1
|
Wu LY, Xu Y, Yu XW. Efficient CRISPR-mediated C-to-T base editing in Komagataella phaffii. Biotechnol J 2024; 19:e2400115. [PMID: 38987223 DOI: 10.1002/biot.202400115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024]
Abstract
The nonconventional methylotrophic yeast Komagataella phaffii is widely applied in the production of industrial enzymes, pharmaceutical proteins, and various high-value chemicals. The development of robust and versatile genome editing tools for K. phaffii is crucial for the design of increasingly advanced cell factories. Here, we first developed a base editing method for K. phaffii based on the CRISPR-nCas9 system. We engineered 24 different base editor constructs, using a variety of promoters and cytidine deaminases (CDAs). The optimal base editor (PAOX2*-KpA3A-nCas9-KpUGI-DAS1TT) comprised a truncated AOX2 promoter (PAOX2*), a K. phaffii codon-optimized human APOBEC3A CDA (KpA3A), human codon-optimized nCas9 (D10A), and a K. phaffii codon-optimized uracil glycosylase inhibitor (KpUGI). This optimal base editor efficiently performed C-to-T editing in K. phaffii, with single-, double-, and triple-locus editing efficiencies of up to 96.0%, 65.0%, and 5.0%, respectively, within a 7-nucleotide window from C-18 to C-12. To expand the targetable genomic region, we also replaced nCas9 in the optimal base editor with nSpG and nSpRy, and achieved 50.0%-60.0% C-to-T editing efficiency for NGN-protospacer adjacent motif (PAM) sites and 20.0%-93.2% C-to-T editing efficiency for NRN-PAM sites, respectively. Therefore, these constructed base editors have emerged as powerful tools for gene function research, metabolic engineering, genetic improvement, and functional genomics research in K. phaffii.
Collapse
Affiliation(s)
- Ling-Yu Wu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Xiao-Wei Yu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Hao W, Cui W, Liu Z, Suo F, Wu Y, Han L, Zhou Z. A New-Generation Base Editor with an Expanded Editing Window for Microbial Cell Evolution In Vivo Based on CRISPR‒Cas12b Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309767. [PMID: 38602436 PMCID: PMC11165516 DOI: 10.1002/advs.202309767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/07/2024] [Indexed: 04/12/2024]
Abstract
Base editors (BEs) are widely used as revolutionary genome manipulation tools for cell evolution. To screen the targeted individuals, it is often necessary to expand the editing window to ensure highly diverse variant library. However, current BEs suffer from a limited editing window of 5-6 bases, corresponding to only 2-3 amino acids. Here, by engineering the CRISPR‒Cas12b, the study develops dCas12b-based CRISPRi system, which can efficiently repress gene expression by blocking the initiation and elongation of gene transcription. Further, based on dCas12b, a new-generation of BEs with an expanded editing window is established, covering the entire protospacer or more. The expanded editing window results from the smaller steric hindrance compared with other Cas proteins. The universality of the new BE is successfully validated in Bacillus subtilis and Escherichia coli. As a proof of concept, a spectinomycin-resistant E. coli strain (BL21) and a 6.49-fold increased protein secretion efficiency in E. coli JM109 are successfully obtained by using the new BE. The study, by tremendously expanding the editing window of BEs, increased the capacity of the variant library exponentially, greatly increasing the screening efficiency for microbial cell evolution.
