1
|
Liu P, Ponnienselvan K, Nyalile T, Oikemus S, Joynt AT, Iyer S, Kelly K, Guo D, Kyawe PP, Vanderleeden E, Redick SD, Huang L, Chen Z, Lee JM, Schiffer CA, Harlan DM, Wang JP, Emerson CP, Lawson ND, Watts JK, Sontheimer EJ, Luban J, Wolfe SA. Increasing intracellular dNTP levels improves prime editing efficiency. Nat Biotechnol 2024:10.1038/s41587-024-02405-x. [PMID: 39322763 DOI: 10.1038/s41587-024-02405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 08/27/2024] [Indexed: 09/27/2024]
Abstract
In primary cell types, intracellular deoxynucleotide triphosphate (dNTP) levels are tightly regulated in a cell cycle-dependent manner. We report that prime editing efficiency is increased by mutations that improve the enzymatic properties of Moloney murine leukemia virus reverse transcriptase and treatments that increase intracellular dNTP levels. In combination, these modifications produce substantial increases in precise editing rates.
Collapse
Affiliation(s)
- Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Karthikeyan Ponnienselvan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Thomas Nyalile
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sarah Oikemus
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Anya T Joynt
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sukanya Iyer
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Karen Kelly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dongsheng Guo
- Department of Neurology, Wellstone Program, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Pyae P Kyawe
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Emma Vanderleeden
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sambra D Redick
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lei Huang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zexiang Chen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeong Min Lee
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - David M Harlan
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jennifer P Wang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Charles P Emerson
- Department of Neurology, Wellstone Program, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Nathan D Lawson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Erik J Sontheimer
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Vats S, Kumar J, Sonah H, Zhang F, Deshmukh R. Prime editing in plants: prospects and challenges. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5344-5356. [PMID: 38366636 DOI: 10.1093/jxb/erae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Prime editors are reverse transcriptase (RT)-based genome-editing tools that utilize double-strand break (DSB)-free mechanisms to decrease off-target editing in genomes and enhance the efficiency of targeted insertions. The multiple prime editors that have been developed within a short span of time are a testament to the potential of this technique for targeted insertions. This is mainly because of the possibility of generation of all types of mutations including deletions, insertions, transitions, and transversions. Prime editing reverses several bottlenecks of gene editing technologies that limit the biotechnological applicability to produce designer crops. This review evaluates the status and evolution of the prime editing technique in terms of the types of editors available up to prime editor 5 and twin prime editors, and considers the developments in plants in a systematic manner. The various factors affecting prime editing efficiency in plants are discussed in detail, including the effects of temperature, the prime editing guide (peg)RNA, and RT template amongst others. We discuss the current obstructions, key challenges, and available resolutions associated with the technique, and consider future directions and further improvements that are feasible to elevate the efficiency in plants.
Collapse
Affiliation(s)
- Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Regional Centre for Biotechnology, Faridabad, Haryana (NCR Delhi), India
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jitesh Kumar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Feng Zhang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, 123031, India
| |
Collapse
|
3
|
Cattle MA, Aguado LC, Sze S, Wang DY, Papagiannakopoulos T, Smith S, Rice CM, Schneider WM, Poirier JT. An enhanced Eco1 retron editor enables precision genome engineering in human cells from a single-copy integrated lentivirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606586. [PMID: 39149392 PMCID: PMC11326160 DOI: 10.1101/2024.08.05.606586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Retrons are a retroelement class found in diverse prokaryotes that can be adapted to augment CRISPR-Cas9 genome engineering technology to efficiently rewrite short stretches of genetic information in bacteria and yeast; however, efficiency in human cells has been limited by unknown factors. We identified non-coding RNA (ncRNA) instability and impaired Cas9 activity as major contributors to poor retron editor efficiency. We re-engineered the Eco1 ncRNA to incorporate an exoribonuclease-resistant RNA pseudoknot from the Zika virus 3' UTR and devised an RNA processing strategy using Csy4 ribonuclease to liberate the sgRNA and ncRNA. These modifications yielded a ncRNA with 5'- and 3'-end protection and an sgRNA with minimal 5' extension. This strategy increased steady-state ncRNA levels and rescued Cas9 activity leading to enhanced efficiency of the Eco1 retron editor in human cells. The enhanced Eco1 retron editor enabled the insertion of missense mutations in human cells from a single integrated lentivirus, thereby ensuring genotype-phenotype linkage over multiple cell divisions. This work reveals a previously unappreciated role for ncRNA stability in retron editor efficiency in human cells. Here we present an enhanced Eco1 retron editor that enables efficient introduction of missense mutations in human cells from a single heritable genome copy.
