1
|
Chatterjee D, Bhattacharya S, Kumari L, Datta A. Aptamers: ushering in new hopes in targeted glioblastoma therapy. J Drug Target 2024; 32:1005-1028. [PMID: 38923419 DOI: 10.1080/1061186x.2024.2373306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Glioblastoma, a formidable brain cancer, has remained a therapeutic challenge due to its aggressive nature and resistance to conventional treatments. Recent data indicate that aptamers, short synthetic DNA or RNA molecules can be used in anti-cancer therapy due to their better tumour penetration, specific binding affinity, longer retention in tumour sites and their ability to cross the blood-brain barrier. With the ability to modify these oligonucleotides through the selection process, and using rational design to modify them, post-SELEX aptamers offer several advantages in glioblastoma treatment, including precise targeting of cancer cells while sparing healthy tissue. This review discusses the pivotal role of aptamers in glioblastoma therapy and diagnosis, emphasising their potential to enhance treatment efficacy and also highlights recent advancements in aptamer-based therapies which can transform the landscape of glioblastoma treatment, offering renewed hope to patients and clinicians alike.
Collapse
Affiliation(s)
- Debarpan Chatterjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Srijan Bhattacharya
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Leena Kumari
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Aparna Datta
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| |
Collapse
|
2
|
Dume B, Licarete E, Banciu M. Advancing cancer treatments: The role of oligonucleotide-based therapies in driving progress. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102256. [PMID: 39045515 PMCID: PMC11264197 DOI: 10.1016/j.omtn.2024.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Although recent advancements in cancer immunology have resulted in the approval of numerous immunotherapies, minimal progress has been observed in addressing hard-to-treat cancers. In this context, therapeutic oligonucleotides, including interfering RNAs, antisense oligonucleotides, aptamers, and DNAzymes, have gained a central role in cancer therapeutic approaches due to their capacity to regulate gene expression and protein function with reduced toxicity compared with conventional chemotherapeutics. Nevertheless, systemic administration of naked oligonucleotides faces many extra- and intracellular challenges that can be overcome by using effective delivery systems. Thus, viral and non-viral carriers can improve oligonucleotide stability and intracellular uptake, enhance tumor accumulation, and increase the probability of endosomal escape while minimizing other adverse effects. Therefore, gaining more insight into fundamental mechanisms of actions of various oligonucleotides and the challenges posed by naked oligonucleotide administration, this article provides a comprehensive review of the recent progress on oligonucleotide delivery systems and an overview of completed and ongoing cancer clinical trials that can shape future oncological treatments.
Collapse
Affiliation(s)
- Bogdan Dume
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, Centre of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Centre of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Yao L, Wang L, Liu S, Qu H, Mao Y, Li Y, Zheng L. Evolution of a bispecific G-quadruplex-forming circular aptamer to block IL-6/sIL-6R interaction for inflammation inhibition. Chem Sci 2024; 15:13011-13020. [PMID: 39148786 PMCID: PMC11323322 DOI: 10.1039/d4sc02183e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
IL-6 (interleukin-6) is an essential cytokine that participates in many inflammatory and immune responses, and disrupting the interaction between IL-6 and its receptor sIL-6R (soluble form of IL-6 receptor) represents a promising treatment strategy for inflammation and related diseases. Herein we report the first-ever effort of evolving a bispecific circular aptamer, named CIL-6A6-1, that is capable of binding both IL-6 and sIL-6R with nanomolar affinities and is stable in serum for more than 48 hours. CIL-6A6-1 can effectively block the IL-6/sIL-6R interaction and significantly inhibit cell inflammation. Most importantly, this bispecific aptamer is much more effective than aptamers that bind IL-6 and sIL-6R alone as well as tocilizumab, a commercially available humanized monoclonal antibody against sIL-6R, highlighting the advantage of selecting bispecific circular aptamers as molecular tools for anti-inflammation therapy. Interestingly, CIL-6A6-1 is predicted to adopt a unique structural fold with two G-quadruplex motifs capped by a long single-stranded region, which differs from all known DNA aptamers. This unique structural fold may also contribute to its excellent functionality and high stability in biological complex media. We anticipate that our study will represent a significant step forward towards demonstrating the practical utility of bispecific DNA aptamers for therapeutic applications.