Collapse
Affiliation(s)
- Wenliang Hao
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of BiotechnologyJiangnan University1800 Lihu AvenueWuxi214122China
| | - Wenjing Cui
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of BiotechnologyJiangnan University1800 Lihu AvenueWuxi214122China
| | - Zhongmei Liu
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of BiotechnologyJiangnan University1800 Lihu AvenueWuxi214122China
| | - Feiya Suo
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of BiotechnologyJiangnan University1800 Lihu AvenueWuxi214122China
| | - Yaokang Wu
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of BiotechnologyJiangnan University1800 Lihu AvenueWuxi214122China
- Science Center for Future FoodsJiangnan UniversityWuxi214122China
| | - Laichuang Han
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of BiotechnologyJiangnan University1800 Lihu AvenueWuxi214122China
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of BiotechnologyJiangnan University1800 Lihu AvenueWuxi214122China
| |
Collapse
|
3
|
Wu Y, Li Y, Liu Y, Xiu X, Liu J, Zhang L, Li J, Du G, Lv X, Chen J, Ledesma-Amaro R, Liu L. Multiplexed in-situ mutagenesis driven by a dCas12a-based dual-function base editor. Nucleic Acids Res 2024; 52:4739-4755. [PMID: 38567723 PMCID: PMC11077070 DOI: 10.1093/nar/gkae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 05/09/2024] Open
Abstract
Mutagenesis driving genetic diversity is vital for understanding and engineering biological systems. However, the lack of effective methods to generate in-situ mutagenesis in multiple genomic loci combinatorially limits the study of complex biological functions. Here, we design and construct MultiduBE, a dCas12a-based multiplexed dual-function base editor, in an all-in-one plasmid for performing combinatorial in-situ mutagenesis. Two synthetic effectors, duBE-1a and duBE-2b, are created by amalgamating the functionalities of cytosine deaminase (from hAPOBEC3A or hAID*Δ ), adenine deaminase (from TadA9), and crRNA array processing (from dCas12a). Furthermore, introducing the synthetic separator Sp4 minimizes interference in the crRNA array, thereby facilitating multiplexed in-situ mutagenesis in both Escherichia coli and Bacillus subtilis. Guided by the corresponding crRNA arrays, MultiduBE is successfully employed for cell physiology reprogramming and metabolic regulation. A novel mutation conferring streptomycin resistance has been identified in B. subtilis and incorporated into the mutant strains with multiple antibiotic resistance. Moreover, surfactin and riboflavin titers of the combinatorially mutant strains improved by 42% and 15-fold, respectively, compared with the control strains with single gene mutation. Overall, MultiduBE provides a convenient and efficient way to perform multiplexed in-situ mutagenesis.
Collapse
Affiliation(s)
- Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xiang Xiu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jiaheng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Linpei Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Gawlitt S, Collins SP, Yu Y, Blackman SA, Barquist L, Beisel CL. Expanding the flexibility of base editing for high-throughput genetic screens in bacteria. Nucleic Acids Res 2024; 52:4079-4097. [PMID: 38499498 DOI: 10.1093/nar/gkae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Genome-wide screens have become powerful tools for elucidating genotype-to-phenotype relationships in bacteria. Of the varying techniques to achieve knockout and knockdown, CRISPR base editors are emerging as promising options. However, the limited number of available, efficient target sites hampers their use for high-throughput screening. Here, we make multiple advances to enable flexible base editing as part of high-throughput genetic screening in bacteria. We first co-opt the Streptococcus canis Cas9 that exhibits more flexible protospacer-adjacent motif recognition than the traditional Streptococcus pyogenes Cas9. We then expand beyond introducing premature stop codons by mutating start codons. Next, we derive guide design rules by applying machine learning to an essentiality screen conducted in Escherichia coli. Finally, we rescue poorly edited sites by combining base editing with Cas9-induced cleavage of unedited cells, thereby enriching for intended edits. The efficiency of this dual system was validated through a conditional essentiality screen based on growth in minimal media. Overall, expanding the scope of genome-wide knockout screens with base editors could further facilitate the investigation of new gene functions and interactions in bacteria.