Collapse
Affiliation(s)
- Matthew A. Cattle
- Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine
| | - Lauren C. Aguado
- Laboratory of Virology and Infectious Disease, The Rockefeller University
| | | | - Dylan Yueyang Wang
- Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine
| | | | - Susan Smith
- Department of Cell Biology, NYU Langone Health
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University
| | | | | |
Collapse
|
4
|
Ji P, Li Y, Wang Z, Jia S, Jiang X, Chen H, Wang Q. Advances in precision gene editing for liver fibrosis: From technology to therapeutic applications. Biomed Pharmacother 2024; 177:117003. [PMID: 38908207 DOI: 10.1016/j.biopha.2024.117003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
This review presents a comprehensive exploration of gene editing technologies and their potential applications in the treatment of liver fibrosis, a condition often leading to serious complications such as liver cancer. Through an in-depth review of current literature and critical analysis, the study delves into the intricate signaling pathways underlying liver fibrosis development and examines the promising role of gene editing in alleviating this disease burden. Gene editing technologies offer precise, efficient, and reproducible tools for manipulating genetic material, holding significant promise for basic research and clinical practice. The manuscript highlights the challenges and potential risks associated with gene editing technology. By synthesizing existing knowledge and exploring future perspectives, this study aims to provide valuable insights into the potential of precision gene editing to combat liver fibrosis and its associated complications, ultimately contributing to advances in liver fibrosis research and therapy.
Collapse
Affiliation(s)
- Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China; Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310000, PR China
| | - Yan Li
- Department of International Medicine, The Second Hospital of Dalian Medical University, Dalian 116000, PR China
| | - Zihan Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China
| | - Siyu Jia
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China
| | - Xinyi Jiang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China
| | - Hui Chen
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China
| | - Qun Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, PR China.
| |
Collapse
|
5
|
Ferreira da Silva J, Tou CJ, King EM, Eller ML, Rufino-Ramos D, Ma L, Cromwell CR, Metovic J, Benning FMC, Chao LH, Eichler FS, Kleinstiver BP. Click editing enables programmable genome writing using DNA polymerases and HUH endonucleases. Nat Biotechnol 2024:10.1038/s41587-024-02324-x. [PMID: 39039307 DOI: 10.1038/s41587-024-02324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/24/2024] [Indexed: 07/24/2024]
Abstract
Genome editing technologies based on DNA-dependent polymerases (DDPs) could offer several benefits compared with other types of editors to install diverse edits. Here, we develop click editing, a genome writing platform that couples the advantageous properties of DDPs with RNA-programmable nickases to permit the installation of a range of edits, including substitutions, insertions and deletions. Click editors (CEs) leverage the 'click'-like bioconjugation ability of HUH endonucleases with single-stranded DNA substrates to covalently tether 'click DNA' (clkDNA) templates encoding user-specifiable edits at targeted genomic loci. Through iterative optimization of the modular components of CEs and their clkDNAs, we demonstrate the ability to install precise genome edits with minimal indels in diverse immortalized human cell types and primary fibroblasts with precise editing efficiencies of up to ~30%. Editing efficiency can be improved by rapidly screening clkDNA oligonucleotides with various modifications, including repair-evading substitutions. Click editing is a precise and versatile genome editing approach for diverse biological applications.
