1
|
Gosztyla ML, Zhan L, Olson S, Wei X, Naritomi J, Nguyen G, Street L, Goda GA, Cavazos FF, Schmok JC, Jain M, Uddin Syed E, Kwon E, Jin W, Kofman E, Tankka AT, Li A, Gonzalez V, Lécuyer E, Dominguez D, Jovanovic M, Graveley BR, Yeo GW. Integrated multi-omics analysis of zinc-finger proteins uncovers roles in RNA regulation. Mol Cell 2024; 84:3826-3842.e8. [PMID: 39303722 PMCID: PMC11633308 DOI: 10.1016/j.molcel.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/19/2024] [Accepted: 08/06/2024] [Indexed: 09/22/2024]
Abstract
RNA interactome studies have revealed that hundreds of zinc-finger proteins (ZFPs) are candidate RNA-binding proteins (RBPs), yet their RNA substrates and functional significance remain largely uncharacterized. Here, we present a systematic multi-omics analysis of the DNA- and RNA-binding targets and regulatory roles of more than 100 ZFPs representing 37 zinc-finger families. We show that multiple ZFPs are previously unknown regulators of RNA splicing, alternative polyadenylation, stability, or translation. The examined ZFPs show widespread sequence-specific RNA binding and preferentially bind proximal to transcription start sites. Additionally, several ZFPs associate with their targets at both the DNA and RNA levels. We highlight ZNF277, a C2H2 ZFP that binds thousands of RNA targets and acts as a multi-functional RBP. We also show that ZNF473 is a DNA/RNA-associated protein that regulates the expression and splicing of cell cycle genes. Our results reveal diverse roles for ZFPs in transcriptional and post-transcriptional gene regulation.
Collapse
Affiliation(s)
- Maya L Gosztyla
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA; Sanford Stem Cell Institute and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Lijun Zhan
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030, USA
| | - Sara Olson
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030, USA
| | - Xintao Wei
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030, USA
| | - Jack Naritomi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA; Sanford Stem Cell Institute and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Grady Nguyen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA; Sanford Stem Cell Institute and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Lena Street
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Grant A Goda
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Francisco F Cavazos
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Jonathan C Schmok
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA; Sanford Stem Cell Institute and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Manya Jain
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA; Sanford Stem Cell Institute and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Easin Uddin Syed
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada; School of Pharmacy, Brac University, Dhaka 1212, Bangladesh
| | - Eunjeong Kwon
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Wenhao Jin
- Sanford Laboratories for Innovative Medicines, La Jolla, CA 92037, USA
| | - Eric Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA; Sanford Stem Cell Institute and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alexandra T Tankka
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA; Sanford Stem Cell Institute and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Allison Li
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA; Sanford Stem Cell Institute and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Valerie Gonzalez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA; Sanford Stem Cell Institute and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Eric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA; Sanford Stem Cell Institute and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Sanford Laboratories for Innovative Medicines, La Jolla, CA 92037, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Völkers M, Preiss T, Hentze MW. RNA-binding proteins in cardiovascular biology and disease: the beat goes on. Nat Rev Cardiol 2024; 21:361-378. [PMID: 38163813 DOI: 10.1038/s41569-023-00958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Cardiac development and function are becoming increasingly well understood from different angles, including signalling, transcriptional and epigenetic mechanisms. By contrast, the importance of the post-transcriptional landscape of cardiac biology largely remains to be uncovered, building on the foundation of a few existing paradigms. The discovery during the past decade of hundreds of additional RNA-binding proteins in mammalian cells and organs, including the heart, is expected to accelerate progress and has raised intriguing possibilities for better understanding the intricacies of cardiac development, metabolism and adaptive alterations. In this Review, we discuss the progress and new concepts on RNA-binding proteins and RNA biology and appraise them in the context of common cardiovascular clinical conditions, from cell and organ-wide perspectives. We also discuss how a better understanding of cardiac RNA-binding proteins can fill crucial knowledge gaps in cardiology and might pave the way to developing better treatments to reduce cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Mirko Völkers
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg and Mannheim, Germany
| | - Thomas Preiss
- Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Matthias W Hentze
- European Molecular Biology Laboratory, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany.