Collapse
Affiliation(s)
- Sandra Gawlitt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Scott P Collins
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Yanying Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Samuel A Blackman
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
- Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
5
|
Teng Y, Jiang T, Yan Y. The expanded CRISPR toolbox for constructing microbial cell factories. Trends Biotechnol 2024; 42:104-118. [PMID: 37500408 PMCID: PMC10808275 DOI: 10.1016/j.tibtech.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Microbial cell factories (MCFs) convert low-cost carbon sources into valuable compounds. The CRISPR/Cas9 system has revolutionized MCF construction as a remarkable genome editing tool with unprecedented programmability. Recently, the CRISPR toolbox has been significantly expanded through the exploration of new CRISPR systems, the engineering of Cas effectors, and the incorporation of other effectors, enabling multi-level regulation and gene editing free of double-strand breaks. This expanded CRISPR toolbox powerfully promotes MCF construction by facilitating pathway construction, enzyme engineering, flux redistribution, and metabolic burden control. In this article, we summarize different CRISPR tool designs and their applications in MCF construction for gene editing, transcriptional regulation, and enzyme modulation. Finally, we also discuss future perspectives for the development and application of the CRISPR toolbox.
Collapse
Affiliation(s)
- Yuxi Teng
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
6
|
Tian R, Zhao R, Guo H, Yan K, Wang C, Lu C, Lv X, Li J, Liu L, Du G, Chen J, Liu Y. Engineered bacterial orthogonal DNA replication system for continuous evolution. Nat Chem Biol 2023; 19:1504-1512. [PMID: 37443393 DOI: 10.1038/s41589-023-01387-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Continuous evolution can generate biomolecules for synthetic biology and enable evolutionary investigation. The orthogonal DNA replication system (OrthoRep) in yeast can efficiently mutate long DNA fragments in an easy-to-operate manner. However, such a system is lacking in bacteria. Therefore, we developed a bacterial orthogonal DNA replication system (BacORep) for continuous evolution. We achieved this by harnessing the temperate phage GIL16 DNA replication machinery in Bacillus thuringiensis with an engineered error-prone orthogonal DNA polymerase. BacORep introduces all 12 types of nucleotide substitution in 15-kilobase genes on orthogonally replicating linear plasmids with a 6,700-fold higher mutation rate than that of the host genome, the mutation rate of which is unchanged. Here we demonstrate the utility of BacORep-based continuous evolution by generating strong promoters applicable to model bacteria, Bacillus subtilis and Escherichia coli, and achieving a 7.4-fold methanol assimilation increase in B. thuringiensis. BacORep is a powerful tool for continuous evolution in prokaryotic cells.
Collapse
Affiliation(s)
- Rongzhen Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Runzhi Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Haoyu Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Kun Yan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Chenyun Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Cheng Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, China.
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
7
|
Lv X, Li Y, Xiu X, Liao C, Xu Y, Liu Y, Li J, Du G, Liu L. CRISPR genetic toolkits of classical food microorganisms: Current state and future prospects. Biotechnol Adv 2023; 69:108261. [PMID: 37741424 DOI: 10.1016/j.biotechadv.2023.108261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Production of food-related products using microorganisms in an environmentally friendly manner is a crucial solution to global food safety and environmental pollution issues. Traditional microbial modification methods rely on artificial selection or natural mutations, which require time for repeated screening and reproduction, leading to unstable results. Therefore, it is imperative to develop rapid, efficient, and precise microbial modification technologies. This review summarizes recent advances in the construction of gene editing and metabolic regulation toolkits based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR-Cas) systems and their applications in reconstructing food microorganism metabolic networks. The development and application of gene editing toolkits from single-site gene editing to multi-site and genome-scale gene editing was also introduced. Moreover, it presented a detailed introduction to CRISPR interference, CRISPR activation, and logic circuit toolkits for metabolic network regulation. Moreover, the current challenges and future prospects for developing CRISPR genetic toolkits were also discussed.
Collapse
Affiliation(s)
- Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xiang Xiu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Chao Liao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yameng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Liu Z, Chen S, Wu J. Advances in ultrahigh-throughput screening technologies for protein evolution. Trends Biotechnol 2023; 41:1168-1181. [PMID: 37088569 DOI: 10.1016/j.tibtech.2023.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 04/25/2023]
Abstract
Inspired by natural evolution, directed evolution randomly mutates the gene of interest through artificial evolution conditions with variants being screened for the required properties. Directed evolution is vital to the enhancement of protein properties and comprises the construction of libraries with considerable diversity as well as screening methods with sufficient efficiency as key steps. Owing to the various characteristics of proteins, specific methods are urgently needed for library screening, which is one of the main limiting factors in accelerating evolution. This review initially organizes the principles of ultrahigh-throughput screening from the perspective of protein properties. It then provides a comprehensive introduction to the latest progress and future trends in ultrahigh-throughput screening technologies for directed evolution.