Collapse
Affiliation(s)
- Joana Ferreira da Silva
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Connor J Tou
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Biological Engineering Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily M King
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Biological and Biomedical Sciences Program, Harvard University, Boston, MA, USA
| | - Madeline L Eller
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - David Rufino-Ramos
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Linyuan Ma
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Christopher R Cromwell
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Jasna Metovic
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Friederike M C Benning
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Florian S Eichler
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Nguyen LT, Rakestraw NR, Pizzano BLM, Young CB, Huang Y, Beerensson KT, Fang A, Antal SG, Anamisis KV, Peggs CMD, Yan J, Jing Y, Burdine RD, Adamson B, Toettcher JE, Myhrvold C, Jain PK. Efficient Genome Editing with Chimeric Oligonucleotide-Directed Editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602710. [PMID: 39026836 PMCID: PMC11257564 DOI: 10.1101/2024.07.09.602710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Prime editing has emerged as a precise and powerful genome editing tool, offering a favorable gene editing profile compared to other Cas9-based approaches. Here we report new nCas9-DNA polymerase fusion proteins to create chimeric oligonucleotide-directed editing (CODE) systems for search-and-replace genome editing. Through successive rounds of engineering, we developed CODEMax and CODEMax(exo+) editors that achieve efficient genome modifications in human cells with low unintended edits. CODEMax and CODEMax(exo+) contain an engineered Bst DNA polymerase derivative known for its robust strand displacement ability. Additionally, CODEMax(exo+) features a 5' to 3' exonuclease activity that promotes effective strand invasion and repair outcomes favoring the incorporation of the desired edit. We demonstrate CODEs can perform small insertions, deletions, and substitutions with improved efficiency compared to PEMax at many loci. Overall, CODEs complement existing prime editors to expand the toolbox for genome manipulations without double-stranded breaks.
Collapse
Affiliation(s)
- Long T Nguyen
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Noah R Rakestraw
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Brianna L M Pizzano
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Cullen B Young
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yujia Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Kate T Beerensson
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Anne Fang
- Department of Chemical Biology, University of Florida, Gainesville, FL, USA
| | - Sydney G Antal
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Katerina V Anamisis
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Coleen M D Peggs
- Health Services Research, Management and Policy, University of Florida, Gainesville, FL, USA
| | - Jun Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yangwode Jing
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Britt Adamson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA
| | - Cameron Myhrvold
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Piyush K Jain
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
- Health Cancer Center, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Liu B, Dong X, Zheng C, Keener D, Chen Z, Cheng H, Watts JK, Xue W, Sontheimer EJ. Targeted genome editing with a DNA-dependent DNA polymerase and exogenous DNA-containing templates. Nat Biotechnol 2024; 42:1039-1045. [PMID: 37709915 DOI: 10.1038/s41587-023-01947-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
Reverse transcriptases, used in prime editing systems, exhibit lower fidelity, processivity and dNTP affinity than many DNA-dependent DNA polymerases. We report that a DNA-dependent DNA polymerase (phi29), untethered from Cas9, enables editing from a synthetic, end-stabilized DNA-containing template at up to 60% efficiency in human cells. Compared to prime editing, DNA polymerase editing avoids autoinhibitory intramolecular base pairing of the template, facilitates template synthesis and supports larger insertions (>100 nucleotides).
Collapse
Affiliation(s)
- Bin Liu
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Xiaolong Dong
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Tessera Therapeutics, Somerville, MA, USA
| | - Chunwei Zheng
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - David Keener
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Zexiang Chen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Haoyang Cheng
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
8
|
Zhang W, Petri K, Ma J, Lee H, Tsai CL, Joung JK, Yeh JRJ. Enhancing CRISPR prime editing by reducing misfolded pegRNA interactions. eLife 2024; 12:RP90948. [PMID: 38847802 PMCID: PMC11161173 DOI: 10.7554/elife.90948] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
CRISPR prime editing (PE) requires a Cas9 nickase-reverse transcriptase fusion protein (known as PE2) and a prime editing guide RNA (pegRNA), an extended version of a standard guide RNA (gRNA) that both specifies the intended target genomic sequence and encodes the desired genetic edit. Here, we show that sequence complementarity between the 5' and the 3' regions of a pegRNA can negatively impact its ability to complex with Cas9, thereby potentially reducing PE efficiency. We demonstrate this limitation can be overcome by a simple pegRNA refolding procedure, which improved ribonucleoprotein-mediated PE efficiencies in zebrafish embryos by up to nearly 25-fold. Further gains in PE efficiencies of as much as sixfold could also be achieved by introducing point mutations designed to disrupt internal interactions within the pegRNA. Our work defines simple strategies that can be implemented to improve the efficiency of PE.
