1
|
Hoboth P, Sztacho M, Hozák P. Nuclear patterns of phosphatidylinositol 4,5- and 3,4-bisphosphate revealed by super-resolution microscopy differ between the consecutive stages of RNA polymerase II transcription. FEBS J 2024; 291:4240-4264. [PMID: 38734927 DOI: 10.1111/febs.17136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/12/2023] [Accepted: 04/05/2024] [Indexed: 05/13/2024]
Abstract
Phosphatidylinositol phosphates are powerful signaling molecules that orchestrate signaling and direct membrane trafficking in the cytosol. Interestingly, phosphatidylinositol phosphates also localize within the membrane-less compartments of the cell nucleus, where they participate in the regulation of gene expression. Nevertheless, current models of gene expression, which include condensates of proteins and nucleic acids, do not include nuclear phosphatidylinositol phosphates. This gap is partly a result of the missing detailed analysis of the subnuclear distribution of phosphatidylinositol phosphates and their relationships with gene expression. Here, we used quantitative dual-color direct stochastic optical reconstruction microscopy to analyze the nanoscale co-patterning between RNA polymerase II transcription initiation and elongation markers with respect to phosphatidylinositol 4,5- or 3,4-bisphosphate in the nucleoplasm and nuclear speckles and compared it with randomized data and cells with inhibited transcription. We found specific co-patterning of the transcription initiation marker P-S5 with phosphatidylinositol 4,5-bisphosphate in the nucleoplasm and with phosphatidylinositol 3,4-bisphosphate at the periphery of nuclear speckles. We showed the specific accumulation of the transcription elongation marker PS-2 and of nascent RNA in the proximity of phosphatidylinositol 3,4-bisphosphate associated with nuclear speckles. Taken together, this shows that the distinct spatial associations between the consecutive stages of RNA polymerase II transcription and nuclear phosphatidylinositol phosphates exhibit specificity within the gene expression compartments. Thus, in analogy to the cellular membranes, where phospholipid composition orchestrates signaling pathways and directs membrane trafficking, we propose a model in which the phospholipid identity of gene expression compartments orchestrates RNA polymerase II transcription.
Collapse
Affiliation(s)
- Peter Hoboth
- Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Viničná Microscopy Core Facility, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Sztacho
- Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Laboratory of Cancer Cell Architecture, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Hozák
- Laboratory of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Microscopy Centre, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Carnevali D, Zhong L, González-Almela E, Viana C, Rotkevich M, Wang A, Franco-Barranco D, Gonzalez-Marfil A, Neguembor MV, Castells-Garcia A, Arganda-Carreras I, Cosma MP. A deep learning method that identifies cellular heterogeneity using nanoscale nuclear features. NAT MACH INTELL 2024; 6:1021-1033. [PMID: 39309215 PMCID: PMC11415298 DOI: 10.1038/s42256-024-00883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/12/2024] [Indexed: 09/25/2024]
Abstract
Cellular phenotypic heterogeneity is an important hallmark of many biological processes and understanding its origins remains a substantial challenge. This heterogeneity often reflects variations in the chromatin structure, influenced by factors such as viral infections and cancer, which dramatically reshape the cellular landscape. To address the challenge of identifying distinct cell states, we developed artificial intelligence of the nucleus (AINU), a deep learning method that can identify specific nuclear signatures at the nanoscale resolution. AINU can distinguish different cell states based on the spatial arrangement of core histone H3, RNA polymerase II or DNA from super-resolution microscopy images. With only a small number of images as the training data, AINU correctly identifies human somatic cells, human-induced pluripotent stem cells, very early stage infected cells transduced with DNA herpes simplex virus type 1 and even cancer cells after appropriate retraining. Finally, using AI interpretability methods, we find that the RNA polymerase II localizations in the nucleoli aid in distinguishing human-induced pluripotent stem cells from their somatic cells. Overall, AINU coupled with super-resolution microscopy of nuclear structures provides a robust tool for the precise detection of cellular heterogeneity, with considerable potential for advancing diagnostics and therapies in regenerative medicine, virology and cancer biology.