Collapse
Affiliation(s)
- Zhanzhi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
9
|
Qiu Y, Lei P, Wang R, Sun L, Luo Z, Li S, Xu H. Kluyveromyces as promising yeast cell factories for industrial bioproduction: From bio-functional design to applications. Biotechnol Adv 2023; 64:108125. [PMID: 36870581 DOI: 10.1016/j.biotechadv.2023.108125] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
As the two most widely used Kluyveromyces yeast, Kluyveromyces marxianus and K. lactis have gained increasing attention as microbial chassis in biocatalysts, biomanufacturing and the utilization of low-cost raw materials owing to their high suitability to these applications. However, due to slow progress in the development of molecular genetic manipulation tools and synthetic biology strategies, Kluyveromyces yeast cell factories as biological manufacturing platforms have not been fully developed. In this review, we provide a comprehensive overview of the attractive characteristics and applications of Kluyveromyces cell factories, with special emphasis on the development of molecular genetic manipulation tools and systems engineering strategies for synthetic biology. In addition, future avenues in the development of Kluyveromyces cell factories for the utilization of simple carbon compounds as substrates, the dynamic regulation of metabolic pathways, and for rapid directed evolution of robust strains are proposed. We expect that more synthetic systems, synthetic biology tools and metabolic engineering strategies will adapt to and optimize for Kluyveromyces cell factories to achieve green biofabrication of multiple products with higher efficiency.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhengshan Luo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
10
|
Li C, Wang L, Cseke LJ, Vasconcelos F, Huguet-Tapia JC, Gassmann W, Pauwels L, White FF, Dong H, Yang B. Efficient CRISPR-Cas9 based cytosine base editors for phytopathogenic bacteria. Commun Biol 2023; 6:56. [PMID: 36646768 PMCID: PMC9842757 DOI: 10.1038/s42003-023-04451-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Phytopathogenic bacteria play important roles in plant productivity, and developments in gene editing have potential for enhancing the genetic tools for the identification of critical genes in the pathogenesis process. CRISPR-based genome editing variants have been developed for a wide range of applications in eukaryotes and prokaryotes. However, the unique mechanisms of different hosts restrict the wide adaptation for specific applications. Here, CRISPR-dCas9 (dead Cas9) and nCas9 (Cas9 nickase) deaminase vectors were developed for a broad range of phytopathogenic bacteria. A gene for a dCas9 or nCas9, cytosine deaminase CDA1, and glycosylase inhibitor fusion protein (cytosine base editor, or CBE) was applied to base editing under the control of different promoters. Results showed that the RecA promoter led to nearly 100% modification of the target region. When residing on the broad host range plasmid pHM1, CBERecAp is efficient in creating base edits in strains of Xanthomonas, Pseudomonas, Erwinia and Agrobacterium. CBE based on nCas9 extended the editing window and produced a significantly higher editing rate in Pseudomonas. Strains with nonsynonymous mutations in test genes displayed expected phenotypes. By multiplexing guide RNA genes, the vectors can modify up to four genes in a single round of editing. Whole-genome sequencing of base-edited isolates of Xanthomonas oryzae pv. oryzae revealed guide RNA-independent off-target mutations. Further modifications of the CBE, using a CDA1 variant (CBERecAp-A) reduced off-target effects, providing an improved editing tool for a broad group of phytopathogenic bacteria.
