1
|
Cherrak Y, Salazar MA, Näpflin N, Malfertheiner L, Herzog MKM, Schubert C, von Mering C, Hardt WD. Non-canonical start codons confer context-dependent advantages in carbohydrate utilization for commensal E. coli in the murine gut. Nat Microbiol 2024; 9:2696-2709. [PMID: 39160293 PMCID: PMC11445065 DOI: 10.1038/s41564-024-01775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 07/04/2024] [Indexed: 08/21/2024]
Abstract
Resource competition is a driver of gut microbiota composition. Bacteria can outcompete metabolically similar rivals through the limitation of shared growth-fuelling nutrients. The mechanisms underlying this remain unclear for bacteria with identical sets of metabolic genes. Here we analysed the lactose utilization operon in the murine commensal Escherichia coli 8178. Using in vitro and in vivo approaches, we showed that translation of the lactose utilization repressor gene lacI from its native non-canonical GTG start codon increases the basal expression of the lactose utilization cluster, enhancing adaptation to lactose consumption. Consequently, a strain carrying the wild type lacI GTG start codon outperformed the lacI ATG start codon mutant in the mouse intestine. This advantage was attenuated upon limiting host lactose intake through diet shift or altering the mutant frequency, emphasizing the context-dependent effect of a single nucleotide change on the bacterial fitness of a common member of the gut microbiota. Coupled with a genomic analysis highlighting the selection of non-ATG start codons in sugar utilization regulator genes across the Enterobacteriaceae family, our data exposed an unsuspected function of non-canonical start codons in metabolic competition.
Collapse
Affiliation(s)
- Yassine Cherrak
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | - Miguel Angel Salazar
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Nicolas Näpflin
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Lukas Malfertheiner
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Mathias K-M Herzog
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Christopher Schubert
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Kompatscher M, Bartosik K, Erharter K, Plangger R, Juen F, Kreutz C, Micura R, Westhof E, Erlacher M. Contribution of tRNA sequence and modifications to the decoding preferences of E. coli and M. mycoides tRNAGlyUCC for synonymous glycine codons. Nucleic Acids Res 2024; 52:1374-1386. [PMID: 38050960 PMCID: PMC10853795 DOI: 10.1093/nar/gkad1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023] Open
Abstract
tRNA superwobbling, used by certain bacteria and organelles, is an intriguing decoding concept in which a single tRNA isoacceptor is used to decode all synonymous codons of a four-fold degenerate codon box. While Escherichia coli relies on three tRNAGly isoacceptors to decode the four glycine codons (GGN), Mycoplasma mycoides requires only a single tRNAGly. Both organisms express tRNAGly with the anticodon UCC, which are remarkably similar in sequence but different in their decoding ability. By systematically introducing mutations and altering the number and type of tRNA modifications using chemically synthesized tRNAs, we elucidated the contribution of individual nucleotides and chemical groups to decoding by the E. coli and M. mycoides tRNAGly. The tRNA sequence was identified as the key factor for superwobbling, revealing the T-arm sequence as a novel pivotal element. In addition, the presence of tRNA modifications, although not essential for providing superwobbling, was shown to delicately fine-tune and balance the decoding of synonymous codons. This emphasizes that the tRNA sequence and its modifications together form an intricate system of high complexity that is indispensable for accurate and efficient decoding.
Collapse
Affiliation(s)
- Maria Kompatscher
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Karolina Bartosik
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Kevin Erharter
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Raphael Plangger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Fabian Sebastian Juen
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Eric Westhof
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, CNRS UPR 9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Matthias D Erlacher
- Institute of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Ardern Z. Alternative Reading Frames are an Underappreciated Source of Protein Sequence Novelty. J Mol Evol 2023; 91:570-580. [PMID: 37326679 DOI: 10.1007/s00239-023-10122-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Protein-coding DNA sequences can be translated into completely different amino acid sequences if the nucleotide triplets used are shifted by a non-triplet amount on the same DNA strand or by translating codons from the opposite strand. Such "alternative reading frames" of protein-coding genes are a major contributor to the evolution of novel protein products. Recent studies demonstrating this include examples across the three domains of cellular life and in viruses. These sequences increase the number of trials potentially available for the evolutionary invention of new genes and also have unusual properties which may facilitate gene origin. There is evidence that the structure of the standard genetic code contributes to the features and gene-likeness of some alternative frame sequences. These findings have important implications across diverse areas of molecular biology, including for genome annotation, structural biology, and evolutionary genomics.
Collapse
|