1
|
Qi S, Fu J, Li Y, Fei C, Zhang J, Sui L, Zhou S, Li J, Zhao Y, Wu D. Electrochemical response mechanism of DNA damaged cells: DNA damage repair and purine metabolism activation. Bioelectrochemistry 2024; 161:108832. [PMID: 39395363 DOI: 10.1016/j.bioelechem.2024.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
In modern society, due to the sharp increase in pollutants that cause DNA damage, there is a growing demand for innovative detection techniques and biomarkers. In this paper, the electrochemical behavior of HepG2 cells exposed to CdCl2 was investigated, and the electrochemical response mechanism of DNA damage was identified by exploring the correlation between the DNA damage response and purine metabolism. Western blot analysis revealed that the expression levels of ATM and Ku70 increased at 0.3 μM CdCl2, indicating a DNA damage response and activation of DNA repair processes. Simultaneously, elevated expression levels of PRPP aminotransferase, HPRT, and XOD were observed, leading to an increase in intracellular purine levels and electrochemical signals. The expression of Ku70 peaked at 0.5 μM CdCl2, indicating the highest DNA repair activity. The expression profiles of these purine metabolism proteins mirrored those of Ku70, suggesting a strong correlation between the activation of purine metabolism and DNA damage repair. Consistently, intracellular purine levels exhibited a similar trend, leading to corresponding changes in electrochemical signals. In summary, electrochemical using intracellular purines as biomarkers has the potential to emerge as a novel method for detecting early DNA damage.
Collapse
Affiliation(s)
- Shulan Qi
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Jiaqi Fu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Yue Li
- Related Diseases College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154000, PR China
| | - Chaoqun Fei
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Jiahuan Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Liyuan Sui
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Shi Zhou
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China.
| | - Yanli Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China.
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China.
| |
Collapse
|
2
|
Li J, Yang Z, Song H, Yang L, Na K, Mei Z, Zhang S, Liu J, Xu K, Yan C, Wang X. The role of mitofusin 2 in regulating endothelial cell senescence: Implications for vascular aging. iScience 2024; 27:110809. [PMID: 39290834 PMCID: PMC11406077 DOI: 10.1016/j.isci.2024.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/18/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Endothelial cell dysfunction contributes to age-related vascular diseases. Analyzing public databases and mouse tissues, we found decreased MFN2 expression in senescent endothelial cells and angiotensin II-treated mouse aortas. In human endothelial cells, Ang II reduced MFN2 expression while increasing senescence markers P21 and P53. siMFN2 treatment worsened Ang II-induced senescence, while MFN2 overexpression alleviated it. siMFN2 or Ang II treatment caused mitochondrial dysfunction and morphological abnormalities, including increased ROS production and reduced respiration, mitigated by ovMFN2 treatment. Further study revealed that BCL6, a negative regulator of MFN2, significantly contributes to Ang II-induced endothelial senescence. In vivo, Ang II infusion decreased MFN2 expression and increased BCL6, P21, and P53 expression in vascular endothelial cells. The shMfn2+Ang II group showed elevated senescence markers in vascular tissues. These findings highlight MFN2's regulatory role in endothelial cell senescence, emphasizing its importance in maintaining endothelial homeostasis and preventing age-related vascular diseases.
Collapse
Affiliation(s)
- Jiayin Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Zheming Yang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Haixu Song
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Lin Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Kun Na
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Zhu Mei
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Shuli Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning 110167, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Jing Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Kai Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Xiaozeng Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China
| |
Collapse
|
3
|
Benaroya H. Mitochondria and MICOS - function and modeling. Rev Neurosci 2024; 35:503-531. [PMID: 38369708 DOI: 10.1515/revneuro-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/20/2024]
Abstract
An extensive review is presented on mitochondrial structure and function, mitochondrial proteins, the outer and inner membranes, cristae, the role of F1FO-ATP synthase, the mitochondrial contact site and cristae organizing system (MICOS), the sorting and assembly machinery morphology and function, and phospholipids, in particular cardiolipin. Aspects of mitochondrial regulation under physiological and pathological conditions are outlined, in particular the role of dysregulated MICOS protein subunit Mic60 in Parkinson's disease, the relations between mitochondrial quality control and proteins, and mitochondria as signaling organelles. A mathematical modeling approach of cristae and MICOS using mechanical beam theory is introduced and outlined. The proposed modeling is based on the premise that an optimization framework can be used for a better understanding of critical mitochondrial function and also to better map certain experiments and clinical interventions.
