2
|
Zhang W, Bai Y, Hao L, Zhao Y, Zhang L, Ding W, Qi Y, Xu Q. One-carbon metabolism supports S-adenosylmethionine and m6A methylation to control the osteogenesis of bone marrow stem cells and bone formation. J Bone Miner Res 2024; 39:1356-1370. [PMID: 39126376 DOI: 10.1093/jbmr/zjae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/25/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
The skeleton is a metabolically active organ undergoing continuous remodeling initiated by bone marrow stem cells (BMSCs). Recent research has demonstrated that BMSCs adapt the metabolic pathways to drive the osteogenic differentiation and bone formation, but the mechanism involved remains largely elusive. Here, using a comprehensive targeted metabolome and transcriptome profiling, we revealed that one-carbon metabolism was promoted following osteogenic induction of BMSCs. Methotrexate (MTX), an inhibitor of one-carbon metabolism that blocks S-adenosylmethionine (SAM) generation, led to decreased N6-methyladenosine (m6A) methylation level and inhibited osteogenic capacity. Increasing intracellular SAM generation through betaine addition rescued the suppressed m6A content and osteogenesis in MTX-treated cells. Using S-adenosylhomocysteine (SAH) to inhibit the m6A level, the osteogenic activity of BMSCs was consequently impeded. We also demonstrated that the pro-osteogenic effect of m6A methylation mediated by one-carbon metabolism could be attributed to HIF-1α and glycolysis pathway. This was supported by the findings that dimethyloxalyl glycine rescued the osteogenic potential in MTX-treated and SAH-treated cells by upregulating HIF-1α and key glycolytic enzymes expression. Importantly, betaine supplementation attenuated MTX-induced m6A methylation decrease and bone loss via promoting the abundance of SAM in rat. Collectively, these results revealed that one-carbon metabolite SAM was a potential promoter in BMSC osteogenesis via the augmentation of m6A methylation, and the cross talk between metabolic reprogramming, epigenetic modification, and transcriptional regulation of BMSCs might provide strategies for bone regeneration.
Collapse
Affiliation(s)
- Wenjie Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yujia Bai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Lili Hao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yiqing Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Lujin Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wenqian Ding
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yipin Qi
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Qiong Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
4
|
Tang J, Hao M, Liu J, Chen Y, Wufuer G, Zhu J, Zhang X, Zheng T, Fang M, Zhang S, Li T, Ge S, Zhang J, Xia N. Design of a recombinant asparaginyl ligase for site-specific modification using efficient recognition and nucleophile motifs. Commun Chem 2024; 7:87. [PMID: 38637620 PMCID: PMC11026461 DOI: 10.1038/s42004-024-01173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Asparaginyl ligases have been extensively utilized as valuable tools for site-specific bioconjugation or surface-modification. However, the application is hindered by the laborious and poorly reproducible preparation processes, unstable activity and ambiguous substrate requirements. To address these limitations, this study employed a structure-based rational approach to obtain a high-yield and high-activity protein ligase called OaAEP1-C247A-aa55-351. It was observed that OaAEP1-C247A-aa55-351 exhibits appreciable catalytic activities across a wide pH range, and the addition of the Fe3+ metal ion effectively enhances the catalytic power. Importantly, this study provides insight into the recognition and nucleophile peptide profiles of OaAEP1-C247A-aa55-351. The ligase demonstrates a higher recognition ability for the "Asn-Ala-Leu" motif and an N-terminus "Arg-Leu" as nucleophiles, which significantly increases the reaction yield. Consequently, the catalytic activity of OaAEP1-C247A-aa55-351 with highly efficient recognition and nucleophile motif, "Asn-Ala-Leu" and "Arg-Leu" under the buffer containing Fe3+ is 70-fold and 2-fold higher than previously reported OaAEP1-C247A and the most efficient butelase-1, respectively. Thus, the designed OaAEP1-C247A-aa55-351, with its highly efficient recognition and alternative nucleophile options, holds promising potential for applications in protein engineering, chemo-enzymatic modification, and the development of drugs.
Collapse
Affiliation(s)
- Jiabao Tang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Mengling Hao
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Junxian Liu
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Yaling Chen
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Gulimire Wufuer
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Jie Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, 213164, Changzhou, China
| | - Xuejie Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Tingquan Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Mujin Fang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Shiyin Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Tingdong Li
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China.
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China.
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China.
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China.
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China.
| | - Shengxiang Ge
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China.
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China.
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China.
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China.
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China.
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, 361102, Xiamen, China
- National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 361102, Xiamen, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, 361102, Xiamen, China
- Department of Laboratory Medicine, School of Public Health, Xiamen University, 361102, Xiamen, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, China
| |
Collapse
|