Collapse
Affiliation(s)
- Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Shuai Liu
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton L8S4K1 Canada
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| |
Collapse
|
4
|
Yao L, Feng J, Zhou Y, Gao S, Liu S, Qu H, Mao Y, Zheng L. Single-Round Circular Aptamer Discovery Using Bioinspired Magnetosome-Like Magnetic Chain Cross-Linked Graphene Oxide. RESEARCH (WASHINGTON, D.C.) 2024; 7:0372. [PMID: 38694201 PMCID: PMC11062507 DOI: 10.34133/research.0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Circular aptamers are promising candidates for analytical and therapeutic applications due to their enhanced biological and structural stability. However, the process of circular aptamer selection remains a great challenge, as it requires multiple rounds of binding-separation-amplification that involves issues with nonspecific binding and amplification bias. Here, we develop a highly practical solution for reliable selection of circular aptamers in a single round based on magnetosome-like magnetic chain cross-linked graphene oxide (separation efficiency ≈ 105). High-affinity aptamer candidates can be rapidly selected from a preenriched circular DNA library, while low-affinity candidates are effectively adsorbed and separated by magnetosome-like magnetic chain cross-linked graphene oxide. With lipopolysaccharide as a representative model, the single-round selected lipopolysaccharide circular aptamer has been identified to have a high binding affinity with a Kd value of low to nanomolar range. Using this method, circular aptamers for protein and small-molecule targets were also successfully generated. We envision that this approach will accelerate the discovery of various new circular aptamers and open up a new avenue for analytical and therapeutic studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu Mao
- School of Food and Biological Engineering,
Hefei University of Technology, Hefei 230009, China
| | - Lei Zheng
- School of Food and Biological Engineering,
Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
5
|
Dymova MA, Malysheva DO, Popova VK, Dmitrienko EV, Endutkin AV, Drokov DV, Mukhanov VS, Byvakina AA, Kochneva GV, Artyushenko PV, Shchugoreva IA, Rogova AV, Tomilin FN, Kichkailo AS, Richter VA, Kuligina EV. Characterizing Aptamer Interaction with the Oncolytic Virus VV-GMCSF-Lact. Molecules 2024; 29:848. [PMID: 38398600 PMCID: PMC10892425 DOI: 10.3390/molecules29040848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Aptamers are currently being investigated for their potential to improve virotherapy. They offer several advantages, including the ability to prevent the aggregation of viral particles, enhance target specificity, and protect against the neutralizing effects of antibodies. The purpose of this study was to comprehensively investigate an aptamer capable of enhancing virotherapy. This involved characterizing the previously selected aptamer for vaccinia virus (VACV), evaluating the aggregation and molecular interaction of the optimized aptamers with the recombinant oncolytic virus VV-GMCSF-Lact, and estimating their immunoshielding properties in the presence of human blood serum. We chose one optimized aptamer, NV14t_56, with the highest affinity to the virus from the pool of several truncated aptamers and built its 3D model. The NV14t_56 remained stable in human blood serum for 1 h and bound to VV-GMCSF-Lact in the micromolar range (Kd ≈ 0.35 μM). Based on dynamic light scattering data, it has been demonstrated that aptamers surround viral particles and inhibit aggregate formation. In the presence of serum, the hydrodynamic diameter (by intensity) of the aptamer-virus complex did not change. Microscale thermophoresis (MST) experiments showed that NV14t_56 binds with virus (EC50 = 1.487 × 109 PFU/mL). The analysis of the amplitudes of MST curves reveals that the components of the serum bind to the aptamer-virus complex without disrupting it. In vitro experiments demonstrated the efficacy of VV-GMCSF-Lact in conjunction with the aptamer when exposed to human blood serum in the absence of neutralizing antibodies (Nabs). Thus, NV14t_56 has the ability to inhibit virus aggregation, allowing VV-GMCSF-Lact to maintain its effectiveness throughout the storage period and subsequent use. When employing aptamers as protective agents for oncolytic viruses, the presence of neutralizing antibodies should be taken into account.
Collapse
Affiliation(s)
- Maya A. Dymova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (D.O.M.); (V.K.P.); (E.V.D.); (A.V.E.); (D.V.D.); (V.S.M.); (A.A.B.); (V.A.R.); (E.V.K.)
| | - Daria O. Malysheva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (D.O.M.); (V.K.P.); (E.V.D.); (A.V.E.); (D.V.D.); (V.S.M.); (A.A.B.); (V.A.R.); (E.V.K.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
| | - Victoria K. Popova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (D.O.M.); (V.K.P.); (E.V.D.); (A.V.E.); (D.V.D.); (V.S.M.); (A.A.B.); (V.A.R.); (E.V.K.)
| | - Elena V. Dmitrienko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (D.O.M.); (V.K.P.); (E.V.D.); (A.V.E.); (D.V.D.); (V.S.M.); (A.A.B.); (V.A.R.); (E.V.K.)
| | - Anton V. Endutkin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (D.O.M.); (V.K.P.); (E.V.D.); (A.V.E.); (D.V.D.); (V.S.M.); (A.A.B.); (V.A.R.); (E.V.K.)
