how miR-122 impacts viral tropism and pathogenesis. We will also discuss the use of anti-miR-122 therapy and its impact on viral evolution of miR-122-independent replication. This review further provides insight into how viruses manipulate host factors at the initial stage of infection to establish a successful infection.
Collapse
Affiliation(s)
| | | | - Joyce A. Wilson
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
8
|
Roles of microRNAs in Hepatitis C Virus Replication and Pathogenesis. Viruses 2022; 14:v14081776. [PMID: 36016398 PMCID: PMC9413378 DOI: 10.3390/v14081776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is associated with the development of chronic liver diseases, e.g., fibrosis, cirrhosis, even hepatocellular carcinoma, and/or extra-hepatic diseases such as diabetes. As an obligatory intracellular pathogen, HCV absolutely relies on host cells to propagate and is able to modulate host cellular factors in favor of its replication. Indeed, lots of cellular factors, including microRNAs (miRNAs), have been identified to be dysregulated during HCV infection. MiRNAs are small noncoding RNAs that regulate protein synthesis of their targeting mRNAs at the post-transcriptional level, usually by suppressing their target gene expression. The miRNAs dysregulated during HCV infection could directly or indirectly modulate HCV replication and/or induce liver diseases. Regulatory mechanisms of various miRNAs in HCV replication and pathogenesis have been characterized. Some dysregulated miRNAs have been considered as the biomarkers for the detection of HCV infection and/or HCV-related diseases. In this review, we intend to briefly summarize the identified miRNAs functioning at HCV replication and pathogenesis, focusing on the recent developments.
Collapse
|
9
|
Panigrahi M, Thibault PA, Wilson JA. MicroRNA 122 Affects both the Initiation and the Maintenance of Hepatitis C Virus Infections. J Virol 2022; 96:e0190321. [PMID: 34908444 PMCID: PMC8865533 DOI: 10.1128/jvi.01903-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022] Open
Abstract
A liver-specific microRNA, miR-122, anneals to the hepatitis C virus (HCV) genomic 5' terminus and is essential for virus replication in cell culture. However, bicistronic HCV replicons and full-length RNAs with specific mutations in the 5' untranslated region (UTR) can replicate, albeit to low levels, without miR-122. In this study, we have identified that HCV RNAs lacking the structural gene region or having encephalomyocarditis virus internal ribosomal entry site (EMCV IRES)-regulated translation had reduced requirements for miR-122. In addition, we found that a smaller proportion of cells supported miR-122-independent replication compared a population of cells supporting miR-122-dependent replication, while viral protein levels per positive cell were similar. Further, the proportion of cells supporting miR-122-independent replication increased with the amount of viral RNA delivered, suggesting that establishment of miR-122-independent replication in a cell is affected by the amount of viral RNA delivered. HCV RNAs replicating independently of miR-122 were not affected by supplementation with miR-122, suggesting that miR-122 is not essential for maintenance of an miR-122-independent HCV infection. However, miR-122 supplementation had a small positive impact on miR-122-dependent replication, suggesting a minor role in enhancing ongoing virus RNA accumulation. We suggest that miR-122 functions primarily to initiate an HCV infection but has a minor influence on its maintenance, and we present a model in which miR-122 is required for replication complex formation at the beginning of an infection and also supports new replication complex formation during ongoing infection and after infected cell division. IMPORTANCE The mechanism by which miR-122 promotes the HCV life cycle is not well understood, and a role in directly promoting genome amplification is still debated. In this study, we have shown that miR-122 increases the rate of viral RNA accumulation and promotes the establishment of an HCV infection in a greater number of cells than in the absence of miR-122. However, we also confirm a minor role in promoting ongoing virus replication and propose a role in the initiation of new replication complexes throughout a virus infection. This study has implications for the use of anti-miR-122 as a potential HCV therapy.