Collapse
Affiliation(s)
- Haym Benaroya
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Liu Y, Ma Z. Leukemia and mitophagy: a novel perspective for understanding oncogenesis and resistance. Ann Hematol 2024; 103:2185-2196. [PMID: 38282059 DOI: 10.1007/s00277-024-05635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
Mitophagy, the selective autophagic process that specifically degrades mitochondria, serves as a vital regulatory mechanism for eliminating damaged mitochondria and maintaining cellular balance. Emerging research underscores the central role of mitophagy in the initiation, advancement, and treatment of cancer. Mitophagy is widely acknowledged to govern mitochondrial homeostasis in hematopoietic stem cells (HSCs), influencing their metabolic dynamics. In this article, we integrate recent data to elucidate the regulatory mechanisms governing mitophagy and its intricate significance in the context of leukemia. An in-depth molecular elucidation of the processes governing mitophagy may serve as a basis for the development of pioneering approaches in targeted therapeutic interventions.
Collapse
Affiliation(s)
- Yueyao Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Sichuan Province, No. 20, Section 3, Renmin South Road, Chengdu, 610041, China
| | - Zhigui Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Sichuan Province, No. 20, Section 3, Renmin South Road, Chengdu, 610041, China.
| |
Collapse
|
5
|
Gu L, Liu M, Zhang Y, Zhou H, Wang Y, Xu ZX. Telomere-related DNA damage response pathways in cancer therapy: prospective targets. Front Pharmacol 2024; 15:1379166. [PMID: 38910895 PMCID: PMC11190371 DOI: 10.3389/fphar.2024.1379166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Maintaining the structural integrity of genomic chromosomal DNA is an essential role of cellular life and requires two important biological mechanisms: the DNA damage response (DDR) mechanism and telomere protection mechanism at chromosome ends. Because abnormalities in telomeres and cellular DDR regulation are strongly associated with human aging and cancer, there is a reciprocal regulation of telomeres and cellular DDR. Moreover, several drug treatments for DDR are currently available. This paper reviews the progress in research on the interaction between telomeres and cellular DNA damage repair pathways. The research on the crosstalk between telomere damage and DDR is important for improving the efficacy of tumor treatment. However, further studies are required to confirm this hypothesis.
Collapse
Affiliation(s)
- Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Chullo G, Panisello-Rosello A, Marquez N, Colmenero J, Brunet M, Pera M, Rosello-Catafau J, Bataller R, García-Valdecasas JC, Fundora Y. Focusing on Ischemic Reperfusion Injury in the New Era of Dynamic Machine Perfusion in Liver Transplantation. Int J Mol Sci 2024; 25:1117. [PMID: 38256190 PMCID: PMC10816079 DOI: 10.3390/ijms25021117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Liver transplantation is the most effective treatment for end-stage liver disease. Transplant indications have been progressively increasing, with a huge discrepancy between the supply and demand of optimal organs. In this context, the use of extended criteria donor grafts has gained importance, even though these grafts are more susceptible to ischemic reperfusion injury (IRI). Hepatic IRI is an inherent and inevitable consequence of all liver transplants; it involves ischemia-mediated cellular damage exacerbated upon reperfusion and its severity directly affects graft function and post-transplant complications. Strategies for organ preservation have been constantly improving since they first emerged. The current gold standard for preservation is perfusion solutions and static cold storage. However, novel approaches that allow extended preservation times, organ evaluation, and their treatment, which could increase the number of viable organs for transplantation, are currently under investigation. This review discusses the mechanisms associated with IRI, describes existing strategies for liver preservation, and emphasizes novel developments and challenges for effective organ preservation and optimization.
Collapse
Affiliation(s)
- Gabriela Chullo
- Service of Digestive, Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (G.C.); (M.P.); (J.C.G.-V.)
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| | - Arnau Panisello-Rosello
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| | - Noel Marquez
- Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain;
| | - Jordi Colmenero
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
- Liver Transplant Unit, Service of Hepatology, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades hepaticas y digestives (CIBERehd), University of Barcelona, 08036 Barcelona, Spain
| | - Merce Brunet
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
- Centro de Investigación Biomédica en Red de Enfermedades hepaticas y digestives (CIBERehd), University of Barcelona, 08036 Barcelona, Spain
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| | - Miguel Pera
- Service of Digestive, Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (G.C.); (M.P.); (J.C.G.-V.)
