1
|
Ng BW, Kaukonen MK, McClements ME, Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Genetic therapies and potential therapeutic applications of CRISPR activators in the eye. Prog Retin Eye Res 2024; 102:101289. [PMID: 39127142 DOI: 10.1016/j.preteyeres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.
Collapse
Affiliation(s)
- Benjamin Wj Ng
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria K Kaukonen
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
2
|
Roth GV, Gengaro IR, Qi LS. Precision epigenetic editing: Technological advances, enduring challenges, and therapeutic applications. Cell Chem Biol 2024:S2451-9456(24)00309-X. [PMID: 39137782 DOI: 10.1016/j.chembiol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
The epigenome is a complex framework through which gene expression is precisely and flexibly modulated to incorporate heritable memory and responses to environmental stimuli. It governs diverse cellular processes, including cell fate, disease, and aging. The need to understand this system and precisely control gene expression outputs for therapeutic purposes has precipitated the development of a diverse set of epigenetic editing tools. Here, we review the existing toolbox for targeted epigenetic editing, technical considerations of the current technologies, and opportunities for future development. We describe applications of therapeutic epigenetic editing and their potential for treating disease, with a discussion of ongoing delivery challenges that impede certain clinical interventions, particularly in the brain. With simultaneous advancements in available engineering tools and appropriate delivery technologies, we predict that epigenetic editing will increasingly cement itself as a powerful approach for safely treating a wide range of disorders in all tissues of the body.
Collapse
Affiliation(s)
- Goldie V Roth
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Isabella R Gengaro
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Liu H, Zhen C, Xie J, Luo Z, Zeng L, Zhao G, Lu S, Zhuang H, Fan H, Li X, Liu Z, Lin S, Jiang H, Chen Y, Cheng J, Cao Z, Dai K, Shi J, Wang Z, Hu Y, Meng T, Zhou C, Han Z, Huang H, Zhou Q, He P, Feng D. TFAM is an autophagy receptor that limits inflammation by binding to cytoplasmic mitochondrial DNA. Nat Cell Biol 2024; 26:878-891. [PMID: 38783142 DOI: 10.1038/s41556-024-01419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/08/2024] [Indexed: 05/25/2024]
Abstract
When cells are stressed, DNA from energy-producing mitochondria can leak out and drive inflammatory immune responses if not cleared. Cells employ a quality control system called autophagy to specifically degrade damaged components. We discovered that mitochondrial transcription factor A (TFAM)-a protein that binds mitochondrial DNA (mtDNA)-helps to eliminate leaked mtDNA by interacting with the autophagy protein LC3 through an autolysosomal pathway (we term this nucleoid-phagy). TFAM contains a molecular zip code called the LC3 interacting region (LIR) motif that enables this binding. Although mutating TFAM's LIR motif did not affect its normal mitochondrial functions, more mtDNA accumulated in the cell cytoplasm, activating inflammatory signalling pathways. Thus, TFAM mediates autophagic removal of leaked mtDNA to restrict inflammation. Identifying this mechanism advances understanding of how cells exploit autophagy machinery to selectively target and degrade inflammatory mtDNA. These findings could inform research on diseases involving mitochondrial damage and inflammation.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Huaihe Hospital of Henan University, Kaifeng City, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Cien Zhen
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Biology, University of Padova, Padova, Italy
| | - Jianming Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhenhuan Luo
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lin Zeng
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Shaohua Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Haixia Zhuang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hualin Fan
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Biology, University of Padova, Padova, Italy
| | - Xia Li
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhaojie Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shiyin Lin
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huilin Jiang
- Emergency Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqian Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiahao Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Zhiyu Cao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The First Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Keyu Dai
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jinhua Shi
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhaohua Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yongquan Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tian Meng
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chuchu Zhou
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhiyuan Han
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huansen Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qinghua Zhou
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Pengcheng He
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Cardiology, Heyuan People's Hospital, Heyuan, China
| | - Du Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China.
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Chen Y, Luo X, Kang R, Cui K, Ou J, Zhang X, Liang P. Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment. J Genet Genomics 2024; 51:159-183. [PMID: 37516348 DOI: 10.1016/j.jgg.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
Osteoarthritis (OA) is one of the most common degenerative joint diseases worldwide, causing pain, disability, and decreased quality of life. The balance between regeneration and inflammation-induced degradation results in multiple etiologies and complex pathogenesis of OA. Currently, there is a lack of effective therapeutic strategies for OA treatment. With the development of CRISPR-based genome, epigenome, and RNA editing tools, OA treatment has been improved by targeting genetic risk factors, activating chondrogenic elements, and modulating inflammatory regulators. Supported by cell therapy and in vivo delivery vectors, genome, epigenome, and RNA editing tools may provide a promising approach for personalized OA therapy. This review summarizes CRISPR-based genome, epigenome, and RNA editing tools that can be applied to the treatment of OA and provides insights into the development of CRISPR-based therapeutics for OA treatment. Moreover, in-depth evaluations of the efficacy and safety of these tools in human OA treatment are needed.