Collapse
Affiliation(s)
- Mamata Panigrahi
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Patricia A. Thibault
- Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Joyce A. Wilson
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
10
|
RNA Structures and Their Role in Selective Genome Packaging. Viruses 2021; 13:v13091788. [PMID: 34578369 PMCID: PMC8472981 DOI: 10.3390/v13091788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
To generate infectious viral particles, viruses must specifically select their genomic RNA from milieu that contains a complex mixture of cellular or non-genomic viral RNAs. In this review, we focus on the role of viral encoded RNA structures in genome packaging. We first discuss how packaging signals are constructed from local and long-range base pairings within viral genomes, as well as inter-molecular interactions between viral and host RNAs. Then, how genome packaging is regulated by the biophysical properties of RNA. Finally, we examine the impact of RNA packaging signals on viral evolution.
Collapse
|
11
|
Loureiro D, Tout I, Narguet S, Benazzouz SM, Mansouri A, Asselah T. miRNAs as Potential Biomarkers for Viral Hepatitis B and C. Viruses 2020; 12:E1440. [PMID: 33327640 PMCID: PMC7765125 DOI: 10.3390/v12121440] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Around 257 million people are living with hepatitis B virus (HBV) chronic infection and 71 million with hepatitis C virus (HCV) chronic infection. Both HBV and HCV infections can lead to liver complications such as cirrhosis and hepatocellular carcinoma (HCC). To take care of these chronically infected patients, one strategy is to diagnose the early stage of fibrosis in order to treat them as soon as possible to decrease the risk of HCC development. microRNAs (or miRNAs) are small non-coding RNAs which regulate many cellular processes in metazoans. Their expressions were frequently modulated by up- or down-regulation during fibrosis progression. In the serum of patients with HBV chronic infection (CHB), miR-122 and miR-185 expressions are increased, while miR-29, -143, -21 and miR-223 expressions are decreased during fibrosis progression. In the serum of patients with HCV chronic infection (CHC), miR-143 and miR-223 expressions are increased, while miR-122 expression is decreased during fibrosis progression. This review aims to summarize current knowledge of principal miRNAs modulation involved in fibrosis progression during chronic hepatitis B/C infections. Furthermore, we also discuss the potential use of miRNAs as non-invasive biomarkers to diagnose fibrosis with the intention of prioritizing patients with advanced fibrosis for treatment and surveillance.
Collapse
Affiliation(s)
| | | | | | | | | | - Tarik Asselah
- Department of Hepatology, Université de Paris, CRI, INSERM UMR 1149, AP-HP Hôpital Beaujon, 92110 Clichy, France; (D.L.); (I.T.); (S.N.); (S.M.B.); (A.M.)
| |
Collapse
|
12
|
The Role of the Liver-Specific microRNA, miRNA-122 in the HCV Replication Cycle. Int J Mol Sci 2020; 21:ijms21165677. [PMID: 32784807 PMCID: PMC7460827 DOI: 10.3390/ijms21165677] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) replication requires annealing of a liver specific microRNA, miR-122 to 2 sites on 5' untranslated region (UTR). While, microRNAs downregulate gene expression by binding to the 3' untranslated region of the target mRNA, in this case, the microRNA anneals to the 5'UTR of the viral genomes and upregulates the viral lifecycle. In this review, we explore the current understandings of the mechanisms by which miR-122 promotes the HCV lifecycle, and its contributions to pathogenesis. Annealing of miR-122 has been reported to (a) stimulate virus translation by promoting the formation of translationally active internal ribosome entry site (IRES) RNA structure, (b) stabilize the genome, and (c) induce viral genomic RNA replication. MiR-122 modulates lipid metabolism and suppresses tumor formation, and sequestration by HCV may influence virus pathogenesis. We also discuss the possible use of miR-122 as a biomarker for chronic hepatitis and as a therapeutic target. Finally, we discuss roles for miR-122 and other microRNAs in promoting other viruses.
Collapse
|