Collapse
Affiliation(s)
- Chenhao Li
- grid.134936.a0000 0001 2162 3504Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri USA ,grid.27871.3b0000 0000 9750 7019Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu P. R. China
| | - Longfei Wang
- grid.134936.a0000 0001 2162 3504Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri USA
| | - Leland J. Cseke
- grid.134936.a0000 0001 2162 3504Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri USA
| | - Fernanda Vasconcelos
- grid.134936.a0000 0001 2162 3504Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri USA
| | - Jose Carlos Huguet-Tapia
- grid.15276.370000 0004 1936 8091Department of Plant Pathology, University of Florida, Gainesville, Florida USA
| | - Walter Gassmann
- grid.134936.a0000 0001 2162 3504Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri USA
| | - Laurens Pauwels
- grid.5342.00000 0001 2069 7798Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium ,grid.511033.5Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Frank F. White
- grid.15276.370000 0004 1936 8091Department of Plant Pathology, University of Florida, Gainesville, Florida USA
| | - Hansong Dong
- grid.27871.3b0000 0000 9750 7019Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu P. R. China
| | - Bing Yang
- grid.134936.a0000 0001 2162 3504Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri USA ,grid.34424.350000 0004 0466 6352Donald Danforth Plant Science Center, St. Louis, Missouri USA
| |
Collapse
|
11
|
Liu Y, Liu Y, Zheng P, Wang Y, Wang M. Cytosine Base Editing in Bacteria. Methods Mol Biol 2023; 2606:219-231. [PMID: 36592319 DOI: 10.1007/978-1-0716-2879-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Base editing is a new genome editing technology that enables DNA base mutations without requiring double-stranded DNA backbone cleavage or a donor template. It has been widely used for genome engineering of eukaryotic and prokaryotic microorganisms. In this chapter, we describe a routine protocol for cytosine base editing in two model bacteria Corynebacterium glutamicum and Bacillus subtilis. The protocol can be adapted to base editing in other bacteria with modifications.
Collapse
Affiliation(s)
- Ye Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yang Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| |
Collapse
|
12
|
Yu X, Li S, Feng H, Liao X, Xing XH, Bai Z, Liu X, Zhang C. CRISPRi-microfluidics screening enables genome-scale target identification for high-titer protein production and secretion. Metab Eng 2023; 75:192-204. [PMID: 36572334 DOI: 10.1016/j.ymben.2022.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022]
Abstract
Genome-scale target identification promises to guide microbial cell factory engineering for higher-titer production of biomolecules such as recombinant proteins (r-protein), but challenges remain due to the need not only for comprehensive genotypic perturbation but also in conjunction with high-throughput phenotypic screening strategies. Here, we developed a CRISPRi-microfluidics screening platform to systematically identify crucial gene targets that can be engineered to enhance r-protein secretion in Corynebacterium glutamicum. We created a CRISPR interference (CRISPRi) library containing 46,549 single-guide RNAs, where we aimed to unbiasedly target all genes for repression. Meanwhile, we developed a highly efficient droplet-based microfluidics system integrating the FlAsH-tetracysteine assay that enables screening of millions of strains to identify potential knockdowns conducive to nanobody VHH secretion. Among our highest-ranking candidates are a slew of previously unknown targets involved in transmembrane transport, amino-acid metabolism and redox regulation. Guided by these findings, we eventually constructed a hyperproducer for multiple proteins via combinatorial engineering of redox-response transcription factors. As the near-universal applicability of CRISPRi technology and the FlAsH-based screening platform, this procedure might be expanded to include a varied variety of microbial species and recombinant proteins.
