1
|
Qiu F, Xue C, Liu J, Li B, Gao Q, Liang R, Chen K, Gao C. An efficient mRNA delivery system for genome editing in plants. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 39928528 DOI: 10.1111/pbi.14591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 02/12/2025]
Abstract
Transgene-free genome editing is important for crop improvement as it reduces unanticipated genomic changes. While mRNA delivery systems offer a powerful method for achieving transgene-free genome editing, they remain inefficient and challenging in plants. Here we describe an efficient mRNA delivery system for plants with substantially improved editing efficiency. By optimizing the 5' untranslated regions (5'UTRs) and poly(A) tails of in vitro-transcribed (IVT) mRNAs and coating the mRNA with protamine during particle bombardment, we have developed an optimized mRNA delivery system termed v2_TMV/DEN2. This system enhanced the efficiencies of knock-out, A-to-G and C-to-T base editing by an average 4.7-, 3.4- and 2.5-fold at various endogenous sites compared with plasmid-based transient delivery system via particle bombardment in rice suspension cells and wheat immature embryos 48 h post-transformation. Furthermore, we obtained edited plants with efficiencies of 5.0-180.8% and 26.1-26.2% using v2_TMV/DEN2 in rice and wheat, respectively, compared with 0.0-43.2% and 4.7-10.4% using plasmids. Our study provides a convenient and efficient mRNA delivery system for transgene-free genome editing in plants.
Collapse
Affiliation(s)
- Fengti Qiu
- Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chenxiao Xue
- Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinxing Liu
- Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Boshu Li
- Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Gao
- Qi Biodesign, Life Science Park, Beijing, China
| | - Ronghong Liang
- Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kunling Chen
- Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, Beijing, China
| |
Collapse
|
2
|
Hardy EC, Balcerowicz M. Untranslated yet indispensable-UTRs act as key regulators in the environmental control of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4314-4331. [PMID: 38394144 PMCID: PMC11263492 DOI: 10.1093/jxb/erae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
To survive and thrive in a dynamic environment, plants must continuously monitor their surroundings and adjust their development and physiology accordingly. Changes in gene expression underlie these developmental and physiological adjustments, and are traditionally attributed to widespread transcriptional reprogramming. Growing evidence, however, suggests that post-transcriptional mechanisms also play a vital role in tailoring gene expression to a plant's environment. Untranslated regions (UTRs) act as regulatory hubs for post-transcriptional control, harbouring cis-elements that affect an mRNA's processing, localization, translation, and stability, and thereby tune the abundance of the encoded protein. Here, we review recent advances made in understanding the critical function UTRs exert in the post-transcriptional control of gene expression in the context of a plant's abiotic environment. We summarize the molecular mechanisms at play, present examples of UTR-controlled signalling cascades, and discuss the potential that resides within UTRs to render plants more resilient to a changing climate.
Collapse
Affiliation(s)
- Emma C Hardy
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| | - Martin Balcerowicz
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| |
Collapse
|
3
|
Sato Y, Minamikawa MF, Pratama BB, Koyama S, Kojima M, Takebayashi Y, Sakakibara H, Igawa T. Autonomous differentiation of transgenic cells requiring no external hormone application: the endogenous gene expression and phytohormone behaviors. FRONTIERS IN PLANT SCIENCE 2024; 15:1308417. [PMID: 38633452 PMCID: PMC11021773 DOI: 10.3389/fpls.2024.1308417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
The ectopic overexpression of developmental regulator (DR) genes has been reported to improve the transformation in recalcitrant plant species because of the promotion of cellular differentiation during cell culture processes. In other words, the external plant growth regulator (PGR) application during the tissue and cell culture process is still required in cases utilizing DR genes for plant regeneration. Here, the effect of Arabidopsis BABY BOOM (BBM) and WUSCHEL (WUS) on the differentiation of tobacco transgenic cells was examined. We found that the SRDX fusion to WUS, when co-expressed with the BBM-VP16 fusion gene, significantly influenced the induction of autonomous differentiation under PGR-free culture conditions, with similar effects in some other plant species. Furthermore, to understand the endogenous background underlying cell differentiation toward regeneration, phytohormone and RNA-seq analyses were performed using tobacco leaf explants in which transgenic cells were autonomously differentiating. The levels of active auxins, cytokinins, abscisic acid, and inactive gibberellins increased as cell differentiation proceeded toward organogenesis. Gene Ontology terms related to phytohormones and organogenesis were identified as differentially expressed genes, in addition to those related to polysaccharide and nitrate metabolism. The qRT-PCR four selected genes as DEGs supported the RNA-seq data. This differentiation induction system and the reported phytohormone and transcript profiles provide a foundation for the development of PGR-free tissue cultures of various plant species, facilitating future biotechnological breeding.
Collapse
Affiliation(s)
- Yuka Sato
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Mai F. Minamikawa
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, Japan
| | - Berbudi Bintang Pratama
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Shohei Koyama
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tomoko Igawa
- Plant Cell Technology Laboratory, Graduate School of Horticulture, Chiba University, Matsudo, Japan
- Plant Molecular Science Center, Chiba University, Chiba, Japan
- Research Center for Space Agriculture and Horticulture, Chiba University, Matsudo, Japan
| |
Collapse
|
4
|
Boo A, Toth T, Yu Q, Pfotenhauer A, Fields BD, Lenaghan SC, Stewart CN, Voigt CA. Synthetic microbe-to-plant communication channels. Nat Commun 2024; 15:1817. [PMID: 38418817 PMCID: PMC10901793 DOI: 10.1038/s41467-024-45897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Plants and microbes communicate to collaborate to stop pests, scavenge nutrients, and react to environmental change. Microbiota consisting of thousands of species interact with each other and plants using a large chemical language that is interpreted by complex regulatory networks. In this work, we develop modular interkingdom communication channels, enabling bacteria to convey environmental stimuli to plants. We introduce a "sender device" in Pseudomonas putida and Klebsiella pneumoniae, that produces the small molecule p-coumaroyl-homoserine lactone (pC-HSL) when the output of a sensor or circuit turns on. This molecule triggers a "receiver device" in the plant to activate gene expression. We validate this system in Arabidopsis thaliana and Solanum tuberosum (potato) grown hydroponically and in soil, demonstrating its modularity by swapping bacteria that process different stimuli, including IPTG, aTc and arsenic. Programmable communication channels between bacteria and plants will enable microbial sentinels to transmit information to crops and provide the building blocks for designing artificial consortia.
Collapse
Affiliation(s)
- Alice Boo
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tyler Toth
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Qiguo Yu
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alexander Pfotenhauer
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Brandon D Fields
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Scott C Lenaghan
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - C Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Christopher A Voigt
- Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
5
|
Shen R, Yao Q, Zhong D, Zhang X, Li X, Cao X, Dong C, Tian Y, Zhu JK, Lu Y. Targeted insertion of regulatory elements enables translational enhancement in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1134209. [PMID: 37063194 PMCID: PMC10102426 DOI: 10.3389/fpls.2023.1134209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
In-locus editing of agronomically-important genes to optimize their spatiotemporal expression is becoming an important breeding approach. Compared to intensive studies on mRNA transcription, manipulating protein translation by genome editing has not been well exploited. Here, we found that precise knock-in of a regulating element into the 5'UTR of a target gene could efficiently increase its protein abundance in rice. We firstly screened a translational enhancer (AMVE) from alfalfa mosaic virus using protoplast-based luciferase assays with an 8.5-folds enhancement. Then the chemically modified donor of AMVE was synthesized and targeted inserted into the 5'UTRs of two genes (WRKY71 and SKC1) using CRISPR/Cas9. Following the in-locus AMVE knock-in, we observed up to a 2.8-fold increase in the amount of WRKY71 protein. Notably, editing of SKC1, a sodium transporter, significantly increased salt tolerance in T2 seedlings, indicating the expected regulation of AMVE knock-in. These data demonstrated the feasibility of such in-locus editing to enhance protein expression, providing a new approach to manipulating protein translation for crop breeding.