Collapse
Affiliation(s)
- Davide Carnevali
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Limei Zhong
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Esther González-Almela
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Carlotta Viana
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mikhail Rotkevich
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Aiping Wang
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Daniel Franco-Barranco
- Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), Paseo Manuel Lardizabal 1, San Sebastian, Spain
- Donostia International Physics Center (DIPC), San Sebastian, Spain
| | - Aitor Gonzalez-Marfil
- Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), Paseo Manuel Lardizabal 1, San Sebastian, Spain
- Donostia International Physics Center (DIPC), San Sebastian, Spain
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Alvaro Castells-Garcia
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ignacio Arganda-Carreras
- Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), Paseo Manuel Lardizabal 1, San Sebastian, Spain
- Donostia International Physics Center (DIPC), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Biofisika Institute, Barrio Sarrena s/n, Leioa, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- ICREA, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
3
|
Garate X, Gómez-García PA, Merino MF, Angles MC, Zhu C, Castells-García A, Ed-Daoui I, Martin L, Ochiai H, Neguembor MV, Cosma MP. The relationship between nanoscale genome organization and gene expression in mouse embryonic stem cells during pluripotency transition. Nucleic Acids Res 2024; 52:8146-8164. [PMID: 38850157 DOI: 10.1093/nar/gkae476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024] Open
Abstract
During early development, gene expression is tightly regulated. However, how genome organization controls gene expression during the transition from naïve embryonic stem cells to epiblast stem cells is still poorly understood. Using single-molecule microscopy approaches to reach nanoscale resolution, we show that genome remodeling affects gene transcription during pluripotency transition. Specifically, after exit from the naïve pluripotency state, chromatin becomes less compacted, and the OCT4 transcription factor has lower mobility and is more bound to its cognate sites. In epiblast cells, the active transcription hallmark, H3K9ac, decreases within the Oct4 locus, correlating with reduced accessibility of OCT4 and, in turn, with reduced expression of Oct4 nascent RNAs. Despite the high variability in the distances between active pluripotency genes, distances between Nodal and Oct4 decrease during epiblast specification. In particular, highly expressed Oct4 alleles are closer to nuclear speckles during all stages of the pluripotency transition, while only a distinct group of highly expressed Nodal alleles are in close proximity to Oct4 when associated with a nuclear speckle in epiblast cells. Overall, our results provide new insights into the role of the spatiotemporal genome remodeling during mouse pluripotency transition and its correlation with the expression of key pluripotency genes.
Collapse
Affiliation(s)
- Ximena Garate
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Pablo Aurelio Gómez-García
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Manuel Fernández Merino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Marta Cadevall Angles
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Chenggan Zhu
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Alvaro Castells-García
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu district, 510080 Guangzhou, China
| | - Ilyas Ed-Daoui
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu district, 510080 Guangzhou, China
| | - Laura Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Hiroshi Ochiai
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-0046, Japan
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu district, 510080 Guangzhou, China
- ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
4
|
Pessoa J, Carvalho C. Human RNA Polymerase II Segregates from Genes and Nascent RNA and Transcribes in the Presence of DNA-Bound dCas9. Int J Mol Sci 2024; 25:8411. [PMID: 39125980 PMCID: PMC11312690 DOI: 10.3390/ijms25158411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
RNA polymerase II (Pol II) dysfunction is frequently implied in human disease. Understanding its functional mechanism is essential for designing innovative therapeutic strategies. To visualize its supra-molecular interactions with genes and nascent RNA, we generated a human cell line carrying ~335 consecutive copies of a recombinant β-globin gene. Confocal microscopy showed that Pol II was not homogeneously concentrated around these identical gene copies. Moreover, Pol II signals partially overlapped with the genes and their nascent RNA, revealing extensive compartmentalization. Using a cell line carrying a single copy of the β-globin gene, we also tested if the binding of catalytically dead CRISPR-associated system 9 (dCas9) to different gene regions affected Pol II transcriptional activity. We assessed Pol II localization and nascent RNA levels using chromatin immunoprecipitation and droplet digital reverse transcription PCR, respectively. Some enrichment of transcriptionally paused Pol II accumulated in the promoter region was detected in a strand-specific way of gRNA binding, and there was no decrease in nascent RNA levels. Pol II preserved its transcriptional activity in the presence of DNA-bound dCas9. Our findings contribute further insight into the complex mechanism of mRNA transcription in human cells.
Collapse
Affiliation(s)
- João Pessoa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal;
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Célia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| |
Collapse
|
5
|
Lakadamyali M. From feulgen to modern methods: marking a century of DNA imaging advances. Histochem Cell Biol 2024; 162:13-22. [PMID: 38753186 PMCID: PMC11227465 DOI: 10.1007/s00418-024-02291-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 07/07/2024]
Abstract
The mystery of how human DNA is compactly packaged into a nucleus-a space a hundred thousand times smaller-while still allowing for the regulation of gene function, has long been one of the greatest enigmas in cell biology. This puzzle is gradually being solved, thanks in part to the advent of new technologies. Among these, innovative genome-labeling techniques combined with high-resolution imaging methods have been pivotal. These methods facilitate the visualization of DNA within intact nuclei and have significantly contributed to our current understanding of genome organization. This review will explore various labeling and imaging approaches that are revolutionizing our understanding of the three-dimensional organization of the genome, shedding light on the relationship between its structure and function.