Collapse
Affiliation(s)
- Yuxi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiao Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Rui Kang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Kaixin Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Ou
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiya Zhang
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Puping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
5
|
Shen W, Hu F, Lei P, Tang Y. Applications of CRISPR screening to lung cancer treatment. Front Cell Dev Biol 2023; 11:1295555. [PMID: 38169973 PMCID: PMC10760454 DOI: 10.3389/fcell.2023.1295555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Lung cancer is an extremely aggressive and highly prevalent disease worldwide, and it is one of the leading causes of cancer death. Deciphering intrinsic genetic mechanism, finding new targets, and overcoming drug resistance are the key to lung cancer treatment. High-throughput CRISPR screening has been extensively used to obtain the genes related to cancers including lung cancer. This review describes CRISPR/Cas9 or CRISPR/dCas9-based technologies for high-throughput screening. We summarize the applications of CRISPR screening technology in exploring the mechanism of lung cancer development in vivo or in vitro, overcoming drug resistance, improving the effect of immunotherapy, and discovering new therapeutic targets. This review highlights the potential of CRISPR screening in combination with tumor barcoding and high-throughput sequencing (Tuba-seq) to precisely quantify the impact of alterations in many tumor suppressor genes on lung cancer.
Collapse
Affiliation(s)
- Wanying Shen
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Fangli Hu
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Pan Lei
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yijun Tang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Mahata B, Cabrera A, Brenner DA, Guerra-Resendez RS, Li J, Goell J, Wang K, Guo Y, Escobar M, Parthasarathy AK, Szadowski H, Bedford G, Reed DR, Kim S, Hilton IB. Compact engineered human mechanosensitive transactivation modules enable potent and versatile synthetic transcriptional control. Nat Methods 2023; 20:1716-1728. [PMID: 37813990 PMCID: PMC10630135 DOI: 10.1038/s41592-023-02036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023]
Abstract
Engineered transactivation domains (TADs) combined with programmable DNA binding platforms have revolutionized synthetic transcriptional control. Despite recent progress in programmable CRISPR-Cas-based transactivation (CRISPRa) technologies, the TADs used in these systems often contain poorly tolerated elements and/or are prohibitively large for many applications. Here, we defined and optimized minimal TADs built from human mechanosensitive transcription factors. We used these components to construct potent and compact multipartite transactivation modules (MSN, NMS and eN3x9) and to build the CRISPR-dCas9 recruited enhanced activation module (CRISPR-DREAM) platform. We found that CRISPR-DREAM was specific and robust across mammalian cell types, and efficiently stimulated transcription from diverse regulatory loci. We also showed that MSN and NMS were portable across Type I, II and V CRISPR systems, transcription activator-like effectors and zinc finger proteins. Further, as proofs of concept, we used dCas9-NMS to efficiently reprogram human fibroblasts into induced pluripotent stem cells and demonstrated that mechanosensitive transcription factor TADs are efficacious and well tolerated in therapeutically important primary human cell types. Finally, we leveraged the compact and potent features of these engineered TADs to build dual and all-in-one CRISPRa AAV systems. Altogether, these compact human TADs, fusion modules and delivery architectures should be valuable for synthetic transcriptional control in biomedical applications.
Collapse
Affiliation(s)
- Barun Mahata
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Alan Cabrera
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | | | - Jing Li
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jacob Goell
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Kaiyuan Wang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Yannie Guo
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Mario Escobar
- Department of BioSciences, Rice University, Houston, TX, USA
| | | | - Hailey Szadowski
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Guy Bedford
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Daniel R Reed
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Sunghwan Kim
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA.
- Department of BioSciences, Rice University, Houston, TX, USA.
| |
Collapse
|
7
|
Aquino-Jarquin G. Genome and transcriptome engineering by compact and versatile CRISPR-Cas systems. Drug Discov Today 2023; 28:103793. [PMID: 37797813 DOI: 10.1016/j.drudis.2023.103793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Comparative genomics has enabled the discovery of tiny clustered regularly interspaced short palindromic repeat (CRISPR) bacterial immune system effectors with enormous potential for manipulating eukaryotic genomes. Recently, smaller Cas proteins, including miniature Cas9, Cas12, and Cas13 proteins, have been identified and validated as efficient genome editing and base editing tools in human cells. The compact size of these novel CRISPR effectors is highly desirable for generating CRISPR-based therapeutic approaches, mainly to overcome in vivo delivery constraints, providing a promising opportunity for editing pathogenic mutations of clinical relevance and knocking down RNAs in human cells without inducing chromosomal insertions or genome alterations. Thus, these tiny CRISPR-Cas systems represent new and highly programmable, specific, and efficient platforms, which expand the CRISPR toolkit for potential therapeutic opportunities.
Collapse
Affiliation(s)
- Guillermo Aquino-Jarquin
- RNA Biology and Genome Editing Section. Research on Genomics, Genetics, and Bioinformatics Laboratory. Hemato-Oncology Building, 4th Floor, Section 2. Children's Hospital of Mexico, Federico Gómez, Mexico City, Mexico.
| |
Collapse
|
8
|
Li L, Vasan L, Kartono B, Clifford K, Attarpour A, Sharma R, Mandrozos M, Kim A, Zhao W, Belotserkovsky A, Verkuyl C, Schmitt-Ulms G. Advances in Recombinant Adeno-Associated Virus Vectors for Neurodegenerative Diseases. Biomedicines 2023; 11:2725. [PMID: 37893099 PMCID: PMC10603849 DOI: 10.3390/biomedicines11102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are gene therapy delivery tools that offer a promising platform for the treatment of neurodegenerative diseases. Keeping up with developments in this fast-moving area of research is a challenge. This review was thus written with the intention to introduce this field of study to those who are new to it and direct others who are struggling to stay abreast of the literature towards notable recent studies. In ten sections, we briefly highlight early milestones within this field and its first clinical success stories. We showcase current clinical trials, which focus on gene replacement, gene augmentation, or gene suppression strategies. Next, we discuss ongoing efforts to improve the tropism of rAAV vectors for brain applications and introduce pre-clinical research directed toward harnessing rAAV vectors for gene editing applications. Subsequently, we present common genetic elements coded by the single-stranded DNA of rAAV vectors, their so-called payloads. Our focus is on recent advances that are bound to increase treatment efficacies. As needed, we included studies outside the neurodegenerative disease field that showcased improved pre-clinical designs of all-in-one rAAV vectors for gene editing applications. Finally, we discuss risks associated with off-target effects and inadvertent immunogenicity that these technologies harbor as well as the mitigation strategies available to date to make their application safer.