Collapse
Affiliation(s)
- Rundong Shen
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
| | - Qi Yao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Dating Zhong
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuening Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinbo Li
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
| | - Xuesong Cao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao Dong
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
| | - Yifu Tian
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
| | - Jian-Kang Zhu
- Center for Advanced Bioindustry Technologies, and Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Advanced Biotechnology, and School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuming Lu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Bayless AM, Chen S, Ogden SC, Xu X, Sidda JD, Manik MK, Li S, Kobe B, Ve T, Song L, Grant M, Wan L, Nishimura MT. Plant and prokaryotic TIR domains generate distinct cyclic ADPR NADase products. SCIENCE ADVANCES 2023; 9:eade8487. [PMID: 36930706 PMCID: PMC10022894 DOI: 10.1126/sciadv.ade8487] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/10/2023] [Indexed: 05/06/2023]
Abstract
Toll/interleukin-1 receptor (TIR) domain proteins function in cell death and immunity. In plants and bacteria, TIR domains are often enzymes that produce isomers of cyclic adenosine 5'-diphosphate-ribose (cADPR) as putative immune signaling molecules. The identity and functional conservation of cADPR isomer signals is unclear. A previous report found that a plant TIR could cross-activate the prokaryotic Thoeris TIR-immune system, suggesting the conservation of plant and prokaryotic TIR-immune signals. Here, we generate autoactive Thoeris TIRs and test the converse hypothesis: Do prokaryotic Thoeris TIRs also cross-activate plant TIR immunity? Using in planta and in vitro assays, we find that Thoeris and plant TIRs generate overlapping sets of cADPR isomers and further clarify how plant and Thoeris TIRs activate the Thoeris system via producing 3'cADPR. This study demonstrates that the TIR signaling requirements for plant and prokaryotic immune systems are distinct and that TIRs across kingdoms generate a diversity of small-molecule products.
Collapse
Affiliation(s)
- Adam M. Bayless
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sisi Chen
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Sam C. Ogden
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Xiaoyan Xu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - John D. Sidda
- School of Life Sciences, University of Warwick, Coventry CV47AL, UK
| | - Mohammad K. Manik
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Sulin Li
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Bostjan Kobe
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, Brisbane, QLD 4072, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, QLD 4222, Australia
| | - Lijiang Song
- School of Life Sciences, University of Warwick, Coventry CV47AL, UK
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry CV47AL, UK
| | - Li Wan
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Marc T. Nishimura
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
7
|
Zheng Y, Yin S, Zhao Y, Li S, Lu Z, Li Z, Deng Q, Li Z, Zhang S, Fang S. Molecular and biological characteristics of a novel chrysovirus infecting the fungus phytopathogenic Setosphaeria turcica f.sp. sorghi. Virus Res 2023; 325:199037. [PMID: 36596382 DOI: 10.1016/j.virusres.2022.199037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
A new double-stranded RNA (dsRNA) virus has been identified in the filamentous fungus Setosphaeria turcica f.sp. sorghi, whose genome consists of four segments (dsRNA1-4). Each dsRNA carries single open reading frame (ORF) flanked by 5' and 3' untranslated regions (UTRs) containing strictly conserved termini. The putative protein encoded by dsRNA1 showed 80.50% identity to the RNA-dependent RNA polymerase (RdRp) of the most closely related virus, Alternaria alternata chrysovirus 1 (AaCV1), belonging to the Chrysoviridae. dsRNA2 encodes the putative coat protein, while dsRNA3 and dsRNA4 respectively encode the hypothetical proteins of unknown functions. Phylogenetic analysis based on the RdRp protein indicated the virus clustered with members of the genus Betachrysovirus in the family Chrysoviridae. Based on the dsRNA profile, amino acid sequence comparisons, and phylogenetic analyses, the mycovirus is thought to be a new member of the family Chrysoviridae and designated as Setosphaeria turcica chrysovirus 1 (StCV1). Moreover, obvious differences were observed in the colony, mycelial and spore morphology between StCV1-infected and virus-cured strains of S. turcica f.sp. sorghi. StCV1 infection strongly reduced colony growth rate, spore production ability and virulence on host fungus. To our knowledge, this is the first report about mycovirus infecting S. turcica f.sp. sorghi and also the first chrysovirus infecting S. turcica.
Collapse
Affiliation(s)
- Yun Zheng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Shuangshuang Yin
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Yinxiao Zhao
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Siyu Li
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Zhou Lu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Zikuo Li
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Qingchao Deng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Zhanbiao Li
- MARA Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Songbai Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China; MARA Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Shouguo Fang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
8
|
Feng Z, Li X, Fan B, Zhu C, Chen Z. Maximizing the Production of Recombinant Proteins in Plants: From Transcription to Protein Stability. Int J Mol Sci 2022; 23:13516. [PMID: 36362299 PMCID: PMC9659199 DOI: 10.3390/ijms232113516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2023] Open
Abstract
The production of therapeutic and industrial recombinant proteins in plants has advantages over established bacterial and mammalian systems in terms of cost, scalability, growth conditions, and product safety. In order to compete with these conventional expression systems, however, plant expression platforms must have additional economic advantages by demonstrating a high protein production yield with consistent quality. Over the past decades, important progress has been made in developing strategies to increase the yield of recombinant proteins in plants by enhancing their expression and reducing their degradation. Unlike bacterial and animal systems, plant expression systems can utilize not only cell cultures but also whole plants for the production of recombinant proteins. The development of viral vectors and chloroplast transformation has opened new strategies to drastically increase the yield of recombinant proteins from plants. The identification of promoters for strong, constitutive, and inducible promoters or the tissue-specific expression of transgenes allows for the production of recombinant proteins at high levels and for special purposes. Advances in the understanding of RNAi have led to effective strategies for reducing gene silencing and increasing recombinant protein production. An increased understanding of protein translation, quality control, trafficking, and degradation has also helped with the development of approaches to enhance the synthesis and stability of recombinant proteins in plants. In this review, we discuss the progress in understanding the processes that control the synthesis and degradation of gene transcripts and proteins, which underlie a variety of developed strategies aimed at maximizing recombinant protein production in plants.
Collapse
Affiliation(s)
- Ziru Feng
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xifeng Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Baofang Fan
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907-2054, USA
| |
Collapse
|
9
|
Inhibition of Cell-Free Translation and Replication of Tobacco Mosaic Virus RNA by Exogenously Added 5'-Proximal Fragments of the Genomic RNA. Viruses 2022; 14:v14091962. [PMID: 36146772 PMCID: PMC9502800 DOI: 10.3390/v14091962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Replication proteins of tobacco mosaic virus (TMV), a positive-sense RNA virus, co-translationally bind to a 5′-proximal ~70-nucleotide (nt) region of the genomic RNA, referred to as the nuclease-resistant (NR) region for replication template selection. Therefore, disruption of the interaction between the viral replication proteins and viral genomic RNA is expected to inhibit the replication of TMV. In this study, we demonstrate that the addition of small RNA fragments (18–33 nts in length) derived from different regions within the NR region inhibit the binding of TMV replication proteins to viral RNA and TMV RNA replication in a cell-free system. Intriguingly, some of the small RNA fragments also inhibited the translation of mRNA in a sequence-nonspecific manner. These results highlight the pleiotropic roles of the 5′-proximal region of the TMV genome.