| | - Danil V. Drokov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (D.O.M.); (V.K.P.); (E.V.D.); (A.V.E.); (D.V.D.); (V.S.M.); (A.A.B.); (V.A.R.); (E.V.K.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
| | - Vladimir S. Mukhanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (D.O.M.); (V.K.P.); (E.V.D.); (A.V.E.); (D.V.D.); (V.S.M.); (A.A.B.); (V.A.R.); (E.V.K.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
| | - Arina A. Byvakina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (D.O.M.); (V.K.P.); (E.V.D.); (A.V.E.); (D.V.D.); (V.S.M.); (A.A.B.); (V.A.R.); (E.V.K.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
| | - Galina V. Kochneva
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia;
| | - Polina V. Artyushenko
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, Partizana Zheleznyaka str. 1, 660022 Krasnoyarsk, Russia; (P.V.A.); (I.A.S.); (A.V.R.); (A.S.K.)
- Federal Research Center KSC SB RAS, 50 Akademgorodok, 660036 Krasnoyarsk, Russia;
| | - Irina A. Shchugoreva
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, Partizana Zheleznyaka str. 1, 660022 Krasnoyarsk, Russia; (P.V.A.); (I.A.S.); (A.V.R.); (A.S.K.)
- Federal Research Center KSC SB RAS, 50 Akademgorodok, 660036 Krasnoyarsk, Russia;
| | - Anastasia V. Rogova
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, Partizana Zheleznyaka str. 1, 660022 Krasnoyarsk, Russia; (P.V.A.); (I.A.S.); (A.V.R.); (A.S.K.)
- Federal Research Center KSC SB RAS, 50 Akademgorodok, 660036 Krasnoyarsk, Russia;
| | - Felix N. Tomilin
- Federal Research Center KSC SB RAS, 50 Akademgorodok, 660036 Krasnoyarsk, Russia;
- Kirensky Institute of Physics, 50/38 Akademgorodok, 660012 Krasnoyarsk, Russia
| | - Anna S. Kichkailo
- Laboratory for Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voyno-Yasenetsky, Partizana Zheleznyaka str. 1, 660022 Krasnoyarsk, Russia; (P.V.A.); (I.A.S.); (A.V.R.); (A.S.K.)
- Federal Research Center KSC SB RAS, 50 Akademgorodok, 660036 Krasnoyarsk, Russia;
| | - Vladimir A. Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (D.O.M.); (V.K.P.); (E.V.D.); (A.V.E.); (D.V.D.); (V.S.M.); (A.A.B.); (V.A.R.); (E.V.K.)
| | - Elena V. Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev av. 8, 630090 Novosibirsk, Russia; (D.O.M.); (V.K.P.); (E.V.D.); (A.V.E.); (D.V.D.); (V.S.M.); (A.A.B.); (V.A.R.); (E.V.K.)
| |
Collapse
|
6
|
Zhu C, Feng Z, Qin H, Chen L, Yan M, Li L, Qu F. Recent progress of SELEX methods for screening nucleic acid aptamers. Talanta 2024; 266:124998. [PMID: 37527564 DOI: 10.1016/j.talanta.2023.124998] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Nucleic acid aptamers are oligonucleotide sequences screened by an in vitro methodology called Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Known as "chemical antibodies", aptamers can achieve specific recognition towards the targets through conformational changes with high affinity, and possess multiple attractive features including, but not limited to, easy and inexpensive to prepare by chemical synthesis, relatively stable and low batch-to-batch variability, easy modification and signal amplification, and low immunogenicity. Now, aptamers are attracting researchers' attentions from more than 25 disciplines, and have showed great potential for application and economic benefits in disease diagnosis, environmental detection, food security, drug delivery and discovery. Although some aptamers exist naturally as the ligand-binding elements of riboswitches, SELEX is a recognized method for aptamers screening. After thirty-two years of development, a series of SELEX methods have been investigated and developed, as well as have shown unique advantages to improve sequence performances or to explore screening mechanisms. This review would mainly focus on the novel or improved SELEX methods that are available in the past five years. Firstly, we present a clear overview of the aptamer's history, features, and SELEX development. Then, we highlight the specific examples to emphasize the recent progress of SELEX methods in terms of carrier materials, technical improvements, real sample-improved screening, post-SELEX and other methods, as well as their respects of screening strategies, implementation features, screening parameters. Finally, we discuss the remaining challenges that have the potential to hinder the success of SELEX and aptamers in practical applications, and provide the suggestions and future directions for developing more convenient, efficient, and stable SELEX methods in the future.
Collapse
Affiliation(s)
- Chao Zhu
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Ziru Feng
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Hongwei Qin
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Lu Chen
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China.
| | - Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China.