Collapse
Affiliation(s)
- Weiting Zhang
- Cardiovascular Research Center, Massachusetts General HospitalCharlestownUnited States
- Department of Medicine, Harvard Medical SchoolBostonUnited States
| | - Karl Petri
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General HospitalCharlestownUnited States
- Department of Pathology, Harvard Medical SchoolCharlestownUnited States
| | - Junyan Ma
- Cardiovascular Research Center, Massachusetts General HospitalCharlestownUnited States
- Department of Medicine, Harvard Medical SchoolBostonUnited States
- Medical College, Dalian UniversityDalianChina
| | - Hyunho Lee
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General HospitalCharlestownUnited States
- Department of Pathology, Harvard Medical SchoolCharlestownUnited States
| | - Chia-Lun Tsai
- Center for Computational and Integrative Biology, Massachusetts General HospitalBostonUnited States
| | - J Keith Joung
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General HospitalCharlestownUnited States
- Department of Pathology, Harvard Medical SchoolCharlestownUnited States
| | - Jing-Ruey Joanna Yeh
- Cardiovascular Research Center, Massachusetts General HospitalCharlestownUnited States
- Department of Medicine, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
9
|
Yan J, Oyler-Castrillo P, Ravisankar P, Ward CC, Levesque S, Jing Y, Simpson D, Zhao A, Li H, Yan W, Goudy L, Schmidt R, Solley SC, Gilbert LA, Chan MM, Bauer DE, Marson A, Parsons LR, Adamson B. Improving prime editing with an endogenous small RNA-binding protein. Nature 2024; 628:639-647. [PMID: 38570691 PMCID: PMC11023932 DOI: 10.1038/s41586-024-07259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Prime editing enables the precise modification of genomes through reverse transcription of template sequences appended to the 3' ends of CRISPR-Cas guide RNAs1. To identify cellular determinants of prime editing, we developed scalable prime editing reporters and performed genome-scale CRISPR-interference screens. From these screens, a single factor emerged as the strongest mediator of prime editing: the small RNA-binding exonuclease protection factor La. Further investigation revealed that La promotes prime editing across approaches (PE2, PE3, PE4 and PE5), edit types (substitutions, insertions and deletions), endogenous loci and cell types but has no consistent effect on genome-editing approaches that rely on standard, unextended guide RNAs. Previous work has shown that La binds polyuridine tracts at the 3' ends of RNA polymerase III transcripts2. We found that La functionally interacts with the 3' ends of polyuridylated prime editing guide RNAs (pegRNAs). Guided by these results, we developed a prime editor protein (PE7) fused to the RNA-binding, N-terminal domain of La. This editor improved prime editing with expressed pegRNAs and engineered pegRNAs (epegRNAs), as well as with synthetic pegRNAs optimized for La binding. Together, our results provide key insights into how prime editing components interact with the cellular environment and suggest general strategies for stabilizing exogenous small RNAs therein.
Collapse
Affiliation(s)
- Jun Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Paul Oyler-Castrillo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Purnima Ravisankar
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Carl C Ward
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Sébastien Levesque
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Yangwode Jing
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Danny Simpson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Anqi Zhao
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Hui Li
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Weihao Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Laine Goudy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - Ralf Schmidt
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Sabrina C Solley
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Luke A Gilbert
- Arc Institute, Palo Alto, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Michelle M Chan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Lance R Parsons
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Britt Adamson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
10
|
Brooks DL, Whittaker MN, Said H, Dwivedi G, Qu P, Musunuru K, Ahrens-Nicklas RC, Alameh MG, Wang X. A base editing strategy using mRNA-LNPs for in vivo correction of the most frequent phenylketonuria variant. HGG ADVANCES 2024; 5:100253. [PMID: 37922902 PMCID: PMC10800763 DOI: 10.1016/j.xhgg.2023.100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Abstract
The c.1222C>T (p.Arg408Trp) phenylalanine hydroxylase (PAH) variant is the most frequent cause of phenylketonuria (PKU), an autosomal recessive disorder characterized by accumulation of blood phenylalanine (Phe) to neurotoxic levels. Here we devised a therapeutic base editing strategy to correct the variant, using prime-edited hepatocyte cell lines engineered with the c.1222C>T variant to screen a variety of adenine base editors and guide RNAs in vitro, followed by assessment in c.1222C>T humanized mice in vivo. We found that upon delivery of a selected adenine base editor mRNA/guide RNA combination into mice via lipid nanoparticles (LNPs), there was sufficient PAH editing in the liver to fully normalize blood Phe levels within 48 h. This work establishes the viability of a base editing strategy to correct the most common pathogenic variant found in individuals with the most common inborn error of metabolism, albeit with potential limitations compared with other genome editing approaches.