Collapse
|
10
|
Persad-Russell R, Mazarei M, Schimel TM, Howe L, Schmid MJ, Kakeshpour T, Barnes CN, Brabazon H, Seaberry EM, Reuter DN, Lenaghan SC, Stewart CN. Specific Bacterial Pathogen Phytosensing Is Enabled by a Synthetic Promoter-Transcription Factor System in Potato. FRONTIERS IN PLANT SCIENCE 2022; 13:873480. [PMID: 35548302 PMCID: PMC9083229 DOI: 10.3389/fpls.2022.873480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 05/31/2023]
Abstract
Phytosensors are genetically engineered plant-based sensors that feature synthetic promoters fused to reporter genes to sense and report the presence of specific biotic and abiotic stressors on plants. However, when induced reporter gene output is below detectable limits, owing to relatively weak promoters, the phytosensor may not function as intended. Here, we show modifications to the system to amplify reporter gene signal by using a synthetic transcription factor gene driven by a plant pathogen-inducible synthetic promoter. The output signal was unambiguous green fluorescence when plants were infected by pathogenic bacteria. We produced and characterized a phytosensor with improved sensing to specific bacterial pathogens with targeted detection using spectral wavelengths specific to a fluorescence reporter at 3 m standoff detection. Previous attempts to create phytosensors revealed limitations in using innate plant promoters with low-inducible activity since they are not sufficient to produce a strong detectable fluorescence signal for standoff detection. To address this, we designed a pathogen-specific phytosensor using a synthetic promoter-transcription factor system: the S-Box cis-regulatory element which has low-inducible activity as a synthetic 4xS-Box promoter, and the Q-system transcription factor as an amplifier of reporter gene expression. This promoter-transcription factor system resulted in 6-fold amplification of the fluorescence after infection with a potato pathogen, which was detectable as early as 24 h post-bacterial infection. This novel bacterial pathogen-specific phytosensor potato plant demonstrates that the Q-system may be leveraged as a powerful orthogonal tool to amplify a relatively weak synthetic inducible promoter, enabling standoff detection of a previously undetectable fluorescence signal. Pathogen-specific phytosensors would be an important asset for real-time early detection of plant pathogens prior to the display of disease symptoms on crop plants.
Collapse
Affiliation(s)
- Ramona Persad-Russell
- Department of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Mitra Mazarei
- Department of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Tayler Marie Schimel
- Center for Agricultural Synthetic Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Department of Food Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Lana Howe
- Department of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Manuel J. Schmid
- Department of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Tayebeh Kakeshpour
- Department of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Caitlin N. Barnes
- Department of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Holly Brabazon
- Department of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Erin M. Seaberry
- Department of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - D. Nikki Reuter
- Center for Agricultural Synthetic Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Department of Food Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Scott C. Lenaghan
- Center for Agricultural Synthetic Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Department of Food Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - C. Neal Stewart
- Department of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
11
|
Leppek K, Byeon GW, Kladwang W, Wayment-Steele HK, Kerr CH, Xu AF, Kim DS, Topkar VV, Choe C, Rothschild D, Tiu GC, Wellington-Oguri R, Fujii K, Sharma E, Watkins AM, Nicol JJ, Romano J, Tunguz B, Diaz F, Cai H, Guo P, Wu J, Meng F, Shi S, Participants E, Dormitzer PR, Solórzano A, Barna M, Das R. Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nat Commun 2022; 13:1536. [PMID: 35318324 PMCID: PMC8940940 DOI: 10.1038/s41467-022-28776-w] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Therapeutic mRNAs and vaccines are being developed for a broad range of human diseases, including COVID-19. However, their optimization is hindered by mRNA instability and inefficient protein expression. Here, we describe design principles that overcome these barriers. We develop an RNA sequencing-based platform called PERSIST-seq to systematically delineate in-cell mRNA stability, ribosome load, as well as in-solution stability of a library of diverse mRNAs. We find that, surprisingly, in-cell stability is a greater driver of protein output than high ribosome load. We further introduce a method called In-line-seq, applied to thousands of diverse RNAs, that reveals sequence and structure-based rules for mitigating hydrolytic degradation. Our findings show that highly structured "superfolder" mRNAs can be designed to improve both stability and expression with further enhancement through pseudouridine nucleoside modification. Together, our study demonstrates simultaneous improvement of mRNA stability and protein expression and provides a computational-experimental platform for the enhancement of mRNA medicines.
Collapse
Affiliation(s)
- Kathrin Leppek
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Gun Woo Byeon
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Wipapat Kladwang
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | | | - Craig H Kerr
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Adele F Xu
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Do Soon Kim
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - Ved V Topkar
- Program in Biophysics, Stanford University, Stanford, CA, 94305, USA
| | - Christian Choe
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Daphna Rothschild
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Gerald C Tiu
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | | | - Kotaro Fujii
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Eesha Sharma
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - Andrew M Watkins
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - John J Nicol
- Eterna Massive Open Laboratory, Stanford University, Stanford, CA, 94305, USA
| | - Jonathan Romano
- Eterna Massive Open Laboratory, Stanford University, Stanford, CA, 94305, USA
- Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, New York, 14260, USA
| | - Bojan Tunguz
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
- NVIDIA Corporation, 2788 San Tomas Expy, Santa Clara, CA, 95051, USA
| | - Fernando Diaz
- Pfizer Vaccine Research and Development, Pearl River, NY, USA
| | - Hui Cai
- Pfizer Vaccine Research and Development, Pearl River, NY, USA
| | - Pengbo Guo
- Pfizer Vaccine Research and Development, Pearl River, NY, USA
| | - Jiewei Wu
- Pfizer Vaccine Research and Development, Pearl River, NY, USA
| | - Fanyu Meng
- Pfizer Vaccine Research and Development, Pearl River, NY, USA
| | - Shuai Shi
- Pfizer Vaccine Research and Development, Pearl River, NY, USA
| | - Eterna Participants
- Eterna Massive Open Laboratory, Stanford University, Stanford, CA, 94305, USA
| | - Philip R Dormitzer
- Pfizer Vaccine Research and Development, Pearl River, NY, USA
- GlaxoSmithKline, 1000 Winter St., Waltham, MA, 02453, USA
| | | | - Maria Barna
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA.
- Program in Biophysics, Stanford University, Stanford, CA, 94305, USA.
- Eterna Massive Open Laboratory, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
12
|
Shcherbakov D, Nigri M, Akbergenov R, Brilkova M, Mantovani M, Petit PI, Grimm A, Karol AA, Teo Y, Sanchón AC, Kumar Y, Eckert A, Thiam K, Seebeck P, Wolfer DP, Böttger EC. Premature aging in mice with error-prone protein synthesis. SCIENCE ADVANCES 2022; 8:eabl9051. [PMID: 35235349 PMCID: PMC8890705 DOI: 10.1126/sciadv.abl9051] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The main source of error in gene expression is messenger RNA decoding by the ribosome. Translational accuracy has been suggested on a purely correlative basis to positively coincide with maximum possible life span among different rodent species, but causal evidence that translation errors accelerate aging in vivo and limit life span is lacking. We have now addressed this question experimentally by creating heterozygous knock-in mice that express the ribosomal ambiguity mutation RPS9 D95N, resulting in genome-wide error-prone translation. Here, we show that Rps9 D95N knock-in mice exhibit reduced life span and a premature onset of numerous aging-related phenotypes, such as reduced weight, chest deformation, hunchback posture, poor fur condition, and urinary syndrome, together with lymphopenia, increased levels of reactive oxygen species-inflicted damage, accelerated age-related changes in DNA methylation, and telomere attrition. Our results provide an experimental link between translational accuracy, life span, and aging-related phenotypes in mammals.