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
7
|
Yang G, Li W, Zhang S, Hu B, Huang Z. Highly-efficient selection of aptamers for detecting various HPV subtypes in clinical samples. Talanta 2024; 266:125039. [PMID: 37604070 DOI: 10.1016/j.talanta.2023.125039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
Nucleic acid aptamers are of great potentials in diagnostic and therapeutic applications because of their unique molecular recognition capabilities. However, satisfactory aptamers with high affinity and specificity are still in short supply. Herein, we have developed new selection methods allowing the free interactions between the targets and potential aptamers in solution. In our selection system, the protein targets (biotinylated randomly or site-specifically) were first incubated with the random DNA library, followed by the pull-down with the streptavidin magnetic beads or biolayer-interferometry (BLI) sensors. By comparing the two biotinylation strategies (random or site-specific) and two states of the targets (free or immobilized), we have found that the combination of the site-specific biotinylation and free-target strategies was most successful. Based on these highly-efficient selection strategies, HPV L1 aptamers were obtained. By designing the sandwich aptasensor assisted with RCA and CRISPR/Cas12a, we have diagnosed various HPV subtypes in clinical samples, such as easily-collected urine samples. In summary, our new strategy can allow efficient selection of aptamers with high affinity and specificity for clinical applications.
Collapse
Affiliation(s)
- Guotai Yang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Wei Li
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Shun Zhang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Bei Hu
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610000, PR China; SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu, Sichuan, 610095, PR China.
| |
Collapse
|
8
|
Cheng W, Yao Y, Li D, Duan C, Wang Z, Xiang Y. Asymmetrically split DNAzyme-based colorimetric and electrochemical dual-modal biosensor for detection of breast cancer exosomal surface proteins. Biosens Bioelectron 2023; 238:115552. [PMID: 37542978 DOI: 10.1016/j.bios.2023.115552] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Exosomal surface proteins are potentially useful for breast cancer diagnosis and awareness of risk. However, some detection techniques involving complex operations and expensive instrumentation are limited to advance to clinical applications. To solve this problem, we develop a dual-modal sensor combining naked-eye detection and electrochemical assay of exosomal surface proteins from breast cancer. Most of existing sensors rely on aptamers recognizing exosomes and generating amplified signals at the same time, which require well-designed aptamer probes to avoid difficulties in identifying exosomes. In our work, aptamers not bound by the exosomes can serve as complete templates to induce formation of G quadruplexes. The peroxidase activity of the G-quadruplex/hemin DNAzyme catalyze substrates can generate both color and electrochemical signals. The developed dual-modal sensor offers a remarkable capability to differentiate nonmetastatic, metastatic breast cancer patients, and healthy individuals through the analysis of exosomal surface proteins. The sensor's distinctive features, including its universality, simplicity, and cost-effectiveness, position it as a promising diagnostic tool in breast cancer research and clinical practice.
Collapse
Affiliation(s)
- Wenting Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yanheng Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Dayong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Zhongyun Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
9
|
Han J, Ma P, Khan IM, Zhang Y, Wang Z. Study of binding mechanism of aptamer to kanamycin and the development of fluorescent aptasensor in milk detection. Talanta 2023; 260:124530. [PMID: 37116356 DOI: 10.1016/j.talanta.2023.124530] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
Aptasensors being versatile sensing platforms presented higher sensitivity toward target detection. However, lacking theoretical basis of recognition between most targets and their corresponding aptamers has impeded their applications. Herein, we conducted a study to explore the binding mechanism of aptamer to kanamycin (Kana) and developed rapid fluorescent aptasensing methods. Based on the fluorescence polarization results, base mutations were performed at different sites of the aptamer. The key binding nucleotides of Kana was identified as T7, T8, C13 and A15 by using isothermal titration calorimetry (ITC). The Kmut3 (2.18 μM) with lower dissociation constants (Kd), one-third of the native aptamer (6.91 μM), was also obtained. In addition, the lower K+ concentration and temperature were found to be conducive to Kana binding. Circular dichroism (CD) results revealed that the binding of Kana can trigger the change of base stacking force and helix force. On the aforementioned basis, a fluorescent sensor was designed with the native aptamer and Kmut3 as recognition elements. The comparison results proved that the Kmut3 presented a 3 times lower limit of detection of 59 nM compared to the native aptamer (148 nM). Notably, this developed aptasensor can be finished in 45 min and was convenient to operate.