Collapse
Affiliation(s)
- Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
- Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
6
|
Wernersson E, Gelali E, Girelli G, Wang S, Castillo D, Mattsson Langseth C, Verron Q, Nguyen HQ, Chattoraj S, Martinez Casals A, Blom H, Lundberg E, Nilsson M, Marti-Renom MA, Wu CT, Crosetto N, Bienko M. Deconwolf enables high-performance deconvolution of widefield fluorescence microscopy images. Nat Methods 2024; 21:1245-1256. [PMID: 38844629 PMCID: PMC11239506 DOI: 10.1038/s41592-024-02294-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/25/2024] [Indexed: 07/13/2024]
Abstract
Microscopy-based spatially resolved omic methods are transforming the life sciences. However, these methods rely on high numerical aperture objectives and cannot resolve crowded molecular targets, limiting the amount of extractable biological information. To overcome these limitations, here we develop Deconwolf, an open-source, user-friendly software for high-performance deconvolution of widefield fluorescence microscopy images, which efficiently runs on laptop computers. Deconwolf enables accurate quantification of crowded diffraction limited fluorescence dots in DNA and RNA fluorescence in situ hybridization images and allows robust detection of individual transcripts in tissue sections imaged with ×20 air objectives. Deconvolution of in situ spatial transcriptomics images with Deconwolf increased the number of transcripts identified more than threefold, while the application of Deconwolf to images obtained by fluorescence in situ sequencing of barcoded Oligopaint probes drastically improved chromosome tracing. Deconwolf greatly facilitates the use of deconvolution in many bioimaging applications.
Collapse
Affiliation(s)
- Erik Wernersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Eleni Gelali
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Gabriele Girelli
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Su Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - David Castillo
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Christoffer Mattsson Langseth
- Science for Life Laboratory, Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Quentin Verron
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Huy Q Nguyen
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Acuity Spatial Genomics, Newton, MA, USA
| | - Shyamtanu Chattoraj
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Acuity Spatial Genomics, Newton, MA, USA
| | - Anna Martinez Casals
- Science for Life Laboratory, Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Hans Blom
- Science for Life Laboratory, Stockholm, Sweden
- Department of Applied Physics, Royal Institute of Technology, Solna, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Mats Nilsson
- Science for Life Laboratory, Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Marc A Marti-Renom
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Chao-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute, Harvard Medical School, Boston, MA, USA
| | - Nicola Crosetto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
- Human Technopole, Milan, Italy
| | - Magda Bienko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
- Science for Life Laboratory, Stockholm, Sweden.
- Human Technopole, Milan, Italy.
| |
Collapse
|
7
|
Martinez-Sarmiento JA, Cosma MP, Lakadamyali M. Dissecting gene activation and chromatin remodeling dynamics in single human cells undergoing reprogramming. Cell Rep 2024; 43:114170. [PMID: 38700983 PMCID: PMC11195307 DOI: 10.1016/j.celrep.2024.114170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
During cell fate transitions, cells remodel their transcriptome, chromatin, and epigenome; however, it has been difficult to determine the temporal dynamics and cause-effect relationship between these changes at the single-cell level. Here, we employ the heterokaryon-mediated reprogramming system as a single-cell model to dissect key temporal events during early stages of pluripotency conversion using super-resolution imaging. We reveal that, following heterokaryon formation, the somatic nucleus undergoes global chromatin decompaction and removal of repressive histone modifications H3K9me3 and H3K27me3 without acquisition of active modifications H3K4me3 and H3K9ac. The pluripotency gene OCT4 (POU5F1) shows nascent and mature RNA transcription within the first 24 h after cell fusion without requiring an initial open chromatin configuration at its locus. NANOG, conversely, has significant nascent RNA transcription only at 48 h after cell fusion but, strikingly, exhibits genomic reopening early on. These findings suggest that the temporal relationship between chromatin compaction and gene activation during cellular reprogramming is gene context dependent.
Collapse
Affiliation(s)
- Jose A Martinez-Sarmiento
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080 Guangzhou, China.