Collapse
Affiliation(s)
- Dominique L Brooks
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Madelynn N Whittaker
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hooda Said
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA
| | - Garima Dwivedi
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ping Qu
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kiran Musunuru
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Rebecca C Ahrens-Nicklas
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Metabolic Disease Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohamad-Gabriel Alameh
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiao Wang
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Vu TV, Nguyen NT, Kim J, Hong JC, Kim J. Prime editing: Mechanism insight and recent applications in plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:19-36. [PMID: 37794706 PMCID: PMC10754014 DOI: 10.1111/pbi.14188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Prime editing (PE) technology utilizes an extended prime editing guide RNA (pegRNA) to direct a fusion peptide consisting of nCas9 (H840) and reverse transcriptase (RT) to a specific location in the genome. This enables the installation of base changes at the targeted site using the extended portion of the pegRNA through RT activity. The resulting product of the RT reaction forms a 3' flap, which can be incorporated into the genomic site through a series of biochemical steps involving DNA repair and synthesis pathways. PE has demonstrated its effectiveness in achieving almost all forms of precise gene editing, such as base conversions (all types), DNA sequence insertions and deletions, chromosomal translocation and inversion and long DNA sequence insertion at safe harbour sites within the genome. In plant science, PE could serve as a groundbreaking tool for precise gene editing, allowing the creation of desired alleles to improve crop varieties. Nevertheless, its application has encountered limitations due to efficiency constraints, particularly in dicotyledonous plants. In this review, we discuss the step-by-step mechanism of PE, shedding light on the critical aspects of each step while suggesting possible solutions to enhance its efficiency. Additionally, we present an overview of recent advancements and future perspectives in PE research specifically focused on plants, examining the key technical considerations of its applications.
Collapse
Affiliation(s)
- Tien V. Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuKorea
| | - Ngan Thi Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuKorea
| | - Jihae Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuKorea
| | - Jong Chan Hong
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuKorea
| | - Jae‐Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuKorea
- Division of Life ScienceGyeongsang National UniversityJinjuKorea
- Nulla Bio Inc.JinjuKorea
| |
Collapse
|
12
|
Fu Y, He X, Gao XD, Li F, Ge S, Yang Z, Fan X. Prime editing: current advances and therapeutic opportunities in human diseases. Sci Bull (Beijing) 2023; 68:3278-3291. [PMID: 37973465 DOI: 10.1016/j.scib.2023.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/06/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
Gene editing ushers in a new era of disease treatment since many genetic diseases are caused by base-pair mutations in genomic DNA. With the rapid development of genome editing technology, novel editing tools such as base editing and prime editing (PE) have attracted public attention, heralding a great leap forward in this field. PE, in particular, is characterized by no need for double-strand breaks (DSBs) or homology sequence templates with variable application scenarios, including point mutations as well as insertions or deletions. With higher editing efficiency and fewer byproducts than traditional editing tools, PE holds great promise as a therapeutic strategy for human diseases. Subsequently, a growing demand for the standard construction of PE system has spawned numerous easy-to-access internet resources and tools for personalized prime editing guide RNA (pegRNA) design and off-target site prediction. In this review, we mainly introduce the innovation and evolutionary strategy of PE systems and the auxiliary tools for PE design and analysis. Additionally, its application and future potential in the clinical field have been summarized and envisaged.