Collapse
Affiliation(s)
- Jing Han
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Pengfei Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212004, China.
| |
Collapse
|
10
|
Zhang X, Zhu X, Li Y, Hai X, Bi S. A colorimetric and photothermal dual-mode biosensing platform based on nanozyme-functionalized flower-like DNA structures for tumor-derived exosome detection. Talanta 2023; 258:124456. [PMID: 36940568 DOI: 10.1016/j.talanta.2023.124456] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Tumor-derived exosomes can be served as a kind of promising biomarkers for early diagnosis of cancers. Herein, a colorimetric/photothermal dual-mode exosomes sensing platform is developed for human breast cancer cell (MCF-7)-derived exosomes based on encapsulation of 3,3',5,5'-tetramethylbenzidine-loaded graphene quantum dot nanozymes (TMB-GQDzymes) into DNA flowers (DFs) via rolling circle amplification (RCA). To achieve specific detection, EpCAM aptamer for MCF-7 cell-derived exosomes is immobilized on the well plate, while the complementary sequence of another CD63 aptamer is designed into the circular template to obtain abundant capture probes. Benefitting from the dual-aptamer recognition strategy, a sandwich structure of EpCAM aptamer/exosomes/TMB-GQDzymes@DFs is formed, in which the GQDzymes can catalyze the oxidation of TMB in the presence of H2O2. The resulting products of TMB oxidation (oxTMB) can induce not only the absorption changes but also a near-infrared (NIR) laser-driven photothermal effect, achieving dual-mode detection of exosomes with the limit of detection (LOD) of 1027 particles/μL (colorimetry) and 2170 particles/μL (photothermal detection), respectively. In addition, this sensing platform has demonstrated excellent performance to well distinguish breast cancer patients from healthy individuals in serum samples analysis. Overall, the proposed dual-readout biosensor opens promising prospects for exosome detection in biological study and clinical applications.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Xueying Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Yuanfang Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Xin Hai
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China.
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
11
|
Qu H, Zheng M, Ma Q, Wang L, Mao Y, Eisenstein M, Tom Soh H, Zheng L. Allosteric Regulation of Aptamer Affinity through Mechano-Chemical Coupling. Angew Chem Int Ed Engl 2023; 62:e202214045. [PMID: 36646642 DOI: 10.1002/anie.202214045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
The capacity to precisely modulate aptamer affinity is important for a wide variety of applications. However, most such engineering strategies entail laborious trial-and-error testing or require prior knowledge of an aptamer's structure and ligand-binding domain. We describe here a simple and generalizable strategy for allosteric modulation of aptamer affinity by employing a double-stranded molecular clamp that destabilizes aptamer secondary structure through mechanical tension. We demonstrate the effectiveness of the approach with a thrombin-binding aptamer and show that we can alter its affinity by as much as 65-fold. We also show that this modulation can be rendered reversible by introducing a restriction enzyme cleavage site into the molecular clamp domain and describe a design strategy for achieving even more finely-tuned affinity modulation. This strategy requires no prior knowledge of the aptamer's structure and binding mechanism and should thus be generalizable across aptamers.
Collapse
Affiliation(s)
- Hao Qu
- School of Food and Biological Engineering and Engineering Research Center of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Manyi Zheng
- School of Food and Biological Engineering and Engineering Research Center of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Qihui Ma
- School of Food and Biological Engineering and Engineering Research Center of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Lu Wang
- School of Food and Biological Engineering and Engineering Research Center of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Yu Mao
- School of Food and Biological Engineering and Engineering Research Center of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Michael Eisenstein
- Department of Electrical Engineering and Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Hyongsok Tom Soh
- Department of Electrical Engineering and Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Lei Zheng
- School of Food and Biological Engineering and Engineering Research Center of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
12
|
Yan Y, Chang D, Xu Y, Chang Y, Zhang Q, Yuan Q, Salena BJ, Li Y, Liu M. Engineering a Ligase Binding DNA Aptamer into a Templating DNA Scaffold to Guide the Selective Synthesis of Circular DNAzymes and DNA Aptamers. J Am Chem Soc 2023; 145:2630-2637. [PMID: 36657012 PMCID: PMC9896561 DOI: 10.1021/jacs.2c12666] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Functional nucleic acids (FNAs), such as DNAzymes and DNA aptamers, can be engineered into circular forms for improved performance. Circular FNAs are promising candidates for bioanalytical and biomedical applications due to their intriguing properties of enhanced biological stability and compatibility with rolling circle amplification. They are typically made from linear single-stranded (ss) DNA molecules via ligase-mediated ligation. However, it remains a great challenge to synthesize circular ssDNA molecules in high yield due to inherent side reactions where two or more of the same ssDNA molecules are ligated. Herein, we present a strategy to overcome this issue by first using in vitro selection to search from a random-sequence DNA library a ligatable DNA aptamer that binds a DNA ligase and then by engineering this aptamer into a general-purpose templating DNA scaffold to guide the ligase to execute selective intramolecular circularization. We demonstrate the broad utility of this approach via the creation of several species of circular DNA molecules, including a circular DNAzyme sensor for a bacterium and a circular DNA aptamer sensor for a protein target with excellent detection sensitivity and specificity.