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Shin M, Seo M, Lee K, Yoon K. Super-resolution techniques for biomedical applications and challenges. Biomed Eng Lett 2024; 14:465-496. [PMID: 38645589 PMCID: PMC11026337 DOI: 10.1007/s13534-024-00365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 04/23/2024] Open
Abstract
Super-resolution (SR) techniques have revolutionized the field of biomedical applications by detailing the structures at resolutions beyond the limits of imaging or measuring tools. These techniques have been applied in various biomedical applications, including microscopy, magnetic resonance imaging (MRI), computed tomography (CT), X-ray, electroencephalogram (EEG), ultrasound, etc. SR methods are categorized into two main types: traditional non-learning-based methods and modern learning-based approaches. In both applications, SR methodologies have been effectively utilized on biomedical images, enhancing the visualization of complex biological structures. Additionally, these methods have been employed on biomedical data, leading to improvements in computational precision and efficiency for biomedical simulations. The use of SR techniques has resulted in more detailed and accurate analyses in diagnostics and research, essential for early disease detection and treatment planning. However, challenges such as computational demands, data interpretation complexities, and the lack of unified high-quality data persist. The article emphasizes these issues, underscoring the need for ongoing development in SR technologies to further improve biomedical research and patient care outcomes.
Collapse
Affiliation(s)
- Minwoo Shin
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| | - Minjee Seo
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| | - Kyunghyun Lee
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| | - Kyungho Yoon
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
9
|
Woodworth MA, Lakadamyali M. Toward a comprehensive view of gene architecture during transcription. Curr Opin Genet Dev 2024; 85:102154. [PMID: 38309073 PMCID: PMC10989512 DOI: 10.1016/j.gde.2024.102154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
The activation of genes within the nucleus of eukaryotic cells is a tightly regulated process, orchestrated by a complex interplay of various physical properties and interacting factors. Studying the multitude of components and features that collectively contribute to gene activation has proven challenging due to the complexities of simultaneously visualizing the dynamic and transiently interacting elements that coalesce within the small space occupied by each individual gene. However, various labeling and imaging advances are now starting to overcome this challenge, enabling visualization of gene activation at different lengths and timescales. In this review, we aim to highlight these microscopy-based advances and suggest how they can be combined to provide a comprehensive view of the mechanisms regulating gene activation.
Collapse
Affiliation(s)
- Marcus A Woodworth
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Valyaeva AA, Sheval EV. Nonspecific Interactions in Transcription Regulation and Organization of Transcriptional Condensates. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:688-700. [PMID: 38831505 DOI: 10.1134/s0006297924040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 06/05/2024]
Abstract
Eukaryotic cells are characterized by a high degree of compartmentalization of their internal contents, which ensures precise and controlled regulation of intracellular processes. During many processes, including different stages of transcription, dynamic membraneless compartments termed biomolecular condensates are formed. Transcription condensates contain various transcription factors and RNA polymerase and are formed by high- and low-specificity interactions between the proteins, DNA, and nearby RNA. This review discusses recent data demonstrating important role of nonspecific multivalent protein-protein and RNA-protein interactions in organization and regulation of transcription.
Collapse
Affiliation(s)
- Anna A Valyaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Eugene V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
11
|
Stein J, Ericsson M, Nofal M, Magni L, Aufmkolk S, McMillan RB, Breimann L, Herlihy CP, Lee SD, Willemin A, Wohlmann J, Arguedas-Jimenez L, Yin P, Pombo A, Church GM, Wu CK. Cryosectioning-enabled super-resolution microscopy for studying nuclear architecture at the single protein level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.576943. [PMID: 38370628 PMCID: PMC10871237 DOI: 10.1101/2024.02.05.576943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
DNA-PAINT combined with total Internal Reflection Fluorescence (TIRF) microscopy enables the highest localization precisions, down to single nanometers in thin biological samples, due to TIRF's unique method for optical sectioning and attaining high contrast. However, most cellular targets elude the accessible TIRF range close to the cover glass and thus require alternative imaging conditions, affecting resolution and image quality. Here, we address this limitation by applying ultrathin physical cryosectioning in combination with DNA-PAINT. With "tomographic & kinetically-enhanced" DNA-PAINT (tokPAINT), we demonstrate the imaging of nuclear proteins with sub-3 nanometer localization precision, advancing the quantitative study of nuclear organization within fixed cells and mouse tissues at the level of single antibodies. We believe that ultrathin sectioning combined with the versatility and multiplexing capabilities of DNA-PAINT will be a powerful addition to the toolbox of quantitative DNA-based super-resolution microscopy in intracellular structural analyses of proteins, RNA and DNA in situ.