Collapse
Affiliation(s)
- Leyao Li
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
| | - Lakshmy Vasan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Bryan Kartono
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Kevan Clifford
- Institute of Medical Science, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Centre for Addiction and Mental Health (CAMH), 250 College St., Toronto, ON M5T 1R8, Canada
| | - Ahmadreza Attarpour
- Department of Medical Biophysics, University of Toronto, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Raghav Sharma
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Matthew Mandrozos
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Ain Kim
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Claire Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
9
|
Zhang X, Wang X, Lv J, Huang H, Wang J, Zhuo M, Tan Z, Huang G, Liu J, Liu Y, Li M, Lin Q, Li L, Ma S, Huang T, Lin Y, Zhao X, Rong Z. Engineered circular guide RNAs boost CRISPR/Cas12a- and CRISPR/Cas13d-based DNA and RNA editing. Genome Biol 2023; 24:145. [PMID: 37353840 PMCID: PMC10288759 DOI: 10.1186/s13059-023-02992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND The CRISPR/Cas12a and CRISPR/Cas13d systems are widely used for fundamental research and hold great potential for future clinical applications. However, the short half-life of guide RNAs (gRNAs), particularly free gRNAs without Cas nuclease binding, limits their editing efficiency and durability. RESULTS Here, we engineer circular free gRNAs (cgRNAs) to increase their stability, and thus availability for Cas12a and Cas13d processing and loading, to boost editing. cgRNAs increases the efficiency of Cas12a-based transcription activators and genomic DNA cleavage by approximately 2.1- to 40.2-fold for single gene editing and 1.7- to 2.1-fold for multiplexed gene editing than their linear counterparts, without compromising specificity, across multiple sites and cell lines. Similarly, the RNA interference efficiency of Cas13d is increased by around 1.8-fold. In in vivo mouse liver, cgRNAs are more potent in activating gene expression and cleaving genomic DNA. CONCLUSIONS CgRNAs enable more efficient programmable DNA and RNA editing for Cas12a and Cas13d with broad applicability for fundamental research and gene therapy.
Collapse
Affiliation(s)
- Xin Zhang
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523058, China
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Xinlong Wang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Jie Lv
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Hongxin Huang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Jiahong Wang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Ma Zhuo
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Zhihong Tan
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Guanjie Huang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Jiawei Liu
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Yuchen Liu
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Mengrao Li
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Qixiao Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Lian Li
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Shufeng Ma
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, China
| | - Tao Huang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyang Zhao
- Department of Development, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Zhili Rong
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523058, China
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| |
Collapse
|
10
|
Ma S, Liao K, Li M, Wang X, Lv J, Zhang X, Huang H, Li L, Huang T, Guo X, Lin Y, Rong Z. Phase-separated DropCRISPRa platform for efficient gene activation in mammalian cells and mice. Nucleic Acids Res 2023; 51:5271-5284. [PMID: 37094074 PMCID: PMC10250237 DOI: 10.1093/nar/gkad301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) plays a critical role in regulating gene transcription via the formation of transcriptional condensates. However, LLPS has not been reported to be engineered as a tool to activate endogenous gene expression in mammalian cells or in vivo. Here, we developed a droplet-forming CRISPR (clustered regularly interspaced short palindromic repeats) gene activation system (DropCRISPRa) to activate transcription with high efficiency via combining the CRISPR-SunTag system with FETIDR-AD fusion proteins, which contain an N-terminal intrinsically disordered region (IDR) of a FET protein (FUS or TAF15) and a transcription activation domain (AD, VP64/P65/VPR). In this system, the FETIDR-AD fusion protein formed phase separation condensates at the target sites, which could recruit endogenous BRD4 and RNA polymerase II with an S2 phosphorylated C-terminal domain (CTD) to enhance transcription elongation. IDR-FUS9Y>S and IDR-FUSG156E, two mutants with deficient and aberrant phase separation respectively, confirmed that appropriate phase separation was required for efficient gene activation. Further, the DropCRISPRa system was compatible with a broad set of CRISPR-associated (Cas) proteins and ADs, including dLbCas12a, dAsCas12a, dSpCas9 and the miniature dUnCas12f1, and VP64, P65 and VPR. Finally, the DropCRISPRa system could activate target genes in mice. Therefore, this study provides a robust tool to activate gene expression for foundational research and potential therapeutics.