Collapse
Affiliation(s)
- Yu Yan
- School
of Environmental Science and Technology, Key Laboratory of Industrial
Ecology and Environmental Engineering (Ministry of Education), Dalian
POCT Laboratory, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Dingran Chang
- Department
of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4K1, Canada
| | - Yongbin Xu
- Department
of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600, China
| | - Yangyang Chang
- School
of Environmental Science and Technology, Key Laboratory of Industrial
Ecology and Environmental Engineering (Ministry of Education), Dalian
POCT Laboratory, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Qiang Zhang
- School
of Bioengineering, Dalian University of
Technology, Dalian, Liaoning 116024, China
| | - Quan Yuan
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Institute of Chemical
Biology and Nanomedicine, Hunan University, Changsha 410082, China
| | - Bruno J. Salena
- Department
of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4K1, Canada
| | - Yingfu Li
- Department
of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4K1, Canada,
| | - Meng Liu
- School
of Environmental Science and Technology, Key Laboratory of Industrial
Ecology and Environmental Engineering (Ministry of Education), Dalian
POCT Laboratory, Dalian University of Technology, Dalian, Liaoning 116024, China,
| |
Collapse
|
13
|
Zhang L, Chu M, Ji C, Tan J, Yuan Q. Preparation, applications, and challenges of functional DNA nanomaterials. NANO RESEARCH 2022; 16:3895-3912. [PMID: 36065175 PMCID: PMC9430014 DOI: 10.1007/s12274-022-4793-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
As a carrier of genetic information, DNA is a versatile module for fabricating nanostructures and nanodevices. Functional molecules could be integrated into DNA by precise base complementary pairing, greatly expanding the functions of DNA nanomaterials. These functions endow DNA nanomaterials with great potential in the application of biomedical field. In recent years, functional DNA nanomaterials have been rapidly investigated and perfected. There have been reviews that classified DNA nanomaterials from the perspective of functions, while this review primarily focuses on the preparation methods of functional DNA nanomaterials. This review comprehensively introduces the preparation methods of DNA nanomaterials with functions such as molecular recognition, nanozyme catalysis, drug delivery, and biomedical material templates. Then, the latest application progress of functional DNA nanomaterials is systematically reviewed. Finally, current challenges and future prospects for functional DNA nanomaterials are discussed.
Collapse
Affiliation(s)
- Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Mengge Chu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| |
Collapse
|
14
|
Coleman S, Kirk PDW, Wallace C. Consensus clustering for Bayesian mixture models. BMC Bioinformatics 2022; 23:290. [PMID: 35864476 PMCID: PMC9306175 DOI: 10.1186/s12859-022-04830-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cluster analysis is an integral part of precision medicine and systems biology, used to define groups of patients or biomolecules. Consensus clustering is an ensemble approach that is widely used in these areas, which combines the output from multiple runs of a non-deterministic clustering algorithm. Here we consider the application of consensus clustering to a broad class of heuristic clustering algorithms that can be derived from Bayesian mixture models (and extensions thereof) by adopting an early stopping criterion when performing sampling-based inference for these models. While the resulting approach is non-Bayesian, it inherits the usual benefits of consensus clustering, particularly in terms of computational scalability and providing assessments of clustering stability/robustness. RESULTS In simulation studies, we show that our approach can successfully uncover the target clustering structure, while also exploring different plausible clusterings of the data. We show that, when a parallel computation environment is available, our approach offers significant reductions in runtime compared to performing sampling-based Bayesian inference for the underlying model, while retaining many of the practical benefits of the Bayesian approach, such as exploring different numbers of clusters. We propose a heuristic to decide upon ensemble size and the early stopping criterion, and then apply consensus clustering to a clustering algorithm derived from a Bayesian integrative clustering method. We use the resulting approach to perform an integrative analysis of three 'omics datasets for budding yeast and find clusters of co-expressed genes with shared regulatory proteins. We validate these clusters using data external to the analysis. CONCLUSTIONS Our approach can be used as a wrapper for essentially any existing sampling-based Bayesian clustering implementation, and enables meaningful clustering analyses to be performed using such implementations, even when computational Bayesian inference is not feasible, e.g. due to poor exploration of the target density (often as a result of increasing numbers of features) or a limited computational budget that does not along sufficient samples to drawn from a single chain. This enables researchers to straightforwardly extend the applicability of existing software to much larger datasets, including implementations of sophisticated models such as those that jointly model multiple datasets.