Collapse
Affiliation(s)
- Yidian Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xiaoyu He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xin D Gao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge MA 02141, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge MA 02138, USA
| | - Fang Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| | - Zhi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| |
Collapse
|
13
|
Godbout K, Rousseau J, Tremblay JP. Successful Correction by Prime Editing of a Mutation in the RYR1 Gene Responsible for a Myopathy. Cells 2023; 13:31. [PMID: 38201236 PMCID: PMC10777931 DOI: 10.3390/cells13010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
We report the first correction from prime editing a mutation in the RYR1 gene, paving the way to gene therapies for RYR1-related myopathies. The RYR1 gene codes for a calcium channel named Ryanodine receptor 1, which is expressed in skeletal muscle fibers. The failure of this channel causes muscle weakness in patients, which leads to motor disabilities. Currently, there are no effective treatments for these diseases, which are mainly caused by point mutations. Prime editing allows for the modification of precise nucleotides in the DNA. Our results showed a 59% correction rate of the T4709M mutation in the RYR1 gene in human myoblasts by RNA delivery of the prime editing components. It is to be noted that T4709M is recessive and, thus, persons having a heterozygous mutation are healthy. These results are the first demonstration that correcting mutations in the RYR1 gene is possible.
Collapse
Affiliation(s)
- Kelly Godbout
- Molecular Biology Department, Laval University, Quebec, QC G1V 0A6, Canada;
- CHU de Québec Research Center, Laval University, Quebec, QC G1V 4G2, Canada;
| | - Joël Rousseau
- CHU de Québec Research Center, Laval University, Quebec, QC G1V 4G2, Canada;
| | - Jacques P. Tremblay
- Molecular Biology Department, Laval University, Quebec, QC G1V 0A6, Canada;
- CHU de Québec Research Center, Laval University, Quebec, QC G1V 4G2, Canada;
| |
Collapse
|
14
|
Ponnienselvan K, Liu P, Nyalile T, Oikemus S, Joynt AT, Kelly K, Guo D, Chen Z, Lee JM, Schiffer CA, Emerson CP, Lawson ND, Watts JK, Sontheimer EJ, Luban J, Wolfe SA. Addressing the dNTP bottleneck restricting prime editing activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.21.563443. [PMID: 37904991 PMCID: PMC10614944 DOI: 10.1101/2023.10.21.563443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Prime editing efficiency is modest in cells that are quiescent or slowly proliferating where intracellular dNTP levels are tightly regulated. MMLV-reverse transcriptase - the prime editor polymerase subunit - requires high intracellular dNTPs levels for efficient polymerization. We report that prime editing efficiency in primary cells and in vivo is increased by mutations that enhance the enzymatic properties of MMLV-reverse transcriptase and can be further complemented by targeting SAMHD1 for degradation.
Collapse
|
15
|
Zhong Z, Liu G, Tang Z, Xiang S, Yang L, Huang L, He Y, Fan T, Liu S, Zheng X, Zhang T, Qi Y, Huang J, Zhang Y. Efficient plant genome engineering using a probiotic sourced CRISPR-Cas9 system. Nat Commun 2023; 14:6102. [PMID: 37773156 PMCID: PMC10541446 DOI: 10.1038/s41467-023-41802-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023] Open
Abstract
Among CRISPR-Cas genome editing systems, Streptococcus pyogenes Cas9 (SpCas9), sourced from a human pathogen, is the most widely used. Here, through in silico data mining, we have established an efficient plant genome engineering system using CRISPR-Cas9 from probiotic Lactobacillus rhamnosus. We have confirmed the predicted 5'-NGAAA-3' PAM via a bacterial PAM depletion assay and showcased its exceptional editing efficiency in rice, wheat, tomato, and Larix cells, surpassing LbCas12a, SpCas9-NG, and SpRY when targeting the identical sequences. In stable rice lines, LrCas9 facilitates multiplexed gene knockout through coding sequence editing and achieves gene knockdown via targeted promoter deletion, demonstrating high specificity. We have also developed LrCas9-derived cytosine and adenine base editors, expanding base editing capabilities. Finally, by harnessing LrCas9's A/T-rich PAM targeting preference, we have created efficient CRISPR interference and activation systems in plants. Together, our work establishes CRISPR-LrCas9 as an efficient and user-friendly genome engineering tool for diverse applications in crops and beyond.