Collapse
Affiliation(s)
- Johannes Stein
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Maria Ericsson
- Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Michel Nofal
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Lorenzo Magni
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Sarah Aufmkolk
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ryan B. McMillan
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Laura Breimann
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - S. Dean Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Andréa Willemin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany
| | - Jens Wohlmann
- Department of Biosciences, University of Oslo, Norway
| | - Laura Arguedas-Jimenez
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Peng Yin
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany
| | - George M. Church
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Chao-Kng Wu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Shivashankar GV. Mechanical forces and the 3D genome. Curr Opin Struct Biol 2023; 83:102728. [PMID: 37948897 DOI: 10.1016/j.sbi.2023.102728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Traditionally, the field of genomics has been studied from a biochemical perspective. Besides chemical influences, cells are subject to a variety of mechanical signals from their surrounding tissue microenvironment. These mechanical signals can not only cause changes to a cell's physical structure but can also lead to alterations in their genomes and gene expression programs. Understanding the mechanical control of genome organization and expression may provide a new perspective on gene regulation.
Collapse
|
13
|
Li Y, Wang J, Chen X, Czajkowsky DM, Shao Z. Quantitative Super-Resolution Microscopy Reveals the Relationship between CENP-A Stoichiometry and Centromere Physical Size. Int J Mol Sci 2023; 24:15871. [PMID: 37958853 PMCID: PMC10649757 DOI: 10.3390/ijms242115871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Centromeric chromatin is thought to play a critical role in ensuring the faithful segregation of chromosomes during mitosis. However, our understanding of this role is presently limited by our poor understanding of the structure and composition of this unique chromatin. The nucleosomal variant, CENP-A, localizes to narrow regions within the centromere, where it plays a major role in centromeric function, effectively serving as a platform on which the kinetochore is assembled. Previous work found that, within a given cell, the number of microtubules within kinetochores is essentially unchanged between CENP-A-localized regions of different physical sizes. However, it is unknown if the amount of CENP-A is also unchanged between these regions of different sizes, which would reflect a strict structural correspondence between these two key characteristics of the centromere/kinetochore assembly. Here, we used super-resolution optical microscopy to image and quantify the amount of CENP-A and DNA within human centromere chromatin. We found that the amount of CENP-A within CENP-A domains of different physical sizes is indeed the same. Further, our measurements suggest that the ratio of CENP-A- to H3-containing nucleosomes within these domains is between 8:1 and 11:1. Thus, our results not only identify an unexpectedly strict relationship between CENP-A and microtubules stoichiometries but also that the CENP-A centromeric domain is almost exclusively composed of CENP-A nucleosomes.
Collapse
Affiliation(s)
- Yaqian Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (Z.S.)
| | - Jiabin Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Xuecheng Chen
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Daniel M. Czajkowsky
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (Z.S.)
| | - Zhifeng Shao
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (Z.S.)
| |
Collapse
|
14
|
Fournier M, Leclerc P, Leray A, Champelovier D, Agbazahou F, Dahmani F, Bidaux G, Furlan A, Héliot L. Combined SPT and FCS methods reveal a mechanism of RNAP II oversampling in cell nuclei. Sci Rep 2023; 13:14633. [PMID: 37669988 PMCID: PMC10480184 DOI: 10.1038/s41598-023-38668-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/12/2023] [Indexed: 09/07/2023] Open
Abstract
Gene expression orchestration is a key question in fundamental and applied research. Different models for transcription regulation were proposed, yet the dynamic regulation of RNA polymerase II (RNAP II) activity remains a matter of debate. To improve our knowledge of this topic, we investigated RNAP II motility in eukaryotic cells by combining single particle tracking (SPT) and fluorescence correlation spectroscopy (FCS) techniques, to take advantage of their different sensitivities in order to analyze together slow and fast molecular movements. Thanks to calibrated samples, we developed a benchmark for quantitative analysis of molecular dynamics, to eliminate the main potential instrumental biases. We applied this workflow to study the diffusion of RPB1, the catalytic subunit of RNAP II. By a cross-analysis of FCS and SPT, we could highlight different RPB1 motility states and identifyed a stationary state, a slow diffusion state, and two different modes of subdiffusion. Interestingly, our analysis also unveiled the oversampling by RPB1 of nuclear subdomains. Based on these data, we propose a novel model of spatio-temporal transcription regulation. Altogether, our results highlight the importance of combining microscopy approaches at different time scales to get a full insight into the real complexity of molecular kinetics in cells.
