1
|
Sriramulu S, Thoidingjam S, Chen WM, Hassan O, Siddiqui F, Brown SL, Movsas B, Green MD, Davis AJ, Speers C, Walker E, Nyati S. BUB1 regulates non-homologous end joining pathway to mediate radioresistance in triple-negative breast cancer. J Exp Clin Cancer Res 2024; 43:163. [PMID: 38863037 PMCID: PMC11167950 DOI: 10.1186/s13046-024-03086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer subtype often treated with radiotherapy (RT). Due to its intrinsic heterogeneity and lack of effective targets, it is crucial to identify novel molecular targets that would increase RT efficacy. Here we demonstrate the role of BUB1 (cell cycle Ser/Thr kinase) in TNBC radioresistance and offer a novel strategy to improve TNBC treatment. METHODS Gene expression analysis was performed to look at genes upregulated in TNBC patient samples compared to other subtypes. Cell proliferation and clonogenic survivals assays determined the IC50 of BUB1 inhibitor (BAY1816032) and radiation enhancement ratio (rER) with pharmacologic and genomic BUB1 inhibition. Mammary fat pad xenografts experiments were performed in CB17/SCID. The mechanism through which BUB1 inhibitor sensitizes TNBC cells to radiotherapy was delineated by γ-H2AX foci assays, BLRR, Immunoblotting, qPCR, CHX chase, and cell fractionation assays. RESULTS BUB1 is overexpressed in BC and its expression is considerably elevated in TNBC with poor survival outcomes. Pharmacological or genomic ablation of BUB1 sensitized multiple TNBC cell lines to cell killing by radiation, although breast epithelial cells showed no radiosensitization with BUB1 inhibition. Kinase function of BUB1 is mainly accountable for this radiosensitization phenotype. BUB1 ablation also led to radiosensitization in TNBC tumor xenografts with significantly increased tumor growth delay and overall survival. Mechanistically, BUB1 ablation inhibited the repair of radiation-induced DNA double strand breaks (DSBs). BUB1 ablation stabilized phospho-DNAPKcs (S2056) following RT such that half-lives could not be estimated. In contrast, RT alone caused BUB1 stabilization, but pre-treatment with BUB1 inhibitor prevented stabilization (t1/2, ~8 h). Nuclear and chromatin-enriched fractionations illustrated an increase in recruitment of phospho- and total-DNAPK, and KAP1 to chromatin indicating that BUB1 is indispensable in the activation and recruitment of non-homologous end joining (NHEJ) proteins to DSBs. Additionally, BUB1 staining of TNBC tissue microarrays demonstrated significant correlation of BUB1 protein expression with tumor grade. CONCLUSIONS BUB1 ablation sensitizes TNBC cell lines and xenografts to RT and BUB1 mediated radiosensitization may occur through NHEJ. Together, these results highlight BUB1 as a novel molecular target for radiosensitization in women with TNBC.
Collapse
Affiliation(s)
- Sushmitha Sriramulu
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, 1 Ford Place, Detroit, 5D-42, MI-48202, USA
| | - Shivani Thoidingjam
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, 1 Ford Place, Detroit, 5D-42, MI-48202, USA
| | - Wei-Min Chen
- Department of Radiation Oncology, UT Southwestern Medical School, Dallas, TX-75390, USA
| | - Oudai Hassan
- Department of Surgical Pathology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI-48202, USA
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, 1 Ford Place, Detroit, 5D-42, MI-48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI-48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI-48824, USA
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, 1 Ford Place, Detroit, 5D-42, MI-48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI-48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI-48824, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, 1 Ford Place, Detroit, 5D-42, MI-48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI-48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI-48824, USA
| | - Michael D Green
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Anthony J Davis
- Department of Radiation Oncology, UT Southwestern Medical School, Dallas, TX-75390, USA
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
- Department of Radiation Oncology, UH Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH-44106, USA
| | - Eleanor Walker
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, 1 Ford Place, Detroit, 5D-42, MI-48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI-48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI-48824, USA
| | - Shyam Nyati
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, 1 Ford Place, Detroit, 5D-42, MI-48202, USA.
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI-48202, USA.