Collapse
Affiliation(s)
- Zhaohui Zhong
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, 400715, Chongqing, China
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, 225012, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, 225012, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, 225012, Yangzhou, China
| | - Zhongjie Tang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Shuyue Xiang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Liang Yang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Sichuan, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, 610066, Chengdu, China
| | - Lan Huang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Yao He
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Tingting Fan
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Shishi Liu
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Xuelian Zheng
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, 400715, Chongqing, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, 225012, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, 225012, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, 225012, Yangzhou, China
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, 20850, USA.
| | - Jian Huang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China.
| | - Yong Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China.
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, 400715, Chongqing, China.
| |
Collapse
|
16
|
da Silva JF, Tou CJ, King EM, Eller ML, Ma L, Rufino-Ramos D, Kleinstiver BP. Click editing enables programmable genome writing using DNA polymerases and HUH endonucleases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557440. [PMID: 37745481 PMCID: PMC10515857 DOI: 10.1101/2023.09.12.557440] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Genome editing technologies that install diverse edits can widely enable genetic studies and new therapeutics. Here we develop click editing, a genome writing platform that couples the advantageous properties of DNA-dependent DNA polymerases with RNA-programmable nickases (e.g. CRISPR-Cas) to permit the installation of a range of edits including substitutions, insertions, and deletions. Click editors (CEs) leverage the "click"-like bioconjugation ability of HUH endonucleases (HUHes) with single stranded DNA substrates to covalently tether "click DNA" (clkDNA) templates encoding user-specifiable edits at targeted genomic loci. Through iterative optimization of the modular components of CEs (DNA polymerase and HUHe orthologs, architectural modifications, etc.) and their clkDNAs (template configurations, repair evading substitutions, etc.), we demonstrate the ability to install precise genome edits with minimal indels and no unwanted byproduct insertions. Since clkDNAs can be ordered as simple DNA oligonucleotides for cents per base, it is possible to screen many different clkDNA parameters rapidly and inexpensively to maximize edit efficiency. Together, click editing is a precise and highly versatile platform for modifying genomes with a simple workflow and broad utility across diverse biological applications.
Collapse
Affiliation(s)
- Joana Ferreira da Silva
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Connor J. Tou
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Biological Engineering Program, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Emily M. King
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Biological and Biomedical Sciences Program, Harvard University, Boston, MA, 02115, USA
| | - Madeline L. Eller
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Linyuan Ma
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - David Rufino-Ramos
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
17
|
Zhang W, Petri K, Ma J, Lee H, Tsai CL, Joung JK, Yeh JRJ. Enhancing CRISPR prime editing by reducing misfolded pegRNA interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553324. [PMID: 37645936 PMCID: PMC10462064 DOI: 10.1101/2023.08.14.553324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
CRISPR prime editing (PE) requires a Cas9 nickase-reverse transcriptase fusion protein (known as PE2) and a prime editing guide RNA (pegRNA), an extended version of a standard guide RNA (gRNA) that both specifies the intended target genomic sequence and encodes the desired genetic edit. Here we show that sequence complementarity between the 5' and the 3' regions of a pegRNA can negatively impact its ability to complex with Cas9, thereby potentially reducing PE efficiency. We demonstrate this limitation can be overcome by a simple pegRNA refolding procedure, which improved ribonucleoprotein-mediated PE efficiencies in zebrafish embryos by up to nearly 25-fold. Further gains in PE efficiencies of as much as 6-fold could also be achieved by introducing point mutations designed to disrupt internal interactions within the pegRNA. Our work defines simple strategies that can be implemented to improve the efficiency of PE.
Collapse
Affiliation(s)
- Weiting Zhang
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Karl Petri
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Junyan Ma
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Medical College, Dalian University, Dalian 116622, China
| | - Hyunho Lee
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Chia-Lun Tsai
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - J. Keith Joung
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Jing-Ruey Joanna Yeh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|