Collapse
Affiliation(s)
- Marie Fournier
- Univ. Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
- CNRS, Groupement de Recherche ImaBio, 59655, Villeneuve d'Ascq, France
| | - Pierre Leclerc
- Univ. Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
- CNRS, Groupement de Recherche ImaBio, 59655, Villeneuve d'Ascq, France
| | - Aymeric Leray
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Université de Bourgogne Franche Comte, Dijon, France
- CNRS, Groupement de Recherche ImaBio, 59655, Villeneuve d'Ascq, France
| | - Dorian Champelovier
- Univ. Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
- CNRS, Groupement de Recherche ImaBio, 59655, Villeneuve d'Ascq, France
| | - Florence Agbazahou
- Univ. Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
- CNRS, Groupement de Recherche ImaBio, 59655, Villeneuve d'Ascq, France
| | - Fatima Dahmani
- Univ. Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
- CNRS, Groupement de Recherche ImaBio, 59655, Villeneuve d'Ascq, France
| | - Gabriel Bidaux
- INSERM UMR 1060, CarMeN Laboratory, IHU OPERA, Hôpital Louis Pradel, Hospices Civils de Lyon, Univ Lyon1, Lyon, France
- CNRS, Groupement de Recherche ImaBio, 59655, Villeneuve d'Ascq, France
| | - Alessandro Furlan
- Univ. Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France.
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 -CANTHER -Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, 59000, France.
- Unité Tumorigenèse et Résistance aux Traitements, Centre Oscar Lambret, 59000, Lille, France.
- CNRS, Groupement de Recherche ImaBio, 59655, Villeneuve d'Ascq, France.
| | - Laurent Héliot
- Univ. Lille, CNRS, UMR 8523, PhLAM Laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France.
- CNRS, Groupement de Recherche ImaBio, 59655, Villeneuve d'Ascq, France.
| |
Collapse
|
15
|
Wang R, Xu Q, Wang C, Tian K, Wang H, Ji X. Multiomic analysis of cohesin reveals that ZBTB transcription factors contribute to chromatin interactions. Nucleic Acids Res 2023; 51:6784-6805. [PMID: 37264934 PMCID: PMC10359638 DOI: 10.1093/nar/gkad401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
One bottleneck in understanding the principles of 3D chromatin structures is caused by the paucity of known regulators. Cohesin is essential for 3D chromatin organization, and its interacting partners are candidate regulators. Here, we performed proteomic profiling of the cohesin in chromatin and identified transcription factors, RNA-binding proteins and chromatin regulators associated with cohesin. Acute protein degradation followed by time-series genomic binding quantitation and BAT Hi-C analysis were conducted, and the results showed that the transcription factor ZBTB21 contributes to cohesin chromatin binding, 3D chromatin interactions and transcriptional repression. Strikingly, multiomic analyses revealed that the other four ZBTB factors interacted with cohesin, and double degradation of ZBTB21 and ZBTB7B led to a further decrease in cohesin chromatin occupancy. We propose that multiple ZBTB transcription factors orchestrate the chromatin binding of cohesin to regulate chromatin interactions, and we provide a catalog of many additional proteins associated with cohesin that warrant further investigation.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Qiqin Xu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chenlu Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Kai Tian
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Arnould B, Quillin AL, Heemstra JM. Tracking the Message: Applying Single Molecule Localization Microscopy to Cellular RNA Imaging. Chembiochem 2023; 24:e202300049. [PMID: 36857087 PMCID: PMC10192057 DOI: 10.1002/cbic.202300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/02/2023]
Abstract
RNA function is increasingly appreciated to be more complex than merely communicating between DNA sequence and protein structure. RNA localization has emerged as a key contributor to the intricate roles RNA plays in the cell, and the link between dysregulated spatiotemporal localization and disease warrants an exploration beyond sequence and structure. However, the tools needed to visualize RNA with precise resolution are lacking in comparison to methods available for studying proteins. In the past decade, many techniques have been developed for imaging RNA, and in parallel super resolution and single-molecule techniques have enabled imaging of single molecules in cells. Of these methods, single molecule localization microscopy (SMLM) has shown significant promise for probing RNA localization. In this review, we highlight current approaches that allow super resolution imaging of specific RNA transcripts and summarize challenges and future opportunities for developing innovative RNA labeling methods that leverage the power of SMLM.