- Department of Radiology, Michigan State University, East Lansing, MI-48824, USA.
| |
Collapse
|
2
|
Sacristan C, Samejima K, Ruiz LA, Deb M, Lambers MLA, Buckle A, Brackley CA, Robertson D, Hori T, Webb S, Kiewisz R, Bepler T, van Kwawegen E, Risteski P, Vukušić K, Tolić IM, Müller-Reichert T, Fukagawa T, Gilbert N, Marenduzzo D, Earnshaw WC, Kops GJPL. Vertebrate centromeres in mitosis are functionally bipartite structures stabilized by cohesin. Cell 2024; 187:3006-3023.e26. [PMID: 38744280 PMCID: PMC11164432 DOI: 10.1016/j.cell.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 01/30/2024] [Accepted: 04/14/2024] [Indexed: 05/16/2024]
Abstract
Centromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis. The bipartite structure is found in human, mouse, and chicken cells and is therefore a fundamental feature of vertebrate centromeres. Super-resolution imaging and electron tomography reveal that bipartite centromeres assemble bipartite kinetochores, with each subdomain binding a distinct microtubule bundle. Cohesin links the centromere subdomains, limiting their separation in response to spindle forces and avoiding merotelic kinetochore-spindle attachments. Lagging chromosomes during cancer cell divisions frequently have merotelic attachments in which the centromere subdomains are separated and bioriented. Our work reveals a fundamental aspect of vertebrate centromere biology with implications for understanding the mechanisms that guarantee faithful chromosome segregation.
Collapse
Affiliation(s)
- Carlos Sacristan
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Lorena Andrade Ruiz
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Moonmoon Deb
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Maaike L A Lambers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Adam Buckle
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Chris A Brackley
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Daniel Robertson
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Tetsuya Hori
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Shaun Webb
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Robert Kiewisz
- Simons Machine Learning Center, New York Structural Biology Center, New York, NY 10027, USA; Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, Cantoblanco, Madrid 28049, Spain
| | - Tristan Bepler
- Simons Machine Learning Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Eloïse van Kwawegen
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Davide Marenduzzo
- SUPA School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), and University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Sriramulu S, Thoidingjam S, Chen WM, Hassan O, Siddiqui F, Brown SL, Movsas B, Green MD, Davis AJ, Speers C, Walker E, Nyati S. BUB1 regulates non-homologous end joining pathway to mediate radioresistance in triple-negative breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592812. [PMID: 38766122 PMCID: PMC11100764 DOI: 10.1101/2024.05.07.592812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer subtype often treated with radiotherapy (RT). Due to its intrinsic heterogeneity and lack of effective targets, it is crucial to identify novel molecular targets that would increase RT efficacy. Here we demonstrate the role of BUB1 (cell cycle Ser/Thr kinase) in TNBC radioresistance and offer a novel strategy to improve TNBC treatment. Methods Gene expression analysis was performed to look at genes upregulated in TNBC patient samples compared to other subtypes. Cell proliferation and clonogenic survivals assays determined the IC 50 of BUB1 inhibitor (BAY1816032) and radiation enhancement ratio (rER) with pharmacologic and genomic BUB1 inhibition. Mammary fat pad xenografts experiments were performed in CB17/SCID. The mechanism through which BUB1 inhibitor sensitizes TNBC cells to radiotherapy was delineated by γ-H2AX foci assays, BLRR, Immunoblotting, qPCR, CHX chase, and cell fractionation assays. Results BUB1 is overexpressed in BC and its expression is considerably elevated in TNBC with poor survival outcomes. Pharmacological or genomic ablation of BUB1 sensitized multiple TNBC cell lines to cell killing by radiation, although breast epithelial cells showed no radiosensitization with BUB1 inhibition. Kinase function of BUB1 is mainly accountable for this radiosensitization phenotype. BUB1 ablation also led to radiosensitization in TNBC tumor xenografts with significantly increased tumor growth delay and overall survival. Mechanistically, BUB1 ablation inhibited the repair of radiation-induced DNA double strand breaks (DSBs). BUB1 ablation stabilized phospho-DNAPKcs (S2056) following RT such that half-lives could not be estimated. In contrast, RT alone caused BUB1 stabilization, but pre-treatment with BUB1 inhibitor prevented stabilization (t 1/2 , ∼8 h). Nuclear and chromatin-enriched fractionations illustrated an increase in recruitment of phospho- and total-DNAPK, and KAP1 to chromatin indicating that BUB1 is indispensable in the activation and recruitment of non-homologous end joining (NHEJ) proteins to DSBs. Additionally, BUB1 staining of TNBC tissue microarrays demonstrated significant correlation of BUB1 protein expression with tumor grade. Conclusions BUB1 ablation sensitizes TNBC cell lines and xenografts to RT and BUB1 mediated radiosensitization may occur through NHEJ. Together, these results highlight BUB1 as a novel molecular target for radiosensitization in women with TNBC.