Collapse
Affiliation(s)
- Dimitri Shcherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Martina Nigri
- Anatomisches Institut, Universität Zürich, and Institut für Bewegungswissenschaften und Sport, ETH Zürich, CH-8057 Zurich, Switzerland
| | - Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Margarita Brilkova
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Matilde Mantovani
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | | | - Amandine Grimm
- Universitäre Psychiatrische Kliniken Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, CH-4055 Basel, Switzerland
| | - Agnieszka A. Karol
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Youjin Teo
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Adrián Cortés Sanchón
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
| | - Yadhu Kumar
- Eurofins Genomics Europe Sequencing GmbH, D-78467 Konstanz, Germany
| | - Anne Eckert
- Universitäre Psychiatrische Kliniken Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, CH-4055 Basel, Switzerland
| | | | - Petra Seebeck
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, CH-8057 Zurich, Switzerland
| | - David P. Wolfer
- Anatomisches Institut, Universität Zürich, and Institut für Bewegungswissenschaften und Sport, ETH Zürich, CH-8057 Zurich, Switzerland
| | - Erik C. Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, CH-8006 Zurich, Switzerland
- Corresponding author.
| |
Collapse
|
13
|
Ouyang C, Liu W, Chen S, Zhao H, Chen X, Jin X, Li X, Wu Y, Zeng X, Huang P, He X, An B. The Naturally Evolved EPSPS From Goosegrass Confers High Glyphosate Resistance to Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:756116. [PMID: 34777434 PMCID: PMC8586540 DOI: 10.3389/fpls.2021.756116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate-resistant crops developed by the CP4-EPSPS gene from Agrobacterium have been planted on a massive scale globally, which benefits from the high efficiency and broad spectrum of glyphosate in weed control. Some glyphosate-resistant (GR) genes from microbes have been reported, which might raise biosafety concerns. Most of them were obtained through a hygromycin-HPT transformation system. Here we reported the plant source with 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from goosegrass endowed rice with high resistance to glyphosate. The integrations and inheritability of the transgenes in the rice genome were investigated within two generations. The EiEPSPS transgenic plants displayed similar growth and development to wild type under no glyphosate selection pressure but better reproductive performance under lower glyphosate selection pressure. Furthermore, we reconstructed a binary vector pCEiEPSPS and established the whole stage glyphosate selection using the vector. The Glyphosate-pCEiEPSPS selection system showed a significantly higher transformation efficiency compared with the hygromycin-HPT transformation system. Our results provided a promising alternative gene resource to the development of GR plants and also extended the plant transformation toolbox.
Collapse
Affiliation(s)
- Chao Ouyang
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Silan Chen
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Huimin Zhao
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xinyan Chen
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xiongxia Jin
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xinpeng Li
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Yongzhong Wu
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xiang Zeng
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Peijin Huang
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xiuying He
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Baoguang An
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| |
Collapse
|
14
|
A Versatile Peroxidase from the Fungus Bjerkandera adusta Confers Abiotic Stress Tolerance in Transgenic Tobacco Plants. PLANTS 2021; 10:plants10050859. [PMID: 33922867 PMCID: PMC8146367 DOI: 10.3390/plants10050859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
Abstract
White-rot fungi are efficient lignin degraders due to the secretion of lignin peroxidase, manganese peroxidase, laccase, and versatile peroxidase (VP) on decayed wood. The VP is a high-redox-potential enzyme and could be used to detoxify reactive oxygen species (ROS), which accumulate in plants during biotic and abiotic stresses. We cloned the VP gene and expressed it via the Agrobacterium transformation procedure in transgenic tobacco plants to assay their tolerance to different abiotic stress conditions. Thirty independent T2 transgenic VP lines overexpressing the fungal Bjerkandera adustaVP gene were selected on kanamycin. The VP22, VP24, and VP27 lines showed significant manganese peroxidase (MnP) activity. The highest was VP22, which showed 10.87-fold more manganese peroxidase activity than the wild-type plants and led to a 34% increase in plant height and 28% more biomass. The VP22, VP24, and VP27 lines showed enhanced tolerance to drought, 200 mM NaCl, and 400 mM sorbitol. Also, these transgenics displayed significant tolerance to methyl viologen, an active oxygen-generating compound. The present data indicate that overproducing the VP gene in plants increases significantly their biomass and the abiotic stress tolerance. The VP enzyme is an effective biotechnological tool to protect organisms against ROS. In transgenic tobacco plants, it improves drought, salt, and oxidative stress tolerance. Thus, the VP gene represents a great potential for obtaining stress-tolerant crops.
Collapse
|
15
|
Leppek K, Byeon GW, Kladwang W, Wayment-Steele HK, Kerr CH, Xu AF, Kim DS, Topkar VV, Choe C, Rothschild D, Tiu GC, Wellington-Oguri R, Fujii K, Sharma E, Watkins AM, Nicol JJ, Romano J, Tunguz B, Participants E, Barna M, Das R. Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.29.437587. [PMID: 33821271 PMCID: PMC8020971 DOI: 10.1101/2021.03.29.437587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Therapeutic mRNAs and vaccines are being developed for a broad range of human diseases, including COVID-19. However, their optimization is hindered by mRNA instability and inefficient protein expression. Here, we describe design principles that overcome these barriers. We develop a new RNA sequencing-based platform called PERSIST-seq to systematically delineate in-cell mRNA stability, ribosome load, as well as in-solution stability of a library of diverse mRNAs. We find that, surprisingly, in-cell stability is a greater driver of protein output than high ribosome load. We further introduce a method called In-line-seq, applied to thousands of diverse RNAs, that reveals sequence and structure-based rules for mitigating hydrolytic degradation. Our findings show that "superfolder" mRNAs can be designed to improve both stability and expression that are further enhanced through pseudouridine nucleoside modification. Together, our study demonstrates simultaneous improvement of mRNA stability and protein expression and provides a computational-experimental platform for the enhancement of mRNA medicines.
Collapse
Affiliation(s)
- Kathrin Leppek
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Gun Woo Byeon
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Wipapat Kladwang
- Department of Biochemistry, Stanford University, California 94305, USA
| | | | - Craig H Kerr
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Adele F Xu
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Do Soon Kim
- Department of Biochemistry, Stanford University, California 94305, USA
| | - Ved V Topkar
- Program in Biophysics, Stanford University, Stanford, California 94305, USA
| | - Christian Choe
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Daphna Rothschild
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Gerald C Tiu
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | | | - Kotaro Fujii
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Eesha Sharma
- Department of Biochemistry, Stanford University, California 94305, USA
| | - Andrew M Watkins
- Department of Biochemistry, Stanford University, California 94305, USA
| | | | - Jonathan Romano
- Eterna Massive Open Laboratory
- Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, New York, 14260, USA
| | - Bojan Tunguz
- Department of Biochemistry, Stanford University, California 94305, USA
| | | | - Maria Barna
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University, California 94305, USA
| |
Collapse
|
16
|
Vaccinia Virus as a Master of Host Shutoff Induction: Targeting Processes of the Central Dogma and Beyond. Pathogens 2020; 9:pathogens9050400. [PMID: 32455727 PMCID: PMC7281567 DOI: 10.3390/pathogens9050400] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
The synthesis of host cell proteins is adversely inhibited in many virus infections, whereas viral proteins are efficiently synthesized. This phenomenon leads to the accumulation of viral proteins concurrently with a profound decline in global host protein synthesis, a phenomenon often termed “host shutoff”. To induce host shutoff, a virus may target various steps of gene expression, as well as pre- and post-gene expression processes. During infection, vaccinia virus (VACV), the prototype poxvirus, targets all major processes of the central dogma of genetics, as well as pre-transcription and post-translation steps to hinder host cell protein production. In this article, we review the strategies used by VACV to induce host shutoff in the context of strategies employed by other viruses. We elaborate on how VACV induces host shutoff by targeting host cell DNA synthesis, RNA production and processing, mRNA translation, and protein degradation. We emphasize the topics on VACV’s approaches toward modulating mRNA processing, stability, and translation during infection. Finally, we propose avenues for future investigations, which will facilitate our understanding of poxvirus biology, as well as fundamental cellular gene expression and regulation mechanisms.