| |
Collapse
|
3
|
Choi Y, Um B, Na Y, Kim J, Kim JS, Kim VN. Time-resolved profiling of RNA binding proteins throughout the mRNA life cycle. Mol Cell 2024; 84:1764-1782.e10. [PMID: 38593806 DOI: 10.1016/j.molcel.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
mRNAs continually change their protein partners throughout their lifetimes, yet our understanding of mRNA-protein complex (mRNP) remodeling is limited by a lack of temporal data. Here, we present time-resolved mRNA interactome data by performing pulse metabolic labeling with photoactivatable ribonucleoside in human cells, UVA crosslinking, poly(A)+ RNA isolation, and mass spectrometry. This longitudinal approach allowed the quantification of over 700 RNA binding proteins (RBPs) across ten time points. Overall, the sequential order of mRNA binding aligns well with known functions, subcellular locations, and molecular interactions. However, we also observed RBPs with unexpected dynamics: the transcription-export (TREX) complex recruited posttranscriptionally after nuclear export factor 1 (NXF1) binding, challenging the current view of transcription-coupled mRNA export, and stress granule proteins prevalent in aged mRNPs, indicating roles in late stages of the mRNA life cycle. To systematically identify mRBPs with unknown functions, we employed machine learning to compare mRNA binding dynamics with Gene Ontology (GO) annotations. Our data can be explored at chronology.rna.snu.ac.kr.
Collapse
Affiliation(s)
- Yeon Choi
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Buyeon Um
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongwoo Na
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Sun H, Fu B, Qian X, Xu P, Qin W. Nuclear and cytoplasmic specific RNA binding proteome enrichment and its changes upon ferroptosis induction. Nat Commun 2024; 15:852. [PMID: 38286993 PMCID: PMC10825125 DOI: 10.1038/s41467-024-44987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
The key role of RNA-binding proteins (RBPs) in posttranscriptional regulation of gene expression is intimately tied to their subcellular localization. Here, we show a subcellular-specific RNA labeling method for efficient enrichment and deep profiling of nuclear and cytoplasmic RBPs. A total of 1221 nuclear RBPs and 1333 cytoplasmic RBPs were enriched and identified using nuclear/cytoplasm targeting enrichment probes, representing an increase of 54.4% and 85.7% compared with previous reports. The probes were further applied in the omics-level investigation of subcellular-specific RBP-RNA interactions upon ferroptosis induction. Interestingly, large-scale RBPs display enhanced interaction with RNAs in nucleus but reduced association with RNAs in cytoplasm during ferroptosis process. Furthermore, we discovered dozens of nucleoplasmic translocation candidate RBPs upon ferroptosis induction and validated representative ones by immunofluorescence imaging. The enrichment of Tricarboxylic acid cycle in the translocation candidate RBPs may provide insights for investigating their possible roles in ferroptosis induced metabolism dysregulation.
Collapse
Affiliation(s)
- Haofan Sun
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Bin Fu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiaohong Qian
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ping Xu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Weijie Qin
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
5
|
Esteban‐Serna S, McCaughan H, Granneman S. Advantages and limitations of UV cross-linking analysis of protein-RNA interactomes in microbes. Mol Microbiol 2023; 120:477-489. [PMID: 37165708 PMCID: PMC10952675 DOI: 10.1111/mmi.15073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
RNA-binding proteins (RBPs) govern the lifespan of nearly all transcripts and play key roles in adaptive responses in microbes. A robust approach to examine protein-RNA interactions involves irradiating cells with UV light to form covalent adducts between RBPs and their cognate RNAs. Combined with RNA or protein purification, these procedures can provide global RBP censuses or transcriptomic maps for all target sequences of a single protein in living cells. The recent development of novel methods has quickly populated the RBP landscape in microorganisms. Here, we provide an overview of prominent UV cross-linking techniques which have been applied to investigate RNA interactomes in microbes. By assessing their advantages and caveats, this technical evaluation intends to guide the selection of appropriate methods and experimental design as well as to encourage the use of complementary UV-dependent techniques to inspect RNA-binding activity.
Collapse
Affiliation(s)
- Sofia Esteban‐Serna
- Centre for Engineering Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Hugh McCaughan
- Centre for Engineering Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Sander Granneman
- Centre for Engineering Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
6
|
Hao L, Zhang J, Liu Z, Zhang Z, Mao T, Guo J. Role of the RNA-binding protein family in gynecologic cancers. Am J Cancer Res 2023; 13:3799-3821. [PMID: 37693158 PMCID: PMC10492115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
Gynecological cancers pose a threat to women's health. Although early-stage gynecological cancers show good outcomes after standardized treatment, the prognosis of patients with advanced, met-astatic, and recurrent cancers is poor. RNA-binding proteins (RBPs) are important cellular proteins that interact with RNA through RNA-binding domains and participate extensively in post-transcriptional regulatory processes, such as mRNA alternative splicing, polyadenylation, intracellular localization and stability, and translation. Abnormal RBP expression affects the normal function of oncogenes and tumor suppressor genes in many malignancies, thus leading to the occurrence or progression of cancers. Similarly, RBPs play crucial roles in gynecological carcinogenesis. We summarize the role of RBPs in gynecological malignancies and explore their potential in the diagnosis and treatment of cancers. The findings summarized in this review may provide a guide for future research on the functions of RBPs.