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| | - Joan Rosello-Catafau
- Experimental Pathology, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (IBB-CSIC), 08036 Barcelona, Spain;
| | - Ramon Bataller
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
- Liver Transplant Unit, Service of Hepatology, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades hepaticas y digestives (CIBERehd), University of Barcelona, 08036 Barcelona, Spain
| | - Juan Carlos García-Valdecasas
- Service of Digestive, Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (G.C.); (M.P.); (J.C.G.-V.)
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| | - Yiliam Fundora
- Service of Digestive, Hepato-Pancreatico-Biliary and Liver Transplant Surgery, Institut Clínic de Malalties Digestives i Metabòliques (ICMDM), Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (G.C.); (M.P.); (J.C.G.-V.)
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (J.C.); (M.B.); (R.B.)
| |
Collapse
|
7
|
Yin J, Zhao Z, Huang J, Xiao Y, Rehmutulla M, Zhang B, Zhang Z, Xiang M, Tong Q, Zhang Y. Single-cell transcriptomics reveals intestinal cell heterogeneity and identifies Ep300 as a potential therapeutic target in mice with acute liver failure. Cell Discov 2023; 9:77. [PMID: 37488127 PMCID: PMC10366100 DOI: 10.1038/s41421-023-00578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/15/2023] [Indexed: 07/26/2023] Open
Abstract
Acute liver failure (ALF) is a severe life-threatening disease associated with the disorder of the gut-liver axis. However, the cellular characteristics of ALF in the gut and related therapeutic targets remain unexplored. Here, we utilized the D-GALN/LPS (D/L)-induced ALF model to characterize 33,216 single-cell transcriptomes and define a mouse ALF intestinal cellular atlas. We found that unique, previously uncharacterized intestinal immune cells, including T cells, B cells, macrophages, and neutrophils, are responsive to ALF, and we identified the transcriptional profiles of these subsets during ALF. We also delineated the heterogeneity of intestinal epithelial cells (IECs) and found that ALF-induced cell cycle arrest in intestinal stem cells and activated specific enterocyte and goblet cell clusters. Notably, the most significantly altered IECs, including enterocytes, intestinal stem cells and goblet cells, had similar activation patterns closely associated with inflammation from intestinal immune activation. Furthermore, our results unveiled a common Ep300-dependent transcriptional program that coordinates IEC activation during ALF, which was confirmed to be universal in different ALF models. Pharmacological inhibition of Ep300 with an inhibitor (SGC-CBP30) inhibited this cell-specific program, confirming that Ep300 is an effective target for alleviating ALF. Mechanistically, Ep300 inhibition restrained inflammation and oxidative stress in the dysregulated cluster of IECs through the P38-JNK pathway and corrected intestinal ecology by regulating intestinal microbial composition and metabolism, thereby protecting IECs and attenuating ALF. These findings confirm that Ep300 is a novel therapeutic target in ALF and pave the way for future pathophysiological studies on ALF.
Collapse
Affiliation(s)
- Jie Yin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziming Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianzheng Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mewlude Rehmutulla
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Biqiong Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zijun Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Xiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Kratz A, Kim M, Kelly MR, Zheng F, Koczor CA, Li J, Ono K, Qin Y, Churas C, Chen J, Pillich RT, Park J, Modak M, Collier R, Licon K, Pratt D, Sobol RW, Krogan NJ, Ideker T. A multi-scale map of protein assemblies in the DNA damage response. Cell Syst 2023; 14:447-463.e8. [PMID: 37220749 PMCID: PMC10330685 DOI: 10.1016/j.cels.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/30/2023] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
The DNA damage response (DDR) ensures error-free DNA replication and transcription and is disrupted in numerous diseases. An ongoing challenge is to determine the proteins orchestrating DDR and their organization into complexes, including constitutive interactions and those responding to genomic insult. Here, we use multi-conditional network analysis to systematically map DDR assemblies at multiple scales. Affinity purifications of 21 DDR proteins, with/without genotoxin exposure, are combined with multi-omics data to reveal a hierarchical organization of 605 proteins into 109 assemblies. The map captures canonical repair mechanisms and proposes new DDR-associated proteins extending to stress, transport, and chromatin functions. We find that protein assemblies closely align with genetic dependencies in processing specific genotoxins and that proteins in multiple assemblies typically act in multiple genotoxin responses. Follow-up by DDR functional readouts newly implicates 12 assembly members in double-strand-break repair. The DNA damage response assemblies map is available for interactive visualization and query (ccmi.org/ddram/).