Collapse
|
4
|
Zhao W, Li G, Zhang Q, Chen M, He L, Wu Z, Zhang Y, Fan M, Liang Y, Zhang W, Zeng F, Deng F. Cardiac glycoside neriifolin exerts anti-cancer activity in prostate cancer cells by attenuating DNA damage repair through endoplasmic reticulum stress. Biochem Pharmacol 2023; 209:115453. [PMID: 36792037 DOI: 10.1016/j.bcp.2023.115453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Prostate cancer (PCa) is one of the most common cancers in men. Patients with recurrent disease initially respond to androgen-deprivation therapy, but the tumor eventually progresses into castration-resistant PCa. Thus, new therapeutic approaches for PCa resistance to current treatments are urgently needed. Here, we report that cardiac glycoside neriifolin suppresses the malignancy of cancer cells via increasing DNA damage and apoptosis through activation of endoplasmic reticulum stress (ERS) in prostate cancers. We found that cardiac glycoside neriifolin markedly inhibited the cell growth and induced apoptosis in prostate cancer cells. Transcriptome sequence analysis revealed that neriifolin significantly induced DNA damage and double strand breaks (DSBs), validated with attenuation expression of genes in DSBs repair and increasing phosphorylated histone H2AX (γ-H2AX) foci formation, a quantitative marker of DSBs. Moreover, we found that neriifolin also activated ERS, evidenced by upregulation and activation of ERS related proteins, including eukaryotic initiation factor 2α (eIF2α), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) and C/EBP homologous protein (CHOP) as well as downregulation of CCAATenhancerbinding protein alpha (C/EBP-α), a transcriptional factor that forms heterodimers with CHOP. In addition, neriifolin treatment dramatically inhibited the by tumor growth, which were reversed by CHOP loss or overexpression of C/EBP-α in nude mice. Mechanistically, neriifolin suppressed the tumor growth by increasing DNA damage and apoptosis through CHOP-C/EBP-α signaling axis of ERS in prostate cancers. Taken together, these results suggest that cardiac glycoside neriifolin may be a potential tumor-specific chemotherapeutic agent in prostate cancer treatment.
Collapse
Affiliation(s)
- Wanlu Zhao
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guihuan Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qianbing Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meixuan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lijun He
- Department of Nursing, Nanfang Hospital, Southern Medical University, Guangzhou 501515, China
| | - Zhicong Wu
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Yihe Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingming Fan
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanling Liang
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Wenlong Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fangyin Zeng
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China.
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Bracamonte AG. Current Advances in Nanotechnology for the Next Generation of Sequencing (NGS). BIOSENSORS 2023; 13:260. [PMID: 36832027 PMCID: PMC9954403 DOI: 10.3390/bios13020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This communication aims at discussing strategies based on developments from nanotechnology focused on the next generation of sequencing (NGS). In this regard, it should be noted that even in the advanced current situation of many techniques and methods accompanied with developments of technology, there are still existing challenges and needs focused on real samples and low concentrations of genomic materials. The approaches discussed/described adopt spectroscopical techniques and new optical setups. PCR bases are introduced to understand the role of non-covalent interactions by discussing about Nobel prizes related to genomic material detection. The review also discusses colorimetric methods, polymeric transducers, fluorescence detection methods, enhanced plasmonic techniques such as metal-enhanced fluorescence (MEF), semiconductors, and developments in metamaterials. In addition, nano-optics, challenges linked to signal transductions, and how the limitations reported in each technique could be overcome are considered in real samples. Accordingly, this study shows developments where optical active nanoplatforms generate signal detection and transduction with enhanced performances and, in many cases, enhanced signaling from single double-stranded deoxyribonucleic acid (DNA) interactions. Future perspectives on miniaturized instrumentation, chips, and devices aimed at detecting genomic material are analyzed. However, the main concept in this report derives from gained insights into nanochemistry and nano-optics. Such concepts could be incorporated into other higher-sized substrates and experimental and optical setups.
Collapse
Affiliation(s)
- Angel Guillermo Bracamonte
- Instituto de Investigaciones en Físicoquímica de Córdoba (INFIQC), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina; or
- Departement de Chimie et Centre d’Optique, Photonique et Laser (COPL), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
6
|
Eyme KM, Sammarco A, Jha R, Mnatsakanyan H, Pechdimaljian C, Carvalho L, Neustadt R, Moses C, Alnasser A, Tardiff DF, Su B, Williams KJ, Bensinger SJ, Chung CY, Badr CE. Targeting de novo lipid synthesis induces lipotoxicity and impairs DNA damage repair in glioblastoma mouse models. Sci Transl Med 2023; 15:eabq6288. [PMID: 36652537 PMCID: PMC9942236 DOI: 10.1126/scitranslmed.abq6288] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Deregulated de novo lipid synthesis (DNLS) is a potential druggable vulnerability in glioblastoma (GBM), a highly lethal and incurable cancer. Yet the molecular mechanisms that determine susceptibility to DNLS-targeted therapies remain unknown, and the lack of brain-penetrant inhibitors of DNLS has prevented their clinical evaluation as GBM therapeutics. Here, we report that YTX-7739, a clinical-stage inhibitor of stearoyl CoA desaturase (SCD), triggers lipotoxicity in patient-derived GBM stem-like cells (GSCs) and inhibits fatty acid desaturation in GSCs orthotopically implanted in mice. When administered as a single agent, or in combination with temozolomide (TMZ), YTX-7739 showed therapeutic efficacy in orthotopic GSC mouse models owing to its lipotoxicity and ability to impair DNA damage repair. Leveraging genetic, pharmacological, and physiological manipulation of key signaling nodes in gliomagenesis complemented with shotgun lipidomics, we show that aberrant MEK/ERK signaling and its repression of the energy sensor AMP-activated protein kinase (AMPK) primarily drive therapeutic vulnerability to SCD and other DNLS inhibitors. Conversely, AMPK activation mitigates lipotoxicity and renders GSCs resistant to the loss of DNLS, both in culture and in vivo, by decreasing the saturation state of phospholipids and diverting toxic lipids into lipid droplets. Together, our findings reveal mechanisms of metabolic plasticity in GSCs and provide a framework for the rational integration of DNLS-targeted GBM therapies.
Collapse
Affiliation(s)
- Katharina M. Eyme
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129,Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Alessandro Sammarco
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129,Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA 90095
| | - Roshani Jha
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129
| | - Hayk Mnatsakanyan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129
| | - Caline Pechdimaljian
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129
| | - Litia Carvalho
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129,Neuroscience Program, Harvard Medical School, Boston, MA, USA 02115
| | - Rudolph Neustadt
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129
| | - Charlotte Moses
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129
| | - Ahmad Alnasser
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129
| | | | - Baolong Su
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA 90095,UCLA Lipidomics Laboratory, University of California, Los Angeles, CA, USA 90095
| | - Kevin J. Williams
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA 90095,UCLA Lipidomics Laboratory, University of California, Los Angeles, CA, USA 90095
| | - Steven J. Bensinger
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA 90095,UCLA Lipidomics Laboratory, University of California, Los Angeles, CA, USA 90095
| | | | - Christian E. Badr
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA 02129,Neuroscience Program, Harvard Medical School, Boston, MA, USA 02115,Correspondence:
| |
Collapse
|
7
|
Wan Y, Zhang Y, Meng H, Miao H, Jiang Y, Zhang L, Cheng W. Bractoppin, a BRCA1 carboxy-terminal domain (BRCT) inhibitor, suppresses tumor progression in ovarian borderline tumor organoids. Biochem Biophys Res Commun 2023; 638:76-83. [PMID: 36442235 DOI: 10.1016/j.bbrc.2022.11.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Borderline ovarian tumors are a special class of ovarian tumors between benign and malignant, which are not sensitive to traditional chemotherapy regimens, and the development of target drugs is limited due to the lack of cell lines. Tumor organoids can well preserve the genetic characteristics of the primary tumor, but there are only a few reports of application in borderline tumors. In this study, we successfully generated 13 ovarian borderline tumor organoids and tested the antitumor activity of Bractoppin, a BRCA1 carboxy-terminal domain (BRCT) inhibitor. Bractoppin promotes organoid apoptosis. Mechanistically, Bractoppin can inhibit organoid cell cycle progression, inhibit the repair of DSB damage and promote tumor cell apoptosis. In addition, Bractoppin can also promote the apoptosis of ovarian cancer cell lines and inhibit the HR and NHEJ repair ability of tumor cells. We demonstrate the value of ovarian borderline tumor organoids in the exploration of molecular therapy drugs, and Bractoppin may be a valuable small molecule drug in the treatment of BOT.
Collapse
Affiliation(s)
- Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yashuang Zhang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Huangyang Meng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Huixian Miao
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Lin Zhang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
8
|
Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022; 59:5326-5365. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
9
|
Chien JCY, Badr CE, Lai CP. Multiplexed bioluminescence-mediated tracking of DNA double-strand break repairs in vitro and in vivo. Nat Protoc 2021; 16:3933-3953. [PMID: 34163064 PMCID: PMC9124064 DOI: 10.1038/s41596-021-00564-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
The dynamics of DNA double-strand break (DSB) repairs including homology-directed repair and nonhomologous end joining play an important role in diseases and therapies. However, investigating DSB repair is typically a low-throughput and cross-sectional process, requiring disruption of cells and organisms for subsequent nuclease-, sequencing- or reporter-based assays. In this protocol, we provide instructions for establishing a bioluminescent repair reporter system using engineered Gaussia and Vargula luciferases for noninvasive tracking of homology-directed repair and nonhomologous end joining, respectively, induced by SceI meganuclease, SpCas9 or SpCas9 D10A nickase-mediated editing. We also describe complementation with orthogonal DSB repair assays and omics analyses to validate the reporter readouts. The bioluminescent repair reporter system provides longitudinal and rapid readout (~seconds per sample) to accurately and efficiently measure the efficacy of genome-editing tools and small-molecule modulators on DSB repair. This protocol takes ~2-4 weeks to establish, and as little as 2 h to complete the assay. The entire bioluminescent repair reporter procedure can be performed by one person with standard molecular biology expertise and equipment. However, orthogonal DNA repair assays would require a specialized facility that performs Sanger sequencing or next-generation sequencing.
Collapse
Affiliation(s)
| | - Christian E. Badr
- Department of Neurology, Massachusetts General Hospital, Boston MA, United States,Neuroscience Program, Harvard Medical School, Boston MA, United States,To whom correspondence should be addressed: Christian E. Badr, Tel: 1-617-643-3485; Fax: 1-617-724-1537; ; Charles P. Lai, Tel: 886-2-2366-8204; Fax: 886-2-2362-0200; . C.E.B and C.P.L contributed equally to this work
| | - Charles P. Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan,To whom correspondence should be addressed: Christian E. Badr, Tel: 1-617-643-3485; Fax: 1-617-724-1537; ; Charles P. Lai, Tel: 886-2-2366-8204; Fax: 886-2-2362-0200; . C.E.B and C.P.L contributed equally to this work
| |
Collapse
|
10
|
Tatin X, Muggiolu G, Sauvaigo S, Breton J. Evaluation of DNA double-strand break repair capacity in human cells: Critical overview of current functional methods. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108388. [PMID: 34893153 DOI: 10.1016/j.mrrev.2021.108388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
DNA double-strand breaks (DSBs) are highly deleterious lesions, responsible for mutagenesis, chromosomal translocation or cell death. DSB repair (DSBR) is therefore a critical part of the DNA damage response (DDR) to restore molecular and genomic integrity. In humans, this process is achieved through different pathways with various outcomes. The balance between DSB repair activities varies depending on cell types, tissues or individuals. Over the years, several methods have been developed to study variations in DSBR capacity. Here, we mainly focus on functional techniques, which provide dynamic information regarding global DSB repair proficiency or the activity of specific pathways. These methods rely on two kinds of approaches. Indirect techniques, such as pulse field gel electrophoresis (PFGE), the comet assay and immunofluorescence (IF), measure DSB repair capacity by quantifying the time-dependent decrease in DSB levels after exposure to a DNA-damaging agent. On the other hand, cell-free assays and reporter-based methods directly track the repair of an artificial DNA substrate. Each approach has intrinsic advantages and limitations and despite considerable efforts, there is currently no ideal method to quantify DSBR capacity. All techniques provide different information and can be regarded as complementary, but some studies report conflicting results. Parameters such as the type of biological material, the required equipment or the cost of analysis may also limit available options. Improving currently available methods measuring DSBR capacity would be a major step forward and we present direct applications in mechanistic studies, drug development, human biomonitoring and personalized medicine, where DSBR analysis may improve the identification of patients eligible for chemo- and radiotherapy.