Collapse
Affiliation(s)
- Linlin Hao
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Jian Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and TechnologyShenzhen 518055, Guangdong, China
| | - Zhongshan Liu
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Zhiliang Zhang
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Tiezhu Mao
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| | - Jie Guo
- Department of Tumor Radiotherapy, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
| |
Collapse
|
7
|
Kejiou NS, Ilan L, Aigner S, Luo E, Tonn T, Ozadam H, Lee M, Cole G, Rabano I, Rajakulendran N, Yee BA, Najafabadi H, Moraes T, Angers S, Yeo G, Cenik C, Palazzo A. Pyruvate Kinase M (PKM) binds ribosomes in a poly-ADP ribosylation dependent manner to induce translational stalling. Nucleic Acids Res 2023; 51:6461-6478. [PMID: 37224531 PMCID: PMC10325899 DOI: 10.1093/nar/gkad440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023] Open
Abstract
In light of the numerous studies identifying post-transcriptional regulators on the surface of the endoplasmic reticulum (ER), we asked whether there are factors that regulate compartment specific mRNA translation in human cells. Using a proteomic survey of spatially regulated polysome interacting proteins, we identified the glycolytic enzyme Pyruvate Kinase M (PKM) as a cytosolic (i.e. ER-excluded) polysome interactor and investigated how it influences mRNA translation. We discovered that the PKM-polysome interaction is directly regulated by ADP levels-providing a link between carbohydrate metabolism and mRNA translation. By performing enhanced crosslinking immunoprecipitation-sequencing (eCLIP-seq), we found that PKM crosslinks to mRNA sequences that are immediately downstream of regions that encode lysine- and glutamate-enriched tracts. Using ribosome footprint protection sequencing, we found that PKM binding to ribosomes causes translational stalling near lysine and glutamate encoding sequences. Lastly, we observed that PKM recruitment to polysomes is dependent on poly-ADP ribosylation activity (PARylation)-and may depend on co-translational PARylation of lysine and glutamate residues of nascent polypeptide chains. Overall, our study uncovers a novel role for PKM in post-transcriptional gene regulation, linking cellular metabolism and mRNA translation.
Collapse
Affiliation(s)
- Nevraj S Kejiou
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lena Ilan
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Enching Luo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tori Tonn
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Hakan Ozadam
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Muyoung Lee
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Gregory B Cole
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Ines Rabano
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Stephane Angers
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
8
|
Zhao R, Fang X, Mai Z, Chen X, Mo J, Lin Y, Xiao R, Bao X, Weng X, Zhou X. Transcriptome-wide identification of single-stranded RNA binding proteins. Chem Sci 2023; 14:4038-4047. [PMID: 37063799 PMCID: PMC10094363 DOI: 10.1039/d3sc00957b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
RNA-protein interactions are precisely regulated by RNA secondary structures in various biological processes. Large-scale identification of proteins that interact with particular RNA structure is important to the RBPome. Herein, a kethoxal assisted single-stranded RNA interactome capture (KASRIC) strategy was developed to globally identify single-stranded RNA binding proteins (ssRBPs). This approach combines RNA secondary structure probing technology with the conventional method of RNA-binding proteins profiling, realizing the transcriptome-wide identification of ssRBPs. Applying KASRIC, we identified 3180 candidate RBPs and 244 candidate ssRBPs in HeLa cells. Importantly, the 244 candidate ssRBPs contained 55 previously reported ssRBPs and 189 novel ssRBPs. Function analysis of the candidate ssRBPs exhibited enrichment in cellular processes related to RNA splicing and RNA degradation. The KASRIC strategy will facilitate the investigation of RNA-protein interactions.