Collapse
Affiliation(s)
- Xinyu Yu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shuang Li
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Huibao Feng
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xihao Liao
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xin-Hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Zhonghu Bai
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiuxia Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Hao W, Cui W, Suo F, Han L, Cheng Z, Zhou Z. Construction and application of an efficient dual-base editing platform for Bacillus subtilis evolution employing programmable base conversion. Chem Sci 2022; 13:14395-14409. [PMID: 36545152 PMCID: PMC9749471 DOI: 10.1039/d2sc05824c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022] Open
Abstract
The functionally evolved bacterial chassis is of great importance to manufacture a group of assorted high value-added chemicals, from small molecules to biologically active macromolecules. However, the current evolution frameworks are less efficienct in generating in vivo genomic diversification because of insufficient tunability, rendering limited evolution spacing for chassis. Here, an engineered genomic diversification platform (CRISPR-ABE8e-CDA-nCas9) leveraging a programmable dual-deaminases base editor was fabricated for rapidly evolving bacterial chassis. The dual-base editor was constructed by reprogramming the CRISPR array, nCas9, and cytidine and adenosine deaminase, enabling single or multiple base conversion at the genomic scale by simultaneous C-to-T and A-to-G conversion in vivo. Employing titration of the Cas-deaminase fusion protein, the platform enabled editing any pre-defined genomic loci with tunable conversion efficiency and editable window, generating a repertoire of mutants with highly diversified genomic sequences. Leveraging the genomic diversification platform, we successfully evolved the nisin-resistant capability of Bacillus subtilis through directed evolution of the subunit of lantibiotic ATP-binding cassette. Therefore, our work provides a portable and programmable genomic diversification platform, which is promising to expedite the fabrication of high-performance and robust bacterial chassis used in the development of biomanufacturing and biopharmaceuticals.
Collapse
Affiliation(s)
- Wenliang Hao
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| | - Wenjing Cui
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| | - Feiya Suo
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| | - Laichuang Han
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| | - Zhongyi Cheng
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| |
Collapse
|
14
|
Tian K, Hong X, Guo M, Li Y, Wu H, Caiyin Q, Qiao J. Development of Base Editors for Simultaneously Editing Multiple Loci in Lactococcus lactis. ACS Synth Biol 2022; 11:3644-3656. [PMID: 36065829 DOI: 10.1021/acssynbio.1c00561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lactococcus lactis serves as the most extensively studied model organism and an important dairy species. Though CRISPR-Cas9 systems have been developed for robust genetic manipulations, simultaneously editing multiple endogenous loci in L. lactis is still challenging. Herein, we first report the development of a double-strand break-free, robust, multiloci editing system CRISPR-deaminase-assisted base editor (CRISPR-DBE), which comprises a cytidine (CRISPR-cDBE) and an adenosine deaminase-assisted base editor (CRISPR-aDBE). Specifically targeted by a sgRNA, CRISPR-cDBE can efficiently introduce a cytidine-to-thymidine mutation and CRISPR-aDBE can high-efficiently convert adenosine to guanosine within a 5 nt editing window. CRISPR-cDBE was validated and successfully applied to simultaneously inactivate multiple genes using a single plasmid in L. lactis strain NZ9000. Meanwhile, the temperature-sensitive plasmid of CRISPR-DBE can be cured quickly, and the continuous gene editing of L. lactis has been achieved. Furthermore, CRISPR-cDBE can also efficiently convert the targeted C to T in a nisin-producing, industrial L. lactis strain F44. Finally, we applied genome-wide bioinformatics analysis to determine the scope of gene inactivation for these base editors using different Cas9 variants and evaluated the preference of SpGn and SpRYn variants for the protospacer adjacent motif in L. lactis NZ9000. Taken together, our study provides a powerful tool for simultaneously editing multiple loci in L. lactis, which may have a wide range of industrial applications in the future.