Collapse
Affiliation(s)
- Stephen Coleman
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Paul D. W. Kirk
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| | - Chris Wallace
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Hu L, Liu K, Ren G, Liang J, Wu Y. Progress in DNA Aptamers as Recognition Components for Protein Functional Regulation. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Chen S, Zhang L, Yuan Q, Tan J. Current Advances in Aptamer-based Biomolecular Recognition and Biological Process Regulation. Chem Res Chin Univ 2022; 38:847-855. [PMID: 35573821 PMCID: PMC9077342 DOI: 10.1007/s40242-022-2087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/08/2022] [Indexed: 12/01/2022]
Abstract
The interaction between biomolecules with their target ligands plays a great role in regulating biological functions. Aptamers are short oligonucleotide sequences that can specifically recognize target biomolecules via structural complementarity and thus regulate related biological functions. In the past ten years, aptamers have made great progress in target biomolecule recognition, becoming a powerful tool to regulate biological functions. At present, there are many reviews on aptamers applied in biomolecular recognition, but few reviews pay attention to aptamer-based regulation of biological functions. Here, we summarize the approaches to enhancing aptamer affinity and the advancements of aptamers in regulating enzymatic activity, cellular immunity and cellular behaviors. Furthermore, this review discusses the challenges and future perspectives of aptamers in target recognition and biological functions regulation, aiming to provide some promising ideas for future regulation of biomolecular functions in a complex biological environment.
Collapse
Affiliation(s)
- Sisi Chen
- Molecular Science and Biomedicine Laboratory(MBL), Institute of Chemical Biology and Nanomedicine(ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory(MBL), Institute of Chemical Biology and Nanomedicine(ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory(MBL), Institute of Chemical Biology and Nanomedicine(ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory(MBL), Institute of Chemical Biology and Nanomedicine(ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| |
Collapse
|
17
|
Qian S, Chang D, He S, Li Y. Aptamers from random sequence space: Accomplishments, gaps and future considerations. Anal Chim Acta 2022; 1196:339511. [DOI: 10.1016/j.aca.2022.339511] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 02/07/2023]
|
18
|
Wan Q, Zeng Z, Qi J, Chen Z, Liu X, Zu Y. Aptamer-armed nanostructures improve the chemotherapy outcome of triple-negative breast cancer. Mol Ther 2022; 30:2242-2256. [PMID: 35143958 DOI: 10.1016/j.ymthe.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/10/2021] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Triple-negative breast cancer is an aggressive subtype of breast cancer that is primarily treated using systemic chemotherapy due to the lack of a specific cell surface marker for drug delivery. Cancer cell-specific aptamer-mediated drug delivery is a promising targeted chemotherapy for marker-unknown cancers. Using a poorly differentiated carcinoma cell-specific DNA aptamer (PDGC21T), we formed a self-assembling circinate DNA nanoparticle (Apt21TNP) that binds triple-negative breast cancer cells. Using our previously designed pH-sensitive dendrimer-conjugated doxorubicin (DDOX) as the payload, we found that each nanoparticle loaded 30 doxorubicin molecules to form an Apt21TNP-DDOX nanomedicine that is stable in human plasma. Upon cell binding, Apt21TNP-DDOX is internalized by triple-negative breast cancer cells through the macropinocytosis pathway. Once inside cells, the low pH microenvironment in lysosomes induces doxorubicin drug payload release from Apt21TNP-DDOX. Our in vitro studies demonstrate that Apt21TNP-DDOX can preferentially bind triple-negative breast cancer cells to induce cell death. Further, we show that Apt21TNP-DDOX can accumulate in subcutaneous MDA-MB-231 tumors in mice following systemic administration to reduce tumor burden, minimize side effects, and improve animal survival. Together, our results demonstrate that Apt21TNP-mediated doxorubicin delivery is a potent, targeted chemotherapy for triple-negative breast cancer that may alleviate side effects in patients.
Collapse
Affiliation(s)
- Quanyuan Wan
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Zihua Zeng
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Jianjun Qi
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Zhenghu Chen
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Xiaohui Liu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Overview of the Therapeutic Potential of Aptamers Targeting Coagulation Factors. Int J Mol Sci 2021; 22:ijms22083897. [PMID: 33918821 PMCID: PMC8069679 DOI: 10.3390/ijms22083897] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Aptamers are single-stranded DNA or RNA sequences that bind target molecules with high specificity and affinity. Aptamers exhibit several notable advantages over protein-based therapeutics. Aptamers are non-immunogenic, easier to synthesize and modify, and can bind targets with greater affinity. Due to these benefits, aptamers are considered a promising therapeutic candidate to treat various conditions, including hematological disorders and cancer. An active area of research involves developing aptamers to target blood coagulation factors. These aptamers have the potential to treat cardiovascular diseases, blood disorders, and cancers. Although no aptamers targeting blood coagulation factors have been approved for clinical use, several aptamers have been evaluated in clinical trials and many more have demonstrated encouraging preclinical results. This review summarized our knowledge of the aptamers targeting proteins involved in coagulation, anticoagulation, fibrinolysis, their extensive applications as therapeutics and diagnostics tools, and the challenges they face for advancing to clinical use.