Collapse
Affiliation(s)
- Ruiqi Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xin Fang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Zhibiao Mai
- Laboratory of RNA Molecular Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou Guangdong Province 510530 China
| | - Xi Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Jing Mo
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Yingying Lin
- Laboratory of RNA Molecular Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou Guangdong Province 510530 China
| | - Rui Xiao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University Wuhan Hubei 430071 China
- TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan Hubei 430071 China
| | - Xichen Bao
- Laboratory of RNA Molecular Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou Guangdong Province 510530 China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan Hubei 430071 China
| |
Collapse
|
9
|
Sarnowski CP, Bikaki M, Leitner A. Cross-linking and mass spectrometry as a tool for studying the structural biology of ribonucleoproteins. Structure 2022; 30:441-461. [PMID: 35366400 DOI: 10.1016/j.str.2022.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/03/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022]
Abstract
Cross-linking and mass spectrometry (XL-MS) workflows represent an increasingly popular technique for low-resolution structural studies of macromolecular complexes. Cross-linking reactions take place in the solution state, capturing contact sites between components of a complex that represent the native, functionally relevant structure. Protein-protein XL-MS protocols are widely adopted, providing precise localization of cross-linking sites to single amino acid positions within a pair of cross-linked peptides. In contrast, protein-RNA XL-MS workflows are evolving rapidly and differ in their ability to localize interaction regions within the RNA sequence. Here, we review protein-protein and protein-RNA XL-MS workflows, and discuss their applications in studies of protein-RNA complexes. The examples highlight the complementary value of XL-MS in structural studies of protein-RNA complexes, where more established high-resolution techniques might be unable to produce conclusive data.
Collapse
Affiliation(s)
- Chris P Sarnowski
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zurich, Switzerland; Systems Biology PhD Program, University of Zürich and ETH Zürich, Zurich, Switzerland
| | - Maria Bikaki
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zurich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zurich, Switzerland.
| |
Collapse
|
10
|
Jiang MP, Xu WX, Hou JC, Xu Q, Wang DD, Tang JH. The Emerging Role of the Interactions between Circular RNAs and RNA-binding Proteins in Common Human Cancers. J Cancer 2021; 12:5206-5219. [PMID: 34335937 PMCID: PMC8317540 DOI: 10.7150/jca.58182] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are a unique family of noncoding RNAs that could regulate multiple biological processes, which play a crucial role in carcinogenesis, progression and chemotherapy resistance of cancers. Growing studies have demonstrated that circRNAs act as novel biomarkers and therapeutic targets for cancers by sponging microRNAs (miRNAs). Up to date, another function of circRNAs, combining with RNA-binding proteins (RBPs), was uncovered. However, there is limit studies illustrating the underlying mechanism of circRNAs-RBPs interactions, as well as showing its roles in diverse types of cancers. In this review, we collected the biogenesis, properties of circRNAs, and then synthesize the connection between circRNAs and RBPs, and try to clarify its molecular mechanisms involving in the pathogenesis and progression of several common cancers, aiming to provide a brand-new insight to the prognosis and treatment strategy for cancers.
Collapse
Affiliation(s)
- Meng-Ping Jiang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen-Xiu Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun-Chen Hou
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dan-Dan Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin-Hai Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Cozzolino F, Iacobucci I, Monaco V, Monti M. Protein-DNA/RNA Interactions: An Overview of Investigation Methods in the -Omics Era. J Proteome Res 2021; 20:3018-3030. [PMID: 33961438 PMCID: PMC8280749 DOI: 10.1021/acs.jproteome.1c00074] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
The fields of application
of functional proteomics are not limited
to the study of protein–protein interactions; they also extend
to those involving protein complexes that bind DNA or RNA. These interactions
affect fundamental processes such as replication, transcription, and
repair in the case of DNA, as well as transport, translation, splicing,
and silencing in the case of RNA. Analytical or preparative experimental
approaches, both in vivo and in vitro, have been developed to isolate and identify DNA/RNA binding proteins
by exploiting the advantage of the affinity shown by these proteins
toward a specific oligonucleotide sequence. The present review proposes
an overview of the approaches most commonly employed in proteomics
applications for the identification of nucleic acid-binding proteins,
such as affinity purification (AP) protocols, EMSA, chromatin purification
methods, and CRISPR-based chromatin affinity purification, which are
generally associated with mass spectrometry methodologies for the
unbiased protein identification.
Collapse
Affiliation(s)
- Flora Cozzolino
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Vittoria Monaco
- CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy.,Interuniversity Consortium National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro, 305-00136 Rome, Italy
| | - Maria Monti
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| |
Collapse
|