Collapse
Affiliation(s)
- Kairen Tian
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P. R. China.,SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Xia Hong
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Manman Guo
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yanni Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P. R. China.,SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Hao Wu
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China
| | - Qinggele Caiyin
- Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P. R. China.,SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P. R. China.,SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China
| |
Collapse
|
15
|
Wang Y, Zhao D, Sun L, Wang J, Fan L, Cheng G, Zhang Z, Ni X, Feng J, Wang M, Zheng P, Bi C, Zhang X, Sun J. Engineering of the Translesion DNA Synthesis Pathway Enables Controllable C-to-G and C-to-A Base Editing in Corynebacterium glutamicum. ACS Synth Biol 2022; 11:3368-3378. [PMID: 36099191 DOI: 10.1021/acssynbio.2c00265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Expanding the base conversion type is expected to largely broaden the application of base editing, whereas it requires decipherment of the machinery controlling the editing outcome. Here, we discovered that the DNA polymerase V-mediated translesion DNA synthesis (TLS) pathway controlled the C-to-A editing by a glycosylase base editor (GBE) in Escherichia coli. However, C-to-G conversion was surprisingly found to be the main product of the GBE in Corynebacterium glutamicum and subsequent gene inactivation identified the decisive TLS enzymes. Introduction of the E. coli TLS pathway into a TLS-deficient C. glutamicum mutant completely changed the GBE outcome from C-to-G to C-to-A. Combining the canonical C-to-T editor, a pioneering C-to-N base editing toolbox was established in C. glutamicum. The expanded base conversion capability produces greater genetic diversity and promotes the application of base editing in gene inactivation and protein evolution. This study demonstrates the possibility of engineering TLS systems to develop advanced genome editing tools.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Dongdong Zhao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Letian Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Liwen Fan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Guimin Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Zhihui Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomeng Ni
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jinhui Feng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Changhao Bi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
16
|
Li M, Huo YX, Guo S. CRISPR-Mediated Base Editing: From Precise Point Mutation to Genome-Wide Engineering in Nonmodel Microbes. BIOLOGY 2022; 11:571. [PMID: 35453770 PMCID: PMC9024924 DOI: 10.3390/biology11040571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 12/23/2022]
Abstract
Nonmodel microbes with unique and diverse metabolisms have become rising stars in synthetic biology; however, the lack of efficient gene engineering techniques still hinders their development. Recently, the use of base editors has emerged as a versatile method for gene engineering in a wide range of organisms including nonmodel microbes. This method is a fusion of impaired CRISPR/Cas9 nuclease and base deaminase, enabling the precise point mutation at the target without inducing homologous recombination. This review updates the latest advancement of base editors in microbes, including the conclusion of all microbes that have been researched by base editors, the introduction of newly developed base editors, and their applications. We provide a list that comprehensively concludes specific applications of BEs in nonmodel microbes, which play important roles in industrial, agricultural, and clinical fields. We also present some microbes in which BEs have not been fully established, in the hope that they are explored further and so that other microbial species can achieve arbitrary base conversions. The current obstacles facing BEs and solutions are put forward. Lastly, the highly efficient BEs and other developed versions for genome-wide reprogramming of cells are discussed, showing great potential for future engineering of nonmodel microbes.
Collapse
Affiliation(s)
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China;
| | - Shuyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China;
| |
Collapse
|
17
|
Huang C, Wang C, Luo Y. Research progress of pathway and genome evolution in microbes. Synth Syst Biotechnol 2022; 7:648-656. [PMID: 35224232 PMCID: PMC8857405 DOI: 10.1016/j.synbio.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Microbes can produce valuable natural products widely applied in medicine, food and other important fields. Nevertheless, it is usually challenging to achieve ideal industrial yields due to low production rate and poor toxicity tolerance. Evolution is a constant mutation and adaptation process used to improve strain performance. Generally speaking, the synthesis of natural products in microbes is often intricate, involving multiple enzymes or multiple pathways. Individual evolution of a certain enzyme often fails to achieve the desired results, and may lead to new rate-limiting nodes that affect the growth of microbes. Therefore, it is inevitable to evolve the biosynthetic pathways or the whole genome. Here, we reviewed the pathway-level evolution including multi-enzyme evolution, regulatory elements engineering, and computer-aided engineering, as well as the genome-level evolution based on several tools, such as genome shuffling and CRISPR/Cas systems. Finally, we also discussed the major challenges faced by in vivo evolution strategies and proposed some potential solutions.