Collapse
Affiliation(s)
- Shufeng Ma
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen 518110, China
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Kaitong Liao
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Mengrao Li
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Xinlong Wang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Jie Lv
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Xin Zhang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
- Affiliated Dongguan Hospital, Southern Medical University, (Dongguan People's Hospital), Dongguan 523058, China
| | - Hongxin Huang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Lian Li
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Tao Huang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Xiaohua Guo
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen 518110, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| |
Collapse
|
11
|
Wu J, Tao Y, Deng D, Meng Z, Zhao Y. The applications of CRISPR/Cas-mediated genome editing in genetic hearing loss. Cell Biosci 2023; 13:93. [PMID: 37210555 DOI: 10.1186/s13578-023-01021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/25/2023] [Indexed: 05/22/2023] Open
Abstract
Hearing loss (HL) can be caused by a number of different genetic factors. Non-syndromic HL refers that HL occurs as an isolated symptom in an individual, whereas syndromic HL refers that HL is associated with other symptoms or abnormalities. To date, more than 140 genes have been identified as being associated with non-syndromic HL, and approximately 400 genetic syndromes can include HL as one of the clinical symptoms. However, no gene therapeutic approaches are currently available to restore or improve hearing. Therefore, there is an urgent necessity to elucidate the possible pathogenesis of specific mutations in HL-associated genes and to investigate the promising therapeutic strategies for genetic HL. The development of the CRISPR/Cas system has revolutionized the field of genome engineering, which has become an efficacious and cost-effective tool to foster genetic HL research. Moreover, several in vivo studies have demonstrated the therapeutic efficacy of the CRISPR/Cas-mediated treatments for specific genetic HL. In this review, we briefly introduce the progress in CRISPR/Cas technique as well as the understanding of genetic HL, and then we detail the recent achievements of CRISPR/Cas technique in disease modeling and therapeutic strategies for genetic HL. Furthermore, we discuss the challenges for the application of CRISPR/Cas technique in future clinical treatments.
Collapse
Affiliation(s)
- Junhao Wu
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Yong Tao
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Di Deng
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhaoli Meng
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China.
| | - Yu Zhao
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Department of Audiology and Speech Language Pathology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Li J, Liang Q, Zhou H, Zhou M, Huang H. Profiling the impact of the promoters on CRISPR-Cas12a system in human cells. Cell Mol Biol Lett 2023; 28:41. [PMID: 37198545 PMCID: PMC10190037 DOI: 10.1186/s11658-023-00454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
The plasmid vector platform is the most commonly used vector for the expression of the versatile CRISPR-Cas technique and the promoter is a crucial element for the expression vector, thus profiling the impact of the promoters on CRISPR editors provides the basic information for the gene-editing toolkits and can be a guideline for its design. Herein, we made a parallel comparison among four commonly used promoters (CAG, ~ 1700 bp; EF1a core, ~ 210 bp; CMV, ~ 500 bp; and PGK, ~ 500 bp) in CRISPR-Cas12a system in mammalian cells to explore the impact of promoters on this powerful tool. We found that without badly damaging targeting specificity, the CAG promoter-driving Cas12a editor exhibited the most active (efficiency takes as 100%, specificity index = ~ 75%) in genomic cleavage, multiplex editing, transcriptional activation, and base editing, followed by promoter CMV (efficiency = 70 ~ 90% (vs CAG), specificity index = ~ 78%), and then EF1a core and PGK (both efficiency = 40-60%, vs CAG) but with higher specificity (specificity index = ~ 84% and ~ 82%, respectively). Therefore, CAG is recommended in the CRISPR-Cas12a system for the applications that need a robust editing activity but without size limitation, CMV mostly can be an alternative for CAG when requiring a smaller space, EF1a is similar to PGK with relatively high specificity, but has a smaller size, thus is more suitable for in vivo therapeutic applications. The data outlined the properties of the widely used promoters in the CRISPR-Cas12a system, which can be a guide for its applications and can be a useful resource for the gene-editing field.
Collapse
Affiliation(s)
- Jinhe Li
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| | - Qinchun Liang
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
- Guangzhou Key Laboratory of Neuropathic Pain Mechanism at Spinal Cord Level, Guangzhou, 510630 China
| | - HuaPing Zhou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 China
| | - Ming Zhou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 China
| | - Hongxin Huang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 China
| |
Collapse
|
13
|
Fontana L, Alahouzou Z, Miccio A, Antoniou P. Epigenetic Regulation of β-Globin Genes and the Potential to Treat Hemoglobinopathies through Epigenome Editing. Genes (Basel) 2023; 14:genes14030577. [PMID: 36980849 PMCID: PMC10048329 DOI: 10.3390/genes14030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Beta-like globin gene expression is developmentally regulated during life by transcription factors, chromatin looping and epigenome modifications of the β-globin locus. Epigenome modifications, such as histone methylation/demethylation and acetylation/deacetylation and DNA methylation, are associated with up- or down-regulation of gene expression. The understanding of these mechanisms and their outcome in gene expression has paved the way to the development of new therapeutic strategies for treating various diseases, such as β-hemoglobinopathies. Histone deacetylase and DNA methyl-transferase inhibitors are currently being tested in clinical trials for hemoglobinopathies patients. However, these approaches are often uncertain, non-specific and their global effect poses serious safety concerns. Epigenome editing is a recently developed and promising tool that consists of a DNA recognition domain (zinc finger, transcription activator-like effector or dead clustered regularly interspaced short palindromic repeats Cas9) fused to the catalytic domain of a chromatin-modifying enzyme. It offers a more specific targeting of disease-related genes (e.g., the ability to reactivate the fetal γ-globin genes and improve the hemoglobinopathy phenotype) and it facilitates the development of scarless gene therapy approaches. Here, we summarize the mechanisms of epigenome regulation of the β-globin locus, and we discuss the application of epigenome editing for the treatment of hemoglobinopathies.