Collapse
Affiliation(s)
- Anton Kratz
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Minkyu Kim
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94158, USA; The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA; University of Texas Health Science Center San Antonio, Department of Biochemistry and Structural Biology, San Antonio, TX 78229, USA
| | - Marcus R Kelly
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Fan Zheng
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Christopher A Koczor
- University of South Alabama, Department of Pharmacology and Mitchell Cancer Institute, Mobile, AL 36604, USA
| | - Jianfeng Li
- University of South Alabama, Department of Pharmacology and Mitchell Cancer Institute, Mobile, AL 36604, USA
| | - Keiichiro Ono
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Yue Qin
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Christopher Churas
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Jing Chen
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Rudolf T Pillich
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Jisoo Park
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Maya Modak
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94158, USA; The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA
| | - Rachel Collier
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Kate Licon
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Dexter Pratt
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA
| | - Robert W Sobol
- University of South Alabama, Department of Pharmacology and Mitchell Cancer Institute, Mobile, AL 36604, USA; Brown University, Department of Pathology and Laboratory Medicine and Legorreta Cancer Center, Providence, RI 02903, USA.
| | - Nevan J Krogan
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94158, USA; The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.
| | - Trey Ideker
- University of California San Diego, Department of Medicine, San Diego, CA 92093, USA; The Cancer Cell Map Initiative, San Francisco and La Jolla, CA, USA.
| |
Collapse
|
9
|
Shimura T. Mitochondrial Signaling Pathways Associated with DNA Damage Responses. Int J Mol Sci 2023; 24:ijms24076128. [PMID: 37047099 PMCID: PMC10094106 DOI: 10.3390/ijms24076128] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Under physiological and stress conditions, mitochondria act as a signaling platform to initiate biological events, establishing communication from the mitochondria to the rest of the cell. Mitochondrial adenosine triphosphate (ATP), reactive oxygen species, cytochrome C, and damage-associated molecular patterns act as messengers in metabolism, oxidative stress response, bystander response, apoptosis, cellular senescence, and inflammation response. In this review paper, the mitochondrial signaling in response to DNA damage was summarized. Mitochondrial clearance via fusion, fission, and mitophagy regulates mitochondrial quality control under oxidative stress conditions. On the other hand, damaged mitochondria release their contents into the cytoplasm and then mediate various signaling pathways. The role of mitochondrial dysfunction in radiation carcinogenesis was discussed, and the recent findings on radiation-induced mitochondrial signaling and radioprotective agents that targeted mitochondria were presented. The analysis of the mitochondrial radiation effect, as hypothesized, is critical in assessing radiation risks to human health.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, Wako 351-0197, Saitama, Japan
| |
Collapse
|
10
|
Adipose-Derived Mesenchymal Stem Cells Inhibit JNK-Mediated Mitochondrial Retrograde Pathway to Alleviate Acetaminophen-Induced Liver Injury. Antioxidants (Basel) 2023; 12:antiox12010158. [PMID: 36671020 PMCID: PMC9854665 DOI: 10.3390/antiox12010158] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Acetaminophen (APAP) is the major cause of drug-induced liver injury, with limited treatment options. APAP overdose invokes excessive oxidative stress that triggers mitochondria-to-nucleus retrograde pathways, contributing to APAP-induced liver injury (AILI). Mesenchymal stem cell therapy is a promising tool for acute liver failure. Therefore, the purpose of this study was to investigate the beneficial effects of adipose-derived mesenchymal stem cell (AMSC) therapy on AILI and reveal the potential therapeutic mechanisms. C57BL/6 mice were used as the animal model and AML12 normal murine hepatocytes as the cellular model of APAP overdose. Immunohistochemical staining, Western blotting, immunofluorescence staining, and RNA sequencing assays were used for assessing the efficacy and validating mechanisms of AMSC therapy. We found AMSC therapy effectively ameliorated AILI, while delayed AMSC injection lost its efficacy related to the c-Jun N-terminal kinase (JNK)-mediated mitochondrial retrograde pathways. We further found that AMSC therapy inhibited JNK activation and mitochondrial translocation, reducing APAP-induced mitochondrial damage. The downregulation of activated ataxia telangiectasia-mutated (ATM) and DNA damage response proteins in AMSC-treated mouse liver indicated AMSCs blocked the JNK-ATM pathway. Overall, AMSCs may be an effective treatment for AILI by inhibiting the JNK-ATM mitochondrial retrograde pathway, which improves APAP-induced mitochondrial dysfunction and liver injury.
Collapse
|