Collapse
Affiliation(s)
- Chaoqun Huang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Chang Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yunzi Luo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen, 518071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
- Corresponding author. Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
18
|
Li ZJ, Zhang ZX, Xu Y, Shi TQ, Ye C, Sun XM, Huang H. CRISPR-Based Construction of a BL21 (DE3)-Derived Variant Strain Library to Rapidly Improve Recombinant Protein Production. ACS Synth Biol 2022; 11:343-352. [PMID: 34919397 DOI: 10.1021/acssynbio.1c00463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Escherichia coli BL21 (DE3) is the most widely used host for recombinant protein expression. However, not every protein can be highly expressed in BL21 (DE3), so individual optimization strategies are often required for different proteins, which is time-consuming and difficult to apply rapidly for industrial production. Constructing more hosts is a good choice to enrich protein expression selection. The expression level of T7 RNAP is the core control node of the pET expression system, so regulating its expression level is an effective way of improving the production of difficult-to-express proteins. Various BL21 (DE3)-derived variant hosts with different translation levels of T7 RNAP could be obtained by changing the ribosomal binding site (RBS) sequences of T7 RNAP in a genome. Here, a BL21 (DE3)-derived variant strain library with different RBS sequences of T7 RNAP was constructed using a base editor and CRISPR-Cas9. Notably, the CRISPR-Cas9 system combined with degenerate primers enabled the construction of an RBS library with 87.5% of the theoretical coverage in single editing, which is more convenient and efficient than the use of a base editor. The expression level of a target gene in the variant strain library ranged from 28 to 220% of the parental strain. Furthermore, a high-throughput host-screening platform for recombinant protein production was constructed, which enabled us to obtain the best expression host for certain target proteins in only 3 days. As a proof of concept, the production of all eight difficult-to-express proteins was greatly improved, including autolytic protein, membrane proteins, antimicrobial peptides, and hardly soluble proteins. Among them, the expression of glucose dehydrogenase in the best host exhibited a 298-fold increase compared to the parental strain. This strategy is simple and effective, requires no advanced equipment, and can be carried out in any laboratory.
Collapse
Affiliation(s)
- Zi-Jia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - Yan Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People’s Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| |
Collapse
|
19
|
Shelake RM, Pramanik D, Kim JY. In Vivo Rapid Investigation of CRISPR-Based Base Editing Components in Escherichia coli (IRI-CCE): A Platform for Evaluating Base Editing Tools and Their Components. Int J Mol Sci 2022; 23:ijms23031145. [PMID: 35163069 PMCID: PMC8834901 DOI: 10.3390/ijms23031145] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Rapid assessment of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)-based genome editing (GE) tools and their components is a critical aspect for successful GE applications in different organisms. In many bacteria, double-strand breaks (DSBs) generated by CRISPR/Cas tool generally cause cell death due to the lack of an efficient nonhomologous end-joining pathway and restricts its use. CRISPR-based DSB-free base editors (BEs) have been applied for precise nucleotide (nt) editing in bacteria, which does not need to make DSBs. However, optimization of newer BE tools in bacteria is challenging owing to the toxic effects of BE reagents expressed using strong promoters. Improved variants of two main BEs, cytidine base editor (CBE) and adenine base editor (ABE), capable of converting C to T and A to G, respectively, have been recently developed but yet to be tested for editing characteristics in bacteria. Here, we report a platform for in vivo rapid investigation of CRISPR-BE components in Escherichia coli (IRI-CCE) comprising a combination of promoters and terminators enabling the expression of nCas9-based BE and sgRNA to nontoxic levels, eventually leading to successful base editing. We demonstrate the use of IRI-CCE to characterize different variants of CBEs (PmCDA1, evoCDA1, APOBEC3A) and ABEs (ABE8e, ABE9e) for bacteria, exhibiting that each independent BE has its specific editing pattern for a given target site depending on protospacer length. In summary, CRISPR-BE components expressed without lethal effects on cell survival in the IRI-CCE allow an analysis of various BE tools, including cloned biopart modules and sgRNAs.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea;
- Correspondence: (R.M.S.); (J.-Y.K.)
| | - Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea;
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea;
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea
- Correspondence: (R.M.S.); (J.-Y.K.)
| |
Collapse
|