Collapse
Affiliation(s)
- Letizia Fontana
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Zoe Alahouzou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Correspondence: (A.M.); (P.A.)
| | - Panagiotis Antoniou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, 431 50 Gothenburg, Sweden
- Correspondence: (A.M.); (P.A.)
| |
Collapse
|
14
|
Kweon J, Jang AH, Kwon E, Kim U, Shin HR, See J, Jang G, Lee C, Koo T, Kim S, Kim Y. Targeted dual base editing with Campylobacter jejuni Cas9 by single AAV-mediated delivery. Exp Mol Med 2023; 55:377-384. [PMID: 36720917 PMCID: PMC9981745 DOI: 10.1038/s12276-023-00938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 02/02/2023] Open
Abstract
Various CRISPR‒Cas9 orthologs are used in genome engineering. One of the smallest Cas9 orthologs is cjCas9 derived from Campylobacter jejuni, which is a highly specific genome editing tool. Here, we developed cjCas9-based base editors including a cytosine base editor (cjCBEmax) and an adenine base editor (cjABE8e) that can successfully induce endogenous base substitutions by up to 91.2% at the HPD gene in HEK293T cells. Analysis of the base editing efficiency of 13 endogenous target sites showed that the active windows of cjCBEmax and cjABE8e are wider than those of spCas9-based base editors and that their specificities are slightly lower than that of cjCas9. Importantly, engineered cjCas9 and gRNA scaffolds can improve the base editing efficiency of cjABE8e by up to 6.4-fold at the HIF1A gene in HEK293T cells. Due to its small size, cjABE8e can be packaged in a single adeno-associated virus vector with two tandem arrays of gRNAs, and the delivery of the resulting AAV could introduce base substitutions at endogenous ANGPT2 and HPD target sites. Overall, our findings have expanded the potential of the use of base editors for in vivo or ex vivo therapeutic approaches.
Collapse
Affiliation(s)
- Jiyeon Kweon
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - An-Hee Jang
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Eunji Kwon
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ungi Kim
- Toolgen, Inc., Seoul, 08501, Republic of Korea
| | - Ha Rim Shin
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jieun See
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Gayoung Jang
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Chaeyeon Lee
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Taeyoung Koo
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | | | - Yongsub Kim
- Department of Biomedical Sciences, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
15
|
Ghosh A, Nadella N, Monaghan-Nichols AP, Chu XP. Gene Therapy as an Emerging Treatment for Scn2a Mutation-Induced Autism Spectrum Disorders. FUNDAMENTAL RESEARCH 2023. [DOI: 10.1016/j.fmre.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
16
|
Huang H, Lv W, Li J, Huang G, Tan Z, Hu Y, Ma S, Zhang X, Huang L, Lin Y. Comparison of DNA targeting CRISPR editors in human cells. Cell Biosci 2023; 13:11. [PMID: 36647130 PMCID: PMC9844007 DOI: 10.1186/s13578-023-00958-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Profiling and comparing the performance of current widely used DNA targeting CRISPR systems provide the basic information for the gene-editing toolkit and can be a useful resource for this field. In the current study, we made a parallel comparison between the recently reported miniature Cas12f1 (Un1Cas12f1 and AsCas12f1) and the widely used Cas12a and Cas9 nucleases in mammalian cells. RESULTS We found that as a CRISPRa activator, Un1Cas12f1 could induce gene expression with a comparable level to that of Cas12a and Cas9, while as a DNA cleavage editor, Cas12f1 exhibited similar properties to Cas12a, like high specificity and dominantly induced deletions over insertions, but with less activity. In contrast, wild-type SpCas9 showed the highest activity, lowest specificity, and induced balanced deletions and insertions. Thus, Cas12f1 is recommended for gene-activation-based applications, Cas12a is for therapy applications, and wild-type Cas9 is for in vitro and animal investigations. CONCLUSION The comparison provided the editing properties of the widely used DNA-targeting CRISPR systems in the gene-editing field.
Collapse
Affiliation(s)
- Hongxin Huang
- grid.284723.80000 0000 8877 7471Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China ,grid.284723.80000 0000 8877 7471Dermatology Hospital, Southern Medical University, Guangzhou, 510091 China ,grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 China
| | - Weiqi Lv
- grid.284723.80000 0000 8877 7471Dermatology Hospital, Southern Medical University, Guangzhou, 510091 China
| | - Jinhe Li
- grid.413107.0Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630 China
| | - Guanjie Huang
- grid.284723.80000 0000 8877 7471Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Zhihong Tan
- grid.284723.80000 0000 8877 7471Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Yongfei Hu
- grid.284723.80000 0000 8877 7471Dermatology Hospital, Southern Medical University, Guangzhou, 510091 China
| | - Shufeng Ma
- grid.284723.80000 0000 8877 7471Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China ,grid.488521.2Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518110 China
| | - Xin Zhang
- grid.284723.80000 0000 8877 7471Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China ,grid.440180.90000 0004 7480 2233Affiliated Dongguan Hospital, Southern Medical University, (Dongguan People’s Hospital), Dongguan, 523058 China
| | - Linxuan Huang
- grid.440180.90000 0004 7480 2233Affiliated Dongguan Hospital, Southern Medical University, (Dongguan People’s Hospital), Dongguan, 523058 China
| | - Ying Lin
- grid.284723.80000 0000 8877 7471Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China ,grid.284723.80000 0000 8877 7471Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
17
|
Lau CH, Huang S, Lam RHW, Tin C. PAM-flexible dual base editor-mediated random mutagenesis and self-activation strategies to improve CRISPRa potency. Mol Ther Methods Clin Dev 2022; 26:26-37. [PMID: 35755943 PMCID: PMC9198377 DOI: 10.1016/j.omtm.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 05/25/2022] [Indexed: 12/01/2022]
Abstract
VP64 is the smallest transactivation domain that can be packaged together with the sgRNA into a single adeno-associated virus (AAV) vector. However, VP64-based CRISPRa often exerts modest activation to the target gene when only one sgRNA is used. Herein, we used PAM-flexible dual base editor-mediated mutagenesis and self-activation strategies to derive VP64 variants with gain-of-function mutations. First, we generated an HEK293FT transgenic clone to stably expressing pTK-CRISPRa-GFP. The sgRNA of CRISPRa was designed to target the TK promoter, thereby allowing self-activation of CRISPRa-GFP. Base editors were then used to randomly mutagenesis VP64 in this transgenic cell. VP64 with enhanced potency would translate into increment of GFP fluorescence intensity, thereby allowing positive selection of the desired VP64 mutants. This strategy has enabled us to identify several VP64 variants that are more potent than the wild-type VP64. ΔCRISPRa derived from these VP64 variants also efficiently activated the endogenous promoter of anti-aging and longevity genes (KLOTHO, SIRT6, and NFE2L2) in human cells. Since the overall size of these ΔCRISPRa transgenes is not increased, it remains feasible for all-in-one AAV applications. The strategies described here can facilitate high-throughput screening of the desired protein variants and adapted to evolve any other effector domains.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biomedical Engineering, City University of Hong Kong, Room P6416, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Siping Huang
- Department of Biomedical Engineering, City University of Hong Kong, Room P6416, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Raymond H W Lam
- Department of Biomedical Engineering, City University of Hong Kong, Room P6416, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| | - Chung Tin
- Department of Biomedical Engineering, City University of Hong Kong, Room P6416, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
| |
Collapse
|
18
|
Lee JH, Oh HK, Choi BS, Lee HH, Lee KJ, Kim UG, Lee J, Lee H, Lee GS, Ahn SJ, Han JP, Kim S, Yeom SC, Song DW. Genome editing-mediated knock-in of therapeutic genes ameliorates the disease phenotype in a model of hemophilia. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:551-562. [PMID: 36090746 PMCID: PMC9403902 DOI: 10.1016/j.omtn.2022.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Abstract
Recently, clinical trials of adeno-associated virus-mediated replacement therapy have suggested long-term therapeutic effects for several genetic diseases of the liver, including hemophilia. However, there remain concerns regarding decreased therapeutic effects when the liver is regenerated or when physiological proliferation occurs. Although genome editing using the clustered regularly interspaced short palindromic repeats/Cas9 system provides an opportunity to solve this problem, low knock-in efficiency may limit its application for therapeutically relevant expression. Here, we identified a novel gene, APOC3, in which a strong promoter facilitated the expression of knocked-in genes in hepatocytes. We also investigated the effects of APOC3 editing using a small Cas9 protein derived from Campylobacter jejuni (CjCas9) in a hemophilic model. We demonstrated that adeno-associated virus-mediated delivery of CjCas9 and donor led to moderate levels of human factor 9 expression in APOC3-humanized mice. Moreover, knock-in-driven expression induced substantial recovery of clotting function in mice with hemophilia B. There was no evidence of off-target editing in vitro or in vivo. Collectively, our findings demonstrated therapeutically relevant expression using a precise and efficient APOC3-editing platform, providing insights into the development of further long-term therapeutics for diverse monogenic liver diseases.
Collapse
|
19
|
Luo Z, Dai W, Wang C, Ye Q, Zhou Q, Wan QL. Gene activation in Caenorhabditis elegans using the Campylobacter jejuni CRISPR-Cas9 feeding system. G3 (BETHESDA, MD.) 2022; 12:6563187. [PMID: 35377421 PMCID: PMC9157054 DOI: 10.1093/g3journal/jkac068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
Clustered regularly interspaced palindromic repeats-based activation system, a powerful genetic manipulation technology, can modulate endogenous gene transcription in various organisms through fusing nuclease-deficient Cas9 to transcriptional regulatory domains. At present, this clustered regularly interspaced palindromic repeats-based activation system has been applied to activate gene expression by microinjection manner in Caenorhabditis elegans. However, this complicated and time-consuming injection manner is not suitable for efficient and high-throughput gene regulation with clustered regularly interspaced palindromic repeats-Cas9 system. Here, we engineered a Campylobacter jejun clustered regularly interspaced palindromic repeats-Cas9-based gene activation system through bacteria feeding technique to delivering gene-specific sgRNA in C. elegans. It enables to activate various endogenous genes efficiently, as well as induce the corresponding phenotypes with a more efficient and labor-saving manner. Collectively, our results demonstrated that our novel dCjCas9-based activation feeding system holds great promise and potential in C. elegans.