Collapse
|
17
|
Diamos AG, Crawford JM, Mason HS. Fine-tuning expression of begomoviral movement and nuclear shuttle proteins confers cell-to-cell movement to mastreviral replicons in Nicotiana benthamiana leaves. J Gen Virol 2019; 100:1038-1051. [PMID: 31107197 DOI: 10.1099/jgv.0.001275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Geminiviruses are a group of small plant viruses responsible for devastating crop damage worldwide. The emergence of agricultural diseases caused by geminiviruses is attributed in part to their high rates of recombination, leading to complementary function between viral components across species and genera. We have developed a mastreviral reporter system based on bean yellow dwarf virus (BeYDV) that replicates to high levels in the plant nucleus, expressing very high levels of GFP. To investigate the potential for complementation of movement function by other geminivirus genera, the movement protein (MP) and nuclear shuttle protein (NSP) from the bipartite begomovirus Bean dwarf mosaic virus (BDMV) were produced and characterized in Nicotiana benthamiana leaves. While overexpression of MP and NSP strongly inhibited GFP expression from the mastreviral reporter and caused adverse plant symptoms, optimizing the expression levels of MP and NSP allowed functional cell-to-cell movement. Hybrid virus vectors were created that express BDMV MP and NSP from mastreviral replicons, allowing efficient cell-to-cell movement comparable to native BDMV replicons. We find that the expression levels of MP and NSP must be fine-tuned to provide sufficient MP/NSP for movement without eliciting the plant hypersensitive response or adversely impacting gene expression from viral replicons. The ability to confer cell-to-cell movement to mastrevirus replicons depended strongly on replicon size: 2.1-2.7 kb replicons were efficiently moved, while 3 kb replicons were inhibited, and 3.9 kb replicons were very strongly inhibited. Optimized expression of MP/NSP from the normally phloem-limited Abutilon mosaic virus (AbMV) allows efficient movement in non-phloem cells.
Collapse
Affiliation(s)
- Andrew G Diamos
- 1 Center for Immunology, Virology, and Vaccinology, Biodesign Institute at ASU, and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - John M Crawford
- 1 Center for Immunology, Virology, and Vaccinology, Biodesign Institute at ASU, and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Hugh S Mason
- 1 Center for Immunology, Virology, and Vaccinology, Biodesign Institute at ASU, and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
18
|
Poly (A) binding protein enhances the binding affinity of potyvirus VPg to eukaryotic initiation factor eIF4F and activates in vitro translation. Int J Biol Macromol 2019; 121:947-955. [DOI: 10.1016/j.ijbiomac.2018.10.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 11/17/2022]
|
19
|
An CH, Nazki S, Park SC, Jeong YJ, Lee JH, Park SJ, Khatun A, Kim WI, Park YI, Jeong JC, Kim CY. Plant synthetic GP4 and GP5 proteins from porcine reproductive and respiratory syndrome virus elicit immune responses in pigs. PLANTA 2018; 247:973-985. [PMID: 29313103 DOI: 10.1007/s00425-017-2836-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
We demonstrated successful overexpression of porcine reproductive and respiratory syndrome virus (PRRSV)-derived GP4D and GP5D antigenic proteins in Arabidopsis. Pigs immunized with transgenic plants expressing GP4D and GP5D proteins generated both humoral and cellular immune responses to PRRSV. Porcine reproductive and respiratory syndrome virus (PRRSV) causes PRRS, the most economically significant disease affecting the swine industry worldwide. However, current commercial PRRSV vaccines (killed virus or modified live vaccines) show poor efficacy and safety due to concerns such as reversion of virus to wild type and lack of cross protection. To overcome these problems, plants are considered a promising alternative to conventional platforms and as a vehicle for large-scale production of recombinant proteins. Here, we demonstrate successful production of recombinant protein vaccine by expressing codon-optimized and transmembrane-deleted recombinant glycoproteins (GP4D and GP5D) from PRRSV in planta. We generated transgenic Arabidopsis plants expressing GP4D and GP5D proteins as candidate antigens. To examine immunogenicity, pigs were fed transgenic Arabidopsis leaves expressing the GP4D and GP5D antigens (three times at 2-week intervals) and then challenged with PRRSV at 6-week post-initial treatment. Immunized pigs showed significantly lower lung lesion scores and reduced viremia and viral loads in the lung than pigs fed Arabidopsis leaves expressing mYFP (control). Immunized pigs also had higher titers of PRRSV-specific antibodies and significantly higher levels of pro-inflammatory cytokines (TNF-α and IL-12). Furthermore, the numbers of IFN-γ+-producing cells were higher, and those of regulatory T cells were lower, in GP4D and GP5D immunized pigs than in control pigs. Thus, plant-derived GP4D and GP5D proteins provide an alternative platform for producing an effective subunit vaccine against PRRSV.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antigens, Viral/immunology
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Blotting, Western
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Immunity, Cellular
- Immunity, Humoral
- Leukocytes, Mononuclear/immunology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Porcine respiratory and reproductive syndrome virus/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- Swine/immunology
- Swine/virology
- Vaccines, Synthetic/biosynthesis
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Chul Han An
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea
- Department of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Salik Nazki
- College of Veterinary Medicine and College of Environmental and Biosource Science, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Sung-Chul Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Yu Jeong Jeong
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Ju Huck Lee
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Su-Jin Park
- Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Amina Khatun
- College of Veterinary Medicine and College of Environmental and Biosource Science, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Won-Il Kim
- College of Veterinary Medicine and College of Environmental and Biosource Science, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Youn-Il Park
- Department of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae Cheol Jeong
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea.
| | - Cha Young Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea.
| |
Collapse
|
20
|
Fusion of a highly N-glycosylated polypeptide increases the expression of ER-localized proteins in plants. Sci Rep 2018; 8:4612. [PMID: 29545574 PMCID: PMC5854594 DOI: 10.1038/s41598-018-22860-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/02/2018] [Indexed: 11/08/2022] Open
Abstract
Plants represent promising systems for producing various recombinant proteins. One key area of focus for improving this technology is developing methods for producing recombinant proteins at high levels. Many methods have been developed to increase the transcript levels of recombinant genes. However, methods for increasing protein production involving steps downstream of transcription, including translation, have not been fully explored. Here, we investigated the effects of N-glycosylation on protein production and provide evidence that N-glycosylation greatly increases the expression levels of ER-targeted recombinant proteins. Fusion of the extracellular domain (M domain) of protein tyrosine phosphatase receptor type C (CD45), which contains four putative N-glycosylation sites to a model protein, leptin at the C-terminus, increased recombinant protein levels by 6.1 fold. This increase was specific to ER-targeted proteins and was dependent on N-glycosylation. Moreover, expression levels of leptin, leukemia inhibitory factor and GFP were also greatly increased by fusion of M domain at either the N or C-terminus. Furthermore, the increase in protein levels resulted from enhanced translation, but not transcription. Based on these results, we propose that fusing a small domain containing N-glycosylation sites to target proteins is a powerful technique for increasing the expression levels of recombinant proteins in plants.