Collapse
|
20
|
Sun M, Liu S, Wei X, Wan S, Huang M, Song T, Lu Y, Weng X, Lin Z, Chen H, Song Y, Yang C. Aptamer Blocking Strategy Inhibits SARS‐CoV‐2 Virus Infection. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100225] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Miao Sun
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Siwen Liu
- State Key Laboratory for Emerging Infectious Diseases and InnoHK Centre for Infectious Diseases Department of Microbiology Li Ka Shing Faculty of Medicine the University of Hong Kong Hong Kong SAR China
| | - Xinyu Wei
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Shuang Wan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Mengjiao Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Ting Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Yao Lu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Xiaonan Weng
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Zhu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases and InnoHK Centre for Infectious Diseases Department of Microbiology Li Ka Shing Faculty of Medicine the University of Hong Kong Hong Kong SAR China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
- Institute of Molecular Medicine Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
21
|
Sun M, Liu S, Wei X, Wan S, Huang M, Song T, Lu Y, Weng X, Lin Z, Chen H, Song Y, Yang C. Aptamer Blocking Strategy Inhibits SARS-CoV-2 Virus Infection. Angew Chem Int Ed Engl 2021; 60:10266-10272. [PMID: 33561300 PMCID: PMC8014204 DOI: 10.1002/anie.202100225] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Indexed: 01/13/2023]
Abstract
The COVID‐19 pandemic caused by SARS‐CoV‐2 is threating global health. Inhibiting interaction of the receptor‐binding domain of SARS‐CoV‐2 S protein (SRBD) and human ACE2 receptor is a promising treatment strategy. However, SARS‐CoV‐2 neutralizing antibodies are compromised by their risk of antibody‐dependent enhancement (ADE) and unfavorably large size for intranasal delivery. To avoid these limitations, we demonstrated an aptamer blocking strategy by engineering aptamers’ binding to the region on SRBD that directly mediates ACE2 receptor engagement, leading to block SARS‐CoV‐2 infection. With aptamer selection against SRBD and molecular docking, aptamer CoV2‐6 was identified and applied to prevent, compete with, and substitute ACE2 from binding to SRBD. CoV2‐6 was further shortened and engineered as a circular bivalent aptamer CoV2‐6C3 (cb‐CoV2‐6C3) to improve the stability, affinity, and inhibition efficacy. cb‐CoV2‐6C3 is stable in serum for more than 12 h and can be stored at room temperature for more than 14 days. Furthermore, cb‐CoV2‐6C3 binds to SRBD with high affinity (Kd=0.13 nM) and blocks authentic SARS‐CoV‐2 virus with an IC50 of 0.42 nM.
Collapse
Affiliation(s)
- Miao Sun
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Siwen Liu
- State Key Laboratory for Emerging Infectious Diseases and InnoHK Centre for Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Xinyu Wei
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Shuang Wan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Mengjiao Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ting Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yao Lu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaonan Weng
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases and InnoHK Centre for Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.,Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
22
|
Li Q, Zhang S, Li W, Ge Z, Fan C, Gu H. Programming CircLigase Catalysis for DNA Rings and Topologies. Anal Chem 2020; 93:1801-1810. [PMID: 33382236 DOI: 10.1021/acs.analchem.0c04668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Circular single-stranded (ss) DNA is an essential element in rolling circle amplification and many DNA nanotechnology constructions. It is commonly synthesized from linear ssDNA by a ligase, which nevertheless suffers from low and inconsistent efficiency due to the simultaneous formation of concatemeric byproducts. Here, we design an intramolecular terminal hybridization strategy to program the ring formation catalytic process of CircLigase, a thermostable RNA ligase 1 that can ligate ssDNA in an intramolecular fashion. With the enthalpy gained from the programmed hybridization to override disfavored entropic factors associated with end coupling, we broke the limit of natural CircLigase on circularization of ssDNA, realizing over 75% yields of byproduct-free monomeric rings on a series of hundred-to-half-kilo-based linear DNAs. We found that this hybridization strategy can be twisted from intra- to intermolecular to also program CircLigase to efficiently and predominantly join one ssDNA strand to another. We focused on DNA rings premade by CircLigase and demonstrated their utility in elevating the preparation, quantity, and quality of DNA topologies. We expect that the new insights on engineering CircLigase will further promote the development of nucleic acid biotechnology and nanotechnology.
Collapse
Affiliation(s)
- Qingting Li
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China.,Department of Systems Biology for Medicine, Shanghai Pudong Hospital, Fudan University, Shanghai 200433, China
| | - Shu Zhang
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China
| | - Wei Li
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China.,Department of Systems Biology for Medicine, Shanghai Pudong Hospital, Fudan University, Shanghai 200433, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China.,Department of Systems Biology for Medicine, Shanghai Pudong Hospital, Fudan University, Shanghai 200433, China
| |
Collapse
|