Collapse
Affiliation(s)
- Benoît Arnould
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alexandria L Quillin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jennifer M Heemstra
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
17
|
Salataj E, Spilianakis CG, Chaumeil J. Single-cell detection of primary transcripts, their genomic loci and nuclear factors by 3D immuno-RNA/DNA FISH in T cells. Front Immunol 2023; 14:1156077. [PMID: 37215121 PMCID: PMC10193148 DOI: 10.3389/fimmu.2023.1156077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Over the past decades, it has become increasingly clear that higher order chromatin folding and organization within the nucleus is involved in the regulation of genome activity and serves as an additional epigenetic mechanism that modulates cellular functions and gene expression programs in diverse biological processes. In particular, dynamic allelic interactions and nuclear locations can be of functional importance during the process of lymphoid differentiation and the regulation of immune responses. Analyses of the proximity between chromatin and/or nuclear regions can be performed on populations of cells with high-throughput sequencing approaches such as chromatin conformation capture ("3C"-based) or DNA adenine methyltransferase identification (DamID) methods, or, in individual cells, by the simultaneous visualization of genomic loci, their primary transcripts and nuclear compartments within the 3-dimensional nuclear space using Fluorescence In Situ Hybridization (FISH) and immunostaining. Here, we present a detailed protocol to simultaneously detect nascent RNA transcripts (3D RNA FISH), their genomic loci (3D DNA FISH) and/or their chromosome territories (CT paint DNA FISH) combined with the antibody-based detection of various nuclear factors (immunofluorescence). We delineate the application and effectiveness of this robust and reproducible protocol in several murine T lymphocyte subtypes (from differentiating thymic T cells, to activated splenic and peripheral T cells) as well as other murine cells, including embryonic stem cells, B cells, megakaryocytes and macrophages.
Collapse
Affiliation(s)
- Eralda Salataj
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
| | - Charalampos G. Spilianakis
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Julie Chaumeil
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| |
Collapse
|
18
|
Abstract
RNA granules are mesoscale assemblies that form in the absence of limiting membranes. RNA granules contain factors for RNA biogenesis and turnover and are often assumed to represent specialized compartments for RNA biochemistry. Recent evidence suggests that RNA granules assemble by phase separation of subsoluble ribonucleoprotein (RNP) complexes that partially demix from the cytoplasm or nucleoplasm. We explore the possibility that some RNA granules are nonessential condensation by-products that arise when RNP complexes exceed their solubility limit as a consequence of cellular activity, stress, or aging. We describe the use of evolutionary and mutational analyses and single-molecule techniques to distinguish functional RNA granules from "incidental condensates."
Collapse
Affiliation(s)
- Andrea Putnam
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Laura Thomas
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Geraldine Seydoux
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
19
|
Ball ML, Koestler SA, Muresan L, Rehman SA, O’Holleran K, White R. The anatomy of transcriptionally active chromatin loops in Drosophila primary spermatocytes using super-resolution microscopy. PLoS Genet 2023; 19:e1010654. [PMID: 36867662 PMCID: PMC10016678 DOI: 10.1371/journal.pgen.1010654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/15/2023] [Accepted: 02/04/2023] [Indexed: 03/04/2023] Open
Abstract
While the biochemistry of gene transcription has been well studied, our understanding of how this process is organised in 3D within the intact nucleus is less well understood. Here we investigate the structure of actively transcribed chromatin and the architecture of its interaction with active RNA polymerase. For this analysis, we have used super-resolution microscopy to image the Drosophila melanogaster Y loops which represent huge, several megabases long, single transcription units. The Y loops provide a particularly amenable model system for transcriptionally active chromatin. We find that, although these transcribed loops are decondensed they are not organised as extended 10nm fibres, but rather they largely consist of chains of nucleosome clusters. The average width of each cluster is around 50nm. We find that foci of active RNA polymerase are generally located off the main fibre axis on the periphery of the nucleosome clusters. Foci of RNA polymerase and nascent transcripts are distributed around the Y loops rather than being clustered in individual transcription factories. However, as the RNA polymerase foci are considerably less prevalent than the nucleosome clusters, the organisation of this active chromatin into chains of nucleosome clusters is unlikely to be determined by the activity of the polymerases transcribing the Y loops. These results provide a foundation for understanding the topological relationship between chromatin and the process of gene transcription.