Collapse
Affiliation(s)
- Xavier Tatin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France; LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | | | - Sylvie Sauvaigo
- LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | - Jean Breton
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France.
| |
Collapse
|
11
|
Wang Y, Zhao Y, Su W, Guo X, Li S. Development of a CRISPR-Cas9 Based Luciferase Turn-On System as Nonhomologous End Joining Pathway Reporter. Chembiochem 2021; 22:2177-2181. [PMID: 33882189 DOI: 10.1002/cbic.202100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/11/2021] [Indexed: 11/07/2022]
Abstract
There is a need of a non-homologous end joining (NHEJ) pathway reporter system that facilitates screening and discovery of NHEJ chemical inhibitors. In this study, we developed a CRISPR-Cas9 based luciferase turn-on system as a NHEJ pathway reporter. By substituting nucleotide 205C with ATC, we introduced a reading-frame shift and a pre-stop codon into the luciferase coding region and thereby generated a bioluminescent signal mute HEK293T reporter cell line. Then, a CRISPR-Cas9 plasmid expressing a guide RNA targeting luciferase coding region was introduced into the reporter cell line to generate NHEJ-associated indel to restore the reading frame and subsequently turn on the bioluminescent signal. We observed over three-thousand fold increase in signal after CRISPR-Cas9 vector transfection. Different known chemical inhibitors of the NHEJ pathway, such as NU7441, KU0060648, and KU55933, could significantly inhibit the bioluminescent signal generated by CRISPR-Cas9 targeting. In addition, we validated our system by high throughput sequencing.
Collapse
Affiliation(s)
- Yi Wang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, P. R. China
| | - Yanjie Zhao
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, P. R. China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaojing Guo
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, P. R. China
| | - Shuai Li
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, P. R. China
| |
Collapse
|
12
|
Lerksuthirat T, Wikiniyadhanee R, Chitphuk S, Stitchantrakul W, Sampattavanich S, Jirawatnotai S, Jumpathong J, Dejsuphong D. DNA Repair Biosensor-Identified DNA Damage Activities of Endophyte Extracts from Garcinia cowa. Biomolecules 2020; 10:E1680. [PMID: 33339185 PMCID: PMC7765599 DOI: 10.3390/biom10121680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/03/2022] Open
Abstract
Recent developments in chemotherapy focus on target-specific mechanisms, which occur only in cancer cells and minimize the effects on normal cells. DNA damage and repair pathways are a promising target in the treatment of cancer. In order to identify novel compounds targeting DNA repair pathways, two key proteins, 53BP1 and RAD54L, were tagged with fluorescent proteins as indicators for two major double strand break (DSB) repair pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). The engineered biosensor cells exhibited the same DNA repair properties as the wild type. The biosensor cells were further used to investigate the DNA repair activities of natural biological compounds. An extract from Phyllosticta sp., the endophyte isolated from the medicinal plant Garcinia cowa Roxb. ex Choisy, was tested. The results showed that the crude extract induced DSB, as demonstrated by the increase in the DNA DSB marker γH2AX. The damaged DNA appeared to be repaired through NHEJ, as the 53BP1 focus formation in the treated fraction was higher than in the control group. In conclusion, DNA repair-based biosensors are useful for the preliminary screening of crude extracts and biological compounds for the identification of potential targeted therapeutic drugs.
Collapse
Affiliation(s)
- Tassanee Lerksuthirat
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.L.); (S.C.); (W.S.)
| | - Rakkreat Wikiniyadhanee
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Sermsiri Chitphuk
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.L.); (S.C.); (W.S.)
| | - Wasana Stitchantrakul
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.L.); (S.C.); (W.S.)
| | - Somponnat Sampattavanich
- Siriraj Center of Research for Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.S.); (S.J.)
| | - Siwanon Jirawatnotai
- Siriraj Center of Research for Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.S.); (S.J.)
| | - Juangjun Jumpathong
- Center of Excellent in Research for Agricultural Biotechnology and Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Donniphat Dejsuphong
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|