Collapse
|
21
|
Kang H, Park Y, Lee Y, Yoo YJ, Hwang I. Fusion of a highly N-glycosylated polypeptide increases the expression of ER-localized proteins in plants. Sci Rep 2018; 8:4612. [PMID: 29545574 DOI: 10.1038/s41598-018-22860-22862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/02/2018] [Indexed: 05/28/2023] Open
Abstract
Plants represent promising systems for producing various recombinant proteins. One key area of focus for improving this technology is developing methods for producing recombinant proteins at high levels. Many methods have been developed to increase the transcript levels of recombinant genes. However, methods for increasing protein production involving steps downstream of transcription, including translation, have not been fully explored. Here, we investigated the effects of N-glycosylation on protein production and provide evidence that N-glycosylation greatly increases the expression levels of ER-targeted recombinant proteins. Fusion of the extracellular domain (M domain) of protein tyrosine phosphatase receptor type C (CD45), which contains four putative N-glycosylation sites to a model protein, leptin at the C-terminus, increased recombinant protein levels by 6.1 fold. This increase was specific to ER-targeted proteins and was dependent on N-glycosylation. Moreover, expression levels of leptin, leukemia inhibitory factor and GFP were also greatly increased by fusion of M domain at either the N or C-terminus. Furthermore, the increase in protein levels resulted from enhanced translation, but not transcription. Based on these results, we propose that fusing a small domain containing N-glycosylation sites to target proteins is a powerful technique for increasing the expression levels of recombinant proteins in plants.
Collapse
Affiliation(s)
- Hyangju Kang
- Division of Molecular and Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Youngmin Park
- Division of Molecular and Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yongjik Lee
- Division of Molecular and Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yun-Joo Yoo
- Division of Molecular and Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Inhwan Hwang
- Division of Molecular and Life Sciences and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea.
| |
Collapse
|
22
|
Gallie DR. Plant growth and fertility requires functional interactions between specific PABP and eIF4G gene family members. PLoS One 2018; 13:e0191474. [PMID: 29381712 PMCID: PMC5790229 DOI: 10.1371/journal.pone.0191474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/07/2018] [Indexed: 11/19/2022] Open
Abstract
The initiation of protein synthesis requires the involvement of the eukaryotic translation initiation factor (eIF) 4G to promote assembly of the factors needed to recruit a 40S ribosomal subunit to an mRNA. Although many eukaryotes express two eIF4G isoforms that are highly similar, those in plants, referred to as eIF4G and eIFiso4G, are highly divergent in size, sequence, and domain organization. Species of the Brassicaceae and the Cleomaceae also express a divergent eIFiso4G isoform, referred to as eIFiso4G2, not found elsewhere in the plant kingdom. Despite their divergence, eIF4G and eIFiso4G interact with eIF4A, eIF4B, and eIF4E isoforms needed for binding an mRNA. eIF4G and eIFiso4G also interact with the poly(A)-binding protein (PABP) which promotes ribosome recruitment to an mRNA. Increasing the complexity of such an interaction, however, Arabidopsis also expresses three PABP isoforms (PAB2, PAB4, and PAB8) in vegetative and reproductive tissues. In this study, the functional interactions among the eIF4G and the widely-expressed PABP isoforms were examined. Loss of PAB2 or PAB8 in combination with loss of eIF4G or eIFiso4G had little to no effect on growth or fertility whereas pab2 pab8 eif4g or pab2 pab8 eifiso4g1/2 mutants exhibited smaller stature and reduced fertility. Although the pab4 eifiso4g1 mutant grows normally and is fertile, pab4 eif4g or pab4 eifiso4g2 mutants could not be isolated. Even pab4/PAB4 eif4g/eIF4G heterozygous plants exhibited growth defects and low fertility. Mutant co-inheritance analysis in reciprocal crosses with wild-type plants revealed that most ovaries and pollen from pab4/PAB4 eif4g/eIF4G plants were PAB4 eif4g. Similarly, co-inheritance studies with pab4/PAB4 eifiso4g2/eIFiso4G2 plants suggested most ovaries were PAB4 eifiso4g2. These results suggest that a functional interaction between PAB4 and eIF4G and between PAB4 and eIFiso4G2 is required for growth and normal fertility.
Collapse
Affiliation(s)
- Daniel R. Gallie
- Department of Biochemistry, University of California, Riverside, CA, United States of America
- * E-mail:
| |
Collapse
|
23
|
Du Z, Alekhina OM, Vassilenko KS, Simon AE. Concerted action of two 3' cap-independent translation enhancers increases the competitive strength of translated viral genomes. Nucleic Acids Res 2017; 45:9558-9572. [PMID: 28934492 PMCID: PMC5766195 DOI: 10.1093/nar/gkx643] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/14/2017] [Indexed: 11/13/2022] Open
Abstract
Several families of plant viruses evolved cap-independent translation enhancers (3'CITE) in the 3' untranslated regions of their genomic (g)RNAs to compete with ongoing cap-dependent translation of cellular mRNAs. Umbravirus Pea enation mosaic virus (PEMV)2 is the only example where three 3'CITEs enhance translation: the eIF4E-binding Panicum mosaic virus-like translational enhancer (PTE) and ribosome-binding 3' T-shaped structure (TSS) have been found in viruses of different genera, while the ribosome-binding kl-TSS that provides a long-distance interaction with the 5' end is unique. We report that the PTE is the key translation promoting element, but inhibits translation in cis and in trans in the absence of the kl-TSS by sequestering initiation factor eIF4G. PEMV2 strongly outcompeted a cellular mRNA mimic for translation, indicating that the combination of kl-TSS and PTE is highly efficient. Transferring the 3'-5' interaction from the kl-TSS to the PTE (to fulfill its functionality as found in other viruses) supported translationin vitro, but gRNA did not accumulate to detectable levels in protoplasts in the absence of the kl-TSS. It was shown that the PTE in conjunction with the kl-TSS did not markedly affect the translation initiation rate but rather increased the number of gRNAs available for translation. A model is proposed to explain how 3'CITE-based regulation of ribosome recruitment enhances virus fitness.
Collapse
Affiliation(s)
- Zhiyou Du
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Olga M Alekhina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Konstantin S Vassilenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
24
|
Tajima Y, Iwakawa HO, Hyodo K, Kaido M, Mise K, Okuno T. Requirement for eukaryotic translation initiation factors in cap-independent translation differs between bipartite genomic RNAs of red clover necrotic mosaic virus. Virology 2017. [DOI: 10.1016/j.virol.2017.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Shahriari AG, Bagheri A, Bassami MR, Malekzadeh-Shafaroudi S, Afsharifar A, Niazi A. Expression of Hemagglutinin–Neuraminidase and fusion epitopes of Newcastle Disease Virus in transgenic tobacco. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
26
|
Inter-polysomal coupling of termination and initiation during translation in eukaryotic cell-free system. Sci Rep 2016; 6:24518. [PMID: 27075299 PMCID: PMC4830951 DOI: 10.1038/srep24518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/31/2016] [Indexed: 12/04/2022] Open
Abstract
The recording of the luciferase-generated luminescence in the eukaryotic cell-free translation system programmed with mRNA encoding firefly luciferase (Luc-mRNA) showed that the addition of free exogenous mRNAs into the translation reactor induces the immediate release of the functionally active protein from the polyribosomes of the translation system. The phenomenon did not depend on the coding specificity of the added free mRNA. At the same time it depended on the “initiation potential” of the added mRNA (including the features that ensure the successful initiation of translation, such as the presence of the cap structure and the sufficient concentration of the added mRNA in the translation mixture). The phenomenon also strictly depended on the presence of the stop codon in the translated mRNA. As the above-mentioned features of the added mRNA imply its activity in initiation of a new translation, the experimental data are found in agreement with the scenario where the molecules of the added mRNA interact by their 5′-ends with terminating and recycling ribosomes, stimulating the release of the complete polypeptides and providing for the initiation of a new translation.
Collapse
|
27
|
Mishra RC, Richa, Singh A, Tiwari LD, Grover A. Characterization of 5'UTR of rice ClpB-C/Hsp100 gene: evidence of its involvement in post-transcriptional regulation. Cell Stress Chaperones 2016; 21:271-83. [PMID: 26546418 PMCID: PMC4786525 DOI: 10.1007/s12192-015-0657-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/18/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022] Open
Abstract
Rice (Oryza sativa) ClpB-C (OsClpB-C) protein is expressed upon heat stress in vegetative tissues and constitutively in seeds. We produced stably transformed Arabidopsis plants carrying β-glucuronidase (Gus) reporter gene downstream to 1-kb OsClpB-C promoter (1kbPro plants). In the 1kbPro plants, expression of Gus transcript and protein followed the expression pattern of OsClpB-C gene in rice plants, i.e., heat induced in vegetative tissues and constitutive in seeds. Next, we produced transgenic Arabidopsis plants containing Gus downstream to 862-bp fragment of OsClpB-C promoter [lacking 138 nucleotides from 3' end of the 5'untranslated region (5'UTR); ∆UTR plants). In ∆UTR plants, Gus transcript was expressed in heat-inducible manner, but strikingly, Gus protein levels were negligible after heat treatment. However, Gus protein was expressed in ∆UTR seedlings at levels comparable to 1kbPro seedlings when recovery treatment of 22 °C/2 h was given post heat stress (38 °C/15 min). This suggests that 5'UTR of OsClpB-C gene is involved in its post-transcriptional regulation and is an obligate requirement for protein expression during persistent heat stress. Furthermore, the Gus transcript levels were higher in the polysomal RNA fraction in heat-stressed seedlings of 1kbPro plants as compared to ∆UTR plants, indicating that 5'UTR aids in assembly of ribosomes onto the Gus transcript during heat stress. Unlike the case of seedlings, Gus protein was formed constitutively in ∆UTR seeds at levels comparable to 1kbPro seeds. Hence, the function of 5'UTR of OsClpB-C is dispensable for expression in seeds.
Collapse
Affiliation(s)
- Ratnesh Chandra Mishra
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Richa
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Amanjot Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Lalit Dev Tiwari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
28
|
Gallie DR. Eukaryotic Initiation Factor eIFiso4G1 and eIFiso4G2 Are Isoforms Exhibiting Distinct Functional Differences in Supporting Translation in Arabidopsis. J Biol Chem 2016; 291:1501-13. [PMID: 26578519 PMCID: PMC4714232 DOI: 10.1074/jbc.m115.692939] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/17/2015] [Indexed: 11/06/2022] Open
Abstract
The eukaryotic translation initiation factor (eIF) 4G is required during protein synthesis to promote the assembly of several factors involved in the recruitment of a 40S ribosomal subunit to an mRNA. Although many eukaryotes express two eIF4G isoforms that are highly similar, the eIF4G isoforms in plants, referred to as eIF4G and eIFiso4G, are highly divergent in size, sequence, and domain organization but both can interact with eIF4A, eIF4B, eIF4E isoforms, and the poly(A)-binding protein. Nevertheless, eIF4G and eIFiso4G from wheat exhibit preferences in the mRNAs they translate optimally. For example, mRNA containing the 5'-leader (called Ω) of tobacco mosaic virus preferentially uses eIF4G in wheat germ lysate. In this study, the eIF4G isoform specificity of Ω was used to examine functional differences of the eIF4G isoforms in Arabidopsis. As in wheat, Ω-mediated translation was reduced in an eif4g null mutant. Loss of the eIFiso4G1 isoform, which is similar in sequence to wheat eIFiso4G, did not substantially affect Ω-mediated translation. However, loss of the eIFiso4G2 isoform substantially reduced Ω-mediated translation. eIFiso4G2 is substantially divergent from eIFiso4G1 and is present only in the Brassicaceae, suggesting a recent evolution. eIFiso4G2 isoforms exhibit sequence-specific differences in regions representing partner protein and RNA binding sites. Loss of any eIF4G isoform also resulted in a substantial reduction in reporter transcript level. These results suggest that eIFiso4G2 appeared late in plant evolution and exhibits more functional similarity with eIF4G than with eIFiso4G1 during Ω-mediated translation.
Collapse
Affiliation(s)
- Daniel R Gallie
- From the Department of Biochemistry, University of California, Riverside, California 92521-0129
| |
Collapse
|
29
|
Narusaka M, Toyoda K, Shiraishi T, Iuchi S, Takano Y, Shirasu K, Narusaka Y. Leucine zipper motif in RRS1 is crucial for the regulation of Arabidopsis dual resistance protein complex RPS4/RRS1. Sci Rep 2016; 6:18702. [PMID: 26750751 PMCID: PMC4707544 DOI: 10.1038/srep18702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/23/2015] [Indexed: 11/12/2022] Open
Abstract
Arabidopsis thaliana leucine-rich repeat-containing (NLR) proteins RPS4 and RRS1, known as dual resistance proteins, confer resistance to multiple pathogen isolates, such as the bacterial pathogens Pseudomonas syringae and Ralstonia solanacearum and the fungal pathogen Colletotrichum higginsianum. RPS4 is a typical Toll/interleukin 1 Receptor (TIR)-type NLR, whereas RRS1 is an atypical TIR-NLR that contains a leucine zipper (LZ) motif and a C-terminal WRKY domain. RPS4 and RRS1 are localised near each other in a head-to-head orientation. In this study, direct mutagenesis of the C-terminal LZ motif in RRS1 caused an autoimmune response and stunting in the mutant. Co-immunoprecipitation analysis indicated that full-length RPS4 and RRS1 are physically associated with one another. Furthermore, virus-induced gene silencing experiments showed that hypersensitive-like cell death triggered by RPS4/LZ motif-mutated RRS1 depends on EDS1. In conclusion, we suggest that the RRS1-LZ motif is crucial for the regulation of the RPS4/RRS1 complex.
Collapse
Affiliation(s)
- Mari Narusaka
- Research Institute for Biological Sciences Okayama, Okayama 716-1241, Japan
| | - Kazuhiro Toyoda
- Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| | - Tomonori Shiraishi
- Research Institute for Biological Sciences Okayama, Okayama 716-1241, Japan
| | | | - Yoshitaka Takano
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Ken Shirasu
- RIKEN Centre for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Yoshihiro Narusaka
- Research Institute for Biological Sciences Okayama, Okayama 716-1241, Japan
| |
Collapse
|
30
|
Guo S, Kierzek E, Chen G, Zhou YJ, Wong SM. TMV mutants with poly(A) tracts of different lengths demonstrate structural variations in 3'UTR affecting viral RNAs accumulation and symptom expression. Sci Rep 2015; 5:18412. [PMID: 26678425 PMCID: PMC4683447 DOI: 10.1038/srep18412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/17/2015] [Indexed: 12/13/2022] Open
Abstract
The upstream pseudoknots domain (UPD) of Tobacco mosaic virus (TMV) is located at the 3'-untranslated region (UTR). It plays an important role in virus replication and translation. To determine the importance of UPD and 3'-UTR, and the effects of introduced RNA elements in TMV 3'-UTR, a series of TMV mutants with internal poly(A) tract upstream of UPD was constructed for structural analysis by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE). TMV(24A+UPD) and TMV(42A+UPD) formed a similar structure as that of TMV 3'-UTR, but TMV(62A+UPD) structures altered by the introduced poly(A) tract. In addition, TMV(24A+UPD) had a higher viral RNAs accumulation than TMV in N. benthamiana protoplasts, and induced lethal symptoms in the infected plants. TMV(62A+UPD) showed a drastically reduced accumulation, its coat protein was undetectable in protoplasts, and the inoculated plants remained symptomless. This study analyzed the structures of 3'-UTR of TMV and found that the longer poly(A) tract introduced upstream of UPD reduced viral RNAs accumulation and induced milder symptoms in N. benthamiana. In conclusion, different lengths of the internal poly(A) tract introduced into the TMV 3'UTR lead to structural variations that affect virus accumulation and symptom expression.
Collapse
Affiliation(s)
- Song Guo
- Department of Biological Sciences, National University of Singapore, Republic of Singapore
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12/14, Poland
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yi-Jun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences; Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing 210014, PRC
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Republic of Singapore
- Temasek Life Sciences Laboratory, Singapore, Republic of Singapore
- National University of Singapore Research Institute in Suzhou, Jiangsu, PRC
| |
Collapse
|
31
|
Sivanandam V, Mathews D, Rao ALN. Properties of satellite tobacco mosaic virus phenotypes expressed in the presence and absence of helper virus. Virology 2015; 483:163-73. [PMID: 25974867 DOI: 10.1016/j.virol.2015.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 11/18/2022]
Abstract
In this study, we assembled an Agrobacterium-based transient expression system for the ectopic expression of Satellite tobacco mosaic virus (STMV) (+) or (-) transcripts and their biological activity was confirmed when Nicotiana benthamiana plants were co-expressed with helper Tobacco mosaic virus replicase. Characterization of STMV in the presence and absence of its HV revealed: (i) HV-dependent expression of STMV (+) in N. benthamiana, but not in N. tabacum, generated a replication-deficient but translation and encapsidation competent variant lacking the highly conserved 3' 150 nucleotides (nt) (STMVΔ150); (ii) mutational analysis demonstrated that a conserved 3' stem-loop structure in wild type and STMVΔ150 located between nt 874 and 897 is essential for translation of CP; (iii) helper virus-independent expression of CP from wt STMV was competent for the assembly of empty aberrant virion-like particles; whereas, CP translated from STMVΔ150 resulted in disorganized CP aggregates suggesting a role for the 3'tRNA-like structure in STMV assembly.
Collapse
Affiliation(s)
- Venkatesh Sivanandam
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521, USA
| | - Deborah Mathews
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521, USA
| | - A L N Rao
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
32
|
Newburn LR, White KA. Cis-acting RNA elements in positive-strand RNA plant virus genomes. Virology 2015; 479-480:434-43. [PMID: 25759098 DOI: 10.1016/j.virol.2015.02.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/19/2015] [Accepted: 02/17/2015] [Indexed: 11/25/2022]
Abstract
Positive-strand RNA viruses are the most common type of plant virus. Many aspects of the reproductive cycle of this group of viruses have been studied over the years and this has led to the accumulation of a significant amount of insightful information. In particular, the identification and characterization of cis-acting RNA elements within these viral genomes have revealed important roles in many fundamental viral processes such as virus disassembly, translation, genome replication, subgenomic mRNA transcription, and packaging. These functional cis-acting RNA elements include primary sequences, secondary and tertiary structures, as well as long-range RNA-RNA interactions, and they typically function by interacting with viral or host proteins. This review provides a general overview and update on some of the many roles played by cis-acting RNA elements in positive-strand RNA plant viruses.
Collapse
Affiliation(s)
- Laura R Newburn
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | - K Andrew White
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.
| |
Collapse
|
33
|
Chujo T, Ishibashi K, Miyashita S, Ishikawa M. Functions of the 5'- and 3'-untranslated regions of tobamovirus RNA. Virus Res 2015; 206:82-9. [PMID: 25683511 DOI: 10.1016/j.virusres.2015.01.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/23/2015] [Accepted: 01/30/2015] [Indexed: 12/17/2022]
Abstract
The tobamovirus genome is a 5'-m(7)G-capped RNA that carries a tRNA-like structure at its 3'-terminus. The genomic RNA serves as the template for both translation and negative-strand RNA synthesis. The 5'- and 3'-untranslated regions (UTRs) of the genomic RNA contain elements that enhance translation, and the 3'-UTR also contains the elements necessary for the initiation of negative-strand RNA synthesis. Recent studies using a cell-free viral RNA translation-replication system revealed that a 70-nucleotide region containing a part of the 5'-UTR is bound cotranslationally by tobacco mosaic virus (TMV) replication proteins translated from the genomic RNA and that the binding leads the genomic RNA to RNA replication pathway. This mechanism explains the cis-preferential replication of TMV by the replication proteins. The binding also inhibits further translation to avoid a fatal ribosome-RNA polymerase collision, which might arise if translation and negative-strand synthesis occur simultaneously on a single genomic RNA molecule. Therefore, the 5'- and 3'-UTRs play multiple important roles in the life cycle of tobamovirus.
Collapse
Affiliation(s)
- Tetsuya Chujo
- Plant-Microbe Interactions Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Kazuhiro Ishibashi
- Plant-Microbe Interactions Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Shuhei Miyashita
- Plant-Microbe Interactions Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Masayuki Ishikawa
- Plant-Microbe Interactions Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
| |
Collapse
|
34
|
Gallie DR. The role of the poly(A) binding protein in the assembly of the Cap-binding complex during translation initiation in plants. ACTA ACUST UNITED AC 2014; 2:e959378. [PMID: 26779409 DOI: 10.4161/2169074x.2014.959378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/19/2014] [Accepted: 06/17/2014] [Indexed: 12/30/2022]
Abstract
Translation initiation in eukaryotes requires the involvement of multiple initiation factors (eIFs) that facilitate the binding of the 40 S ribosomal subunit to an mRNA and assemble the 80 S ribosome at the correct initiation codon. eIF4F, composed of eIF4E, eIF4A, and eIF4G, binds to the 5'-cap structure of an mRNA and prepares an mRNA for recruitment of a 40 S subunit. eIF4B promotes the ATP-dependent RNA helicase activity of eIF4A and eIF4F needed to unwind secondary structure present in a 5'-leader that would otherwise impede scanning of the 40 S subunit during initiation. The poly(A) binding protein (PABP), which binds the poly(A) tail, interacts with eIF4G and eIF4B to promote circularization of an mRNA and stimulates translation by promoting 40 S subunit recruitment. Thus, these factors serve essential functions in the early steps of protein synthesis. Their assembly and function requires multiple interactions that are competitive in nature and determine the nature of interactions between the termini of an mRNA. In this review, the domain organization and partner protein interactions are presented for the factors in plants which share similarities with those in animals and yeast but differ in several important respects. The functional consequences of their interactions on factor activity are also discussed.
Collapse
Affiliation(s)
- Daniel R Gallie
- Department of Biochemistry; University of California ; Riverside, CA USA
| |
Collapse
|
35
|
Kawashima T, Maruyama D, Shagirov M, Li J, