1
|
Wu S, Zhang S, Liu CM, Fernie AR, Yan S. Recent Advances in Mass Spectrometry-Based Protein Interactome Studies. Mol Cell Proteomics 2024; 24:100887. [PMID: 39608603 DOI: 10.1016/j.mcpro.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024] Open
Abstract
The foundation of all biological processes is the network of diverse and dynamic protein interactions with other molecules in cells known as the interactome. Understanding the interactome is crucial for elucidating molecular mechanisms but has been a longstanding challenge. Recent developments in mass spectrometry (MS)-based techniques, including affinity purification, proximity labeling, cross-linking, and co-fractionation mass spectrometry (MS), have significantly enhanced our abilities to study the interactome. They do so by identifying and quantifying protein interactions yielding profound insights into protein organizations and functions. This review summarizes recent advances in MS-based interactomics, focusing on the development of techniques that capture protein-protein, protein-metabolite, and protein-nucleic acid interactions. Additionally, we discuss how integrated MS-based approaches have been applied to diverse biological samples, focusing on significant discoveries that have leveraged our understanding of cellular functions. Finally, we highlight state-of-the-art bioinformatic approaches for predictions of interactome and complex modeling, as well as strategies for combining experimental interactome data with computation methods, thereby enhancing the ability of MS-based techniques to identify protein interactomes. Indeed, advances in MS technologies and their integrations with computational biology provide new directions and avenues for interactome research, leveraging new insights into mechanisms that govern the molecular architecture of living cells and, thereby, our comprehension of biological processes.
Collapse
Affiliation(s)
- Shaowen Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, New York, USA
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Alisdair R Fernie
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Shijuan Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| |
Collapse
|
2
|
Dapkūnas J, Timinskas A, Olechnovič K, Tomkuvienė M, Venclovas Č. PPI3D: a web server for searching, analyzing and modeling protein-protein, protein-peptide and protein-nucleic acid interactions. Nucleic Acids Res 2024; 52:W264-W271. [PMID: 38619046 PMCID: PMC11223826 DOI: 10.1093/nar/gkae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024] Open
Abstract
Structure-resolved protein interactions with other proteins, peptides and nucleic acids are key for understanding molecular mechanisms. The PPI3D web server enables researchers to query preprocessed and clustered structural data, analyze the results and make homology-based inferences for protein interactions. PPI3D offers three interaction exploration modes: (i) all interactions for proteins homologous to the query, (ii) interactions between two proteins or their homologs and (iii) interactions within a specific PDB entry. The server allows interactive analysis of the identified interactions in both summarized and detailed manner. This includes protein annotations, structures, the interface residues and the corresponding contact surface areas. In addition, users can make inferences about residues at the interaction interface for the query protein(s) from the sequence alignments and homology models. The weekly updated PPI3D database includes all the interaction interfaces and binding sites from PDB, clustered based on both protein sequence and structural similarity, yielding non-redundant datasets without loss of alternative interaction modes. Consequently, the PPI3D users avoid being flooded with redundant information, a typical situation for intensely studied proteins. Furthermore, PPI3D provides a possibility to download user-defined sets of interaction interfaces and analyze them locally. The PPI3D web server is available at https://bioinformatics.lt/ppi3d.
Collapse
Affiliation(s)
- Justas Dapkūnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Albertas Timinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Kliment Olechnovič
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
| | - Miglė Tomkuvienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| |
Collapse
|
3
|
Reys V, Labesse G. SLiMAn: An Integrative Web Server for Exploring Short Linear Motif-Mediated Interactions in Interactomes. J Proteome Res 2022; 21:1654-1663. [PMID: 35642445 DOI: 10.1021/acs.jproteome.1c00964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cells express thousands of macromolecules, and their functioning relies on multiple networks of intermolecular interactions. These interactions can be experimentally determined at different spatial and temporal resolutions. But, physical interfaces are not often delineated directly, especially in high-throughput experiments. A large fraction of protein-protein interactions involves domain and so-called SLiMs (for Short Linear Motifs). Often, SLiMs lie in disordered regions or loops. Their small size, limited sequence conservation, and loosely folded nature prevent straightforward detection. SLiMAn (Short Linear Motif Analysis), a new web server, is provided to help thorough analysis of interactomics data. From a list of putative interactants (e.g., output from an interactomics study), SLiMs (from ELM) and SLiM-recognition domains (from Pfam) are extracted, and putative pairings are displayed. Predicted results can be filtered using motif E-values, IUPred2 scores, or BioGRID interaction matches. When structural templates are available, a given SLiM and its recognition domain can be modeled using SCWRL. We illustrate here the use of SLiMAn on distinct examples, including one real-case study. We oversee wide-range applications for SLiMAn in the context of the massive analysis of protein-protein interactions. This new web server is made freely available at https://sliman.cbs.cnrs.fr.
Collapse
Affiliation(s)
- Victor Reys
- Centre de Biologie Structurale, CNRS, INSERM, Univ. Montpellier, Montpellier 34090, France
| | - Gilles Labesse
- Centre de Biologie Structurale, CNRS, INSERM, Univ. Montpellier, Montpellier 34090, France
| |
Collapse
|
4
|
Ludwiczak J, Winski A, Dunin-Horkawicz S. Localpdb- a Python package to manage protein structures and their annotations. Bioinformatics 2022; 38:2633-2635. [PMID: 35199148 PMCID: PMC9048648 DOI: 10.1093/bioinformatics/btac121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/07/2022] [Accepted: 02/21/2022] [Indexed: 12/02/2022] Open
Abstract
Motivation The wealth of protein structures collected in the Protein Data Bank enabled large-scale studies of their function and evolution. Such studies, however, require the generation of customized datasets combining the structural data with miscellaneous accessory resources providing functional, taxonomic and other annotations. Unfortunately, the functionality of currently available tools for the creation of such datasets is limited and their usage frequently requires laborious surveying of various data sources and resolving inconsistencies between their versions. Results To address this problem, we developed localpdb, a versatile Python library for the management of protein structures and their annotations. The library features a flexible plugin system enabling seamless unification of the structural data with diverse auxiliary resources, full version control and powerful functionality of creating highly customized datasets. The localpdb can be used in a wide range of bioinformatic tasks, in particular those involving large-scale protein structural analyses and machine learning. Availability and implementation localpdb is freely available at https://github.com/labstructbioinf/localpdb. Documentation along with the usage examples can be accessed at https://labstructbioinf.github.io/localpdb/.
Collapse
Affiliation(s)
- Jan Ludwiczak
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, Warsaw, 02-097, Poland
| | - Aleksander Winski
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, Warsaw, 02-097, Poland
| | - Stanislaw Dunin-Horkawicz
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, Warsaw, 02-097, Poland
| |
Collapse
|
5
|
Dey S, Prilusky J, Levy ED. QSalignWeb: A Server to Predict and Analyze Protein Quaternary Structure. Front Mol Biosci 2022; 8:787510. [PMID: 35071324 PMCID: PMC8769216 DOI: 10.3389/fmolb.2021.787510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
The identification of physiologically relevant quaternary structures (QSs) in crystal lattices is challenging. To predict the physiological relevance of a particular QS, QSalign searches for homologous structures in which subunits interact in the same geometry. This approach proved accurate but was limited to structures already present in the Protein Data Bank (PDB). Here, we introduce a webserver (www.QSalign.org) allowing users to submit homo-oligomeric structures of their choice to the QSalign pipeline. Given a user-uploaded structure, the sequence is extracted and used to search homologs based on sequence similarity and PFAM domain architecture. If structural conservation is detected between a homolog and the user-uploaded QS, physiological relevance is inferred. The web server also generates alternative QSs with PISA and processes them the same way as the query submitted to widen the predictions. The result page also shows representative QSs in the protein family of the query, which is informative if no QS conservation was detected or if the protein appears monomeric. These representative QSs can also serve as a starting point for homology modeling.
Collapse
Affiliation(s)
- Sucharita Dey
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jaime Prilusky
- Department of Life Sciences and Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Emmanuel D. Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Quignot C, Postic G, Bret H, Rey J, Granger P, Murail S, Chacón P, Andreani J, Tufféry P, Guerois R. InterEvDock3: a combined template-based and free docking server with increased performance through explicit modeling of complex homologs and integration of covariation-based contact maps. Nucleic Acids Res 2021; 49:W277-W284. [PMID: 33978743 PMCID: PMC8265070 DOI: 10.1093/nar/gkab358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
The InterEvDock3 protein docking server exploits the constraints of evolution by multiple means to generate structural models of protein assemblies. The server takes as input either several sequences or 3D structures of proteins known to interact. It returns a set of 10 consensus candidate complexes, together with interface predictions to guide further experimental validation interactively. Three key novelties were implemented in InterEvDock3 to help obtain more reliable models: users can (i) generate template-based structural models of assemblies using close and remote homologs of known 3D structure, detected through an automated search protocol, (ii) select the assembly models most consistent with contact maps from external methods that implement covariation-based contact prediction with or without deep learning and (iii) exploit a novel coevolution-based scoring scheme at atomic level, which leads to significantly higher free docking success rates. The performance of the server was validated on two large free docking benchmark databases, containing respectively 230 unbound targets (Weng dataset) and 812 models of unbound targets (PPI4DOCK dataset). Its effectiveness has also been proven on a number of challenging examples. The InterEvDock3 web interface is available at http://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock3/.
Collapse
Affiliation(s)
- Chloé Quignot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Guillaume Postic
- Université de Paris, CNRS UMR 8251, INSERM U1133, RPBS, Paris 75205, France
| | - Hélène Bret
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Julien Rey
- Université de Paris, CNRS UMR 8251, INSERM U1133, RPBS, Paris 75205, France
| | - Pierre Granger
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Samuel Murail
- Université de Paris, CNRS UMR 8251, INSERM U1133, RPBS, Paris 75205, France
| | - Pablo Chacón
- Department of Biological Physical Chemistry, Rocasolano Institute of Physical Chemistry C.S.I.C, Madrid, Spain
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Pierre Tufféry
- Université de Paris, CNRS UMR 8251, INSERM U1133, RPBS, Paris 75205, France
| | - Raphaël Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|