Collapse
Affiliation(s)
- Zhenhuan Luo
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou 510632, China
| | - Wenyu Dai
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou 510632, China
| | - Chongyang Wang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou 510632, China
| | - Qunshan Ye
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou 510632, China
| | - Qinghua Zhou
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou 510632, China
| | - Qin-Li Wan
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Guangzhou 510632, China
| |
Collapse
|
20
|
Huang H, Huang G, Tan Z, Hu Y, Shan L, Zhou J, Zhang X, Ma S, Lv W, Huang T, Liu Y, Wang D, Zhao X, Lin Y, Rong Z. Engineered Cas12a-Plus nuclease enables gene editing with enhanced activity and specificity. BMC Biol 2022; 20:91. [PMID: 35468792 PMCID: PMC9040236 DOI: 10.1186/s12915-022-01296-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background The CRISPR-Cas12a (formerly Cpf1) system is a versatile gene-editing tool with properties distinct from the broadly used Cas9 system. Features such as recognition of T-rich protospacer-adjacent motif (PAM) and generation of sticky breaks, as well as amenability for multiplex editing in a single crRNA and lower off-target nuclease activity, broaden the targeting scope of available tools and enable more accurate genome editing. However, the widespread use of the nuclease for gene editing, especially in clinical applications, is hindered by insufficient activity and specificity despite previous efforts to improve the system. Currently reported Cas12a variants achieve high activity with a compromise of specificity. Here, we used structure-guided protein engineering to improve both editing efficiency and targeting accuracy of Acidaminococcus sp. Cas12a (AsCas12a) and Lachnospiraceae bacterium Cas12a (LbCas12a). Results We created new AsCas12a variant termed “AsCas12a-Plus” with increased activity (1.5~2.0-fold improvement) and specificity (reducing off-targets from 29 to 23 and specificity index increased from 92% to 94% with 33 sgRNAs), and this property was retained in multiplex editing and transcriptional activation. When used to disrupt the oncogenic BRAFV600E mutant, AsCas12a-Plus showed less off-target activity while maintaining comparable editing efficiency and BRAFV600E cancer cell killing. By introducing the corresponding substitutions into LbCas12a, we also generated LbCas12a-Plus (activity improved ~1.1-fold and off-targets decreased from 20 to 12 while specificity index increased from 78% to 89% with 15 sgRNAs), suggesting this strategy may be generally applicable across Cas12a orthologs. We compared Cas12a-Plus, other variants described in this study, and the reported enCas12a-HF, enCas12a, and Cas12a-ultra, and found that Cas12a-Plus outperformed other variants with a good balance for enhanced activity and improved specificity. Conclusions Our discoveries provide alternative AsCas12a and LbCas12a variants with high specificity and activity, which expand the gene-editing toolbox and can be more suitable for clinical applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01296-1.
Collapse
Affiliation(s)
- Hongxin Huang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Guanjie Huang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Zhihong Tan
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Yongfei Hu
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lin Shan
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Jiajian Zhou
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Xin Zhang
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Shufeng Ma
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Weiqi Lv
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Tao Huang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.,Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Yuchen Liu
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China
| | - Dong Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyang Zhao
- Department of Development, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China. .,Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zhili Rong
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China. .,Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, 510515, China. .,Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
21
|
Giehrl-Schwab J, Giesert F, Rauser B, Lao CL, Hembach S, Lefort S, Ibarra IL, Koupourtidou C, Luecken MD, Truong DJJ, Fischer-Sternjak J, Masserdotti G, Prakash N, Ninkovic J, Hölter SM, Vogt Weisenhorn DM, Theis FJ, Götz M, Wurst W. Parkinson's disease motor symptoms rescue by CRISPRa-reprogramming astrocytes into GABAergic neurons. EMBO Mol Med 2022; 14:e14797. [PMID: 35373464 PMCID: PMC9081909 DOI: 10.15252/emmm.202114797] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/09/2022] Open
Abstract
Direct reprogramming based on genetic factors resembles a promising strategy to replace lost cells in degenerative diseases such as Parkinson's disease. For this, we developed a knock‐in mouse line carrying a dual dCas9 transactivator system (dCAM) allowing the conditional in vivo activation of endogenous genes. To enable a translational application, we additionally established an AAV‐based strategy carrying intein‐split‐dCas9 in combination with activators (AAV‐dCAS). Both approaches were successful in reprogramming striatal astrocytes into induced GABAergic neurons confirmed by single‐cell transcriptome analysis of reprogrammed neurons in vivo. These GABAergic neurons functionally integrate into striatal circuits, alleviating voluntary motor behavior aspects in a 6‐OHDA Parkinson's disease model. Our results suggest a novel intervention strategy beyond the restoration of dopamine levels. Thus, the AAV‐dCAS approach might enable an alternative route for clinical therapies of Parkinson's disease.