Collapse
Affiliation(s)
- Madeleine L. Ball
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Stefan A. Koestler
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Leila Muresan
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Sohaib Abdul Rehman
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Kevin O’Holleran
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Robert White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Shaban HA. Nucleus-wide analysis of coherent RNA pol II movement in the context of chromatin dynamics in living cancer cells. Nucleus 2022; 13:313-318. [PMID: 36512483 PMCID: PMC9754109 DOI: 10.1080/19491034.2022.2157133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Activation of transcription results in coordinated movement of chromatin over a range of micrometers. To investigate how transcriptional regulation affects the mobility of RNA Pol II molecules and whether this movement response depends on the coordinated movement of chromatin, we used our Dense Flow reConstruction and Correlation (DFCC) method. Using DFCC, we studies the nucleus-wide coherent movements of RNA Pol II in the context of DNA in humancancer cells. This study showed the dependance of coherent movements of RNA Pol II molecules (above 1 µm) on transcriptional activity. Here, we share the dataset of this study, includes nucleus-wide live imaging and analysis of DNA and RNA polymerase II in different transcription states, and the code for teh analysis. Our dataset may provide researchers interested in the long-range organization of chromatin in living cell images with the ability to link the structural genomic compartment to dynamic information. .
Collapse
Affiliation(s)
- Haitham A. Shaban
- Agora Cancer Research Center, Lausanne, Switzerland,Precision Oncology Center, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland,Spectroscopy Department, Physics Division, National Research Centre, Cairo, Egypt,CONTACT Haitham A. Shaban Precision Oncology Center, Department of Oncology, Lausanne University Hospital, Lausanne1005, Switzerland
| |
Collapse
|
21
|
Barth R, Shaban HA. Spatially coherent diffusion of human RNA Pol II depends on transcriptional state rather than chromatin motion. Nucleus 2022; 13:194-202. [PMID: 35723020 PMCID: PMC9225503 DOI: 10.1080/19491034.2022.2088988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/04/2022] Open
Abstract
Gene transcription by RNA polymerase II (RNAPol II) is a tightly regulated process in the genomic, temporal, and spatial context. Recently, we have shown that chromatin exhibits spatially coherently moving regions over the entire nucleus, which is enhanced by transcription. Yet, it remains unclear how the mobility of RNA Pol II molecules is affected by transcription regulation and whether this response depends on the coordinated chromatin movement. We applied our Dense Flow reConstruction and Correlation method to analyze nucleus-wide coherent movements of RNA Pol II in living human cancer cells. We observe a spatially coherent movement of RNA Pol II molecules over ≈ 1 μm, which depends on transcriptional activity. Inducing transcription in quiescent cells decreased the coherent motion of RNA Pol II. We then quantify the spatial correlation length of RNA Pol II in the context of DNA motion. RNA Pol II and chromatin spatially coherent motions respond oppositely to transcriptional activities. Our study holds the potential of studying the chromatin environment in different nuclear processes.
Collapse
Affiliation(s)
- Roman Barth
- Department of Bionanoscience, Delft University of Technology, CJ Delft, The Netherlands
| | - Haitham A. Shaban
- Spectroscopy Department, Physics Division, National Research Centre, Dokki, Egypt
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
22
|
Wu H, Li C, Masood M, Zhang Z, González-Almela E, Castells-Garcia A, Zou G, Xu X, Wang L, Zhao G, Yu S, Zhu P, Wang B, Qin D, Liu J. Static Magnetic Fields Regulate T-Type Calcium Ion Channels and Mediate Mesenchymal Stem Cells Proliferation. Cells 2022; 11:cells11152460. [PMID: 35954307 PMCID: PMC9368660 DOI: 10.3390/cells11152460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
The static magnetic fields (SMFs) impact on biological systems, induce a variety of biological responses, and have been applied to the clinical treatment of diseases. However, the underlying mechanisms remain largely unclear. In this report, by using human mesenchymal stem cells (MSCs) as a model, we investigated the biological effect of SMFs at a molecular and cellular level. We showed that SMF exposure promotes MSC proliferation and activates the expression of transcriptional factors such as FOS (Fos Proto-Oncogene, AP-1 Transcription Factor Subunit) and EGR1 (Early Growth Response 1). In addition, the expression of signal-transduction proteins p-ERK1/2 and p-JNK oscillate periodically with SMF exposure time. Furthermore, we found that the inhibition of the T-type calcium ion channels negates the biological effects of SMFs on MSCs. Together, we revealed that the SMFs regulate T-type calcium ion channels and mediate MSC proliferation via the MAPK signaling pathways.
Collapse
Affiliation(s)
- Haokaifeng Wu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chuang Li
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Muqaddas Masood
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - Zhen Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | | | | | - Xiaoduo Xu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Luqin Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | - Shengyong Yu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - Bo Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
- Correspondence: (D.Q.); (J.L.)
| | - Jing Liu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Bioland Laboratory, Guangzhou 510005, China
- Correspondence: (D.Q.); (J.L.)
| |
Collapse
|