Collapse
Affiliation(s)
- Jessica Giehrl-Schwab
- Institute of Developmental Genetics, Helmholtz Center Munich, Neuherberg, Germany.,Munich School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Center Munich, Neuherberg, Germany.,Munich School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Benedict Rauser
- Institute of Developmental Genetics, Helmholtz Center Munich, Neuherberg, Germany.,Munich School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Chu Lan Lao
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany.,Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universität (LMU), Planegg-Martinsried, Germany
| | - Sina Hembach
- Institute of Developmental Genetics, Helmholtz Center Munich, Neuherberg, Germany.,Munich School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Sandrine Lefort
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
| | - Ignacio L Ibarra
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Christina Koupourtidou
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany.,Department for Cell Biology and Anatomy, Biomedical Center, Ludwig-Maximilians-Universität (LMU), Planegg-Martinsried, Germany
| | - Malte Daniel Luecken
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Dong-Jiunn Jeffery Truong
- Institute of Developmental Genetics, Helmholtz Center Munich, Neuherberg, Germany.,Munich School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Judith Fischer-Sternjak
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany.,Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universität (LMU), Planegg-Martinsried, Germany
| | - Giacomo Masserdotti
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany.,Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universität (LMU), Planegg-Martinsried, Germany
| | - Nilima Prakash
- Laboratory of Applied Genetics and Stem Cell Biology, Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, Hamm, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany.,Department for Cell Biology and Anatomy, Biomedical Center, Ludwig-Maximilians-Universität (LMU), Planegg-Martinsried, Germany
| | - Sabine M Hölter
- Institute of Developmental Genetics, Helmholtz Center Munich, Neuherberg, Germany.,German Mouse Clinic, Helmholtz Center Munich, Neuherberg, Germany
| | - Daniela M Vogt Weisenhorn
- Institute of Developmental Genetics, Helmholtz Center Munich, Neuherberg, Germany.,Munich School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany.,Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany.,Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universität (LMU), Planegg-Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, Neuherberg, Germany.,Munich School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE) Site Munich, Munich, Germany
| |
Collapse
|
22
|
Das S, Bano S, Kapse P, Kundu GC. CRISPR based therapeutics: a new paradigm in cancer precision medicine. Mol Cancer 2022; 21:85. [PMID: 35337340 PMCID: PMC8953071 DOI: 10.1186/s12943-022-01552-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/24/2022] [Indexed: 02/08/2023] Open
Abstract
Background Clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) systems are the latest addition to the plethora of gene-editing tools. These systems have been repurposed from their natural counterparts by means of both guide RNA and Cas nuclease engineering. These RNA-guided systems offer greater programmability and multiplexing capacity than previous generation gene editing tools based on zinc finger nucleases and transcription activator like effector nucleases. CRISPR-Cas systems show great promise for individualization of cancer precision medicine. Main body The biology of Cas nucleases and dead Cas based systems relevant for in vivo gene therapy applications has been discussed. The CRISPR knockout, CRISPR activation and CRISPR interference based genetic screens which offer opportunity to assess functions of thousands of genes in massively parallel assays have been also highlighted. Single and combinatorial gene knockout screens lead to identification of drug targets and synthetic lethal genetic interactions across different cancer phenotypes. There are different viral and non-viral (nanoformulation based) modalities that can carry CRISPR-Cas components to different target organs in vivo. Conclusion The latest developments in the field in terms of optimization of performance of the CRISPR-Cas elements should fuel greater application of the latter in the realm of precision medicine. Lastly, how the already available knowledge can help in furtherance of use of CRISPR based tools in personalized medicine has been discussed.
Collapse
Affiliation(s)
- Sumit Das
- National Centre for Cell Science, S P Pune University Campus, Pune, 411007, India
| | - Shehnaz Bano
- National Centre for Cell Science, S P Pune University Campus, Pune, 411007, India
| | - Prachi Kapse
- School of Basic Medical Sciences, S P Pune University, Pune, 411007, India
| | - Gopal C Kundu
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed To Be University, Bhubaneswar, 751024, India. .,School of Biotechnology, KIIT Deemed To Be University, Bhubaneswar, 751024, India.
| |
Collapse
|
23
|
Ma S, Lv J, Feng Z, Rong Z, Lin Y. Get ready for the CRISPR/Cas system: A beginner's guide to the engineering and design of guide RNAs. J Gene Med 2021; 23:e3377. [PMID: 34270141 DOI: 10.1002/jgm.3377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) system is a state-of-the-art tool for versatile genome editing that has advanced basic research dramatically, with great potential for clinic applications. The system consists of two key molecules: a CRISPR-associated (Cas) effector nuclease and a single guide RNA. The simplicity of the system has enabled the development of a wide spectrum of derivative methods. Almost any laboratory can utilize these methods, although new users may initially be confused when faced with the potentially overwhelming abundance of choices. Cas nucleases and their engineering have been systematically reviewed previously. In the present review, we discuss single guide RNA engineering and design strategies that facilitate more efficient, more specific and safer gene editing.
Collapse
Affiliation(s)
- Shufeng Ma
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jie Lv
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
| | - Zinan Feng
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Kühn R. Genome engineering in rodents - status quo and perspectives. Lab Anim 2021; 56:83-87. [PMID: 34674587 DOI: 10.1177/00236772211051842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The introduction of the CRISPR-Cas9 system in 2013 has revolutionized experimental genetics in mice and rats. This commentary gives an overview on the use of CRISPR either for gene editing in the germline or for editing and beyond editing in somatic cells. Future perspectives are opened by emerging CRISPR technologies that could enable genome engineering at larger scale.
Collapse
Affiliation(s)
- Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Germany
| |
Collapse
|
25
|
Zhang X, Lv S, Luo Z, Hu Y, Peng X, Lv J, Zhao S, Feng J, Huang G, Wan QL, Liu J, Huang H, Luan B, Wang D, Zhao X, Lin Y, Zhou Q, Zhang ZN, Rong Z. Erratum for article 'MiniCAFE, a CRISPR/Cas9-based compact and potent transcriptional activator, elicits gene expression invivo'. Nucleic Acids Res 2021; 49:6002. [PMID: 34009338 PMCID: PMC8191760 DOI: 10.1093/nar/gkab365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Xin Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sihan Lv
- Department of Endocrinology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Zhenhuan Luo
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yongfei Hu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Xin Peng
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jie Lv
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shanshan Zhao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianqi Feng
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guanjie Huang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qin-Li Wan
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Jun Liu
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Hongxin Huang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Bing Luan
- Department of Endocrinology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Xiaoyang Zhao
- Department of Development, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qinghua Zhou
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Zhen-Ning Zhang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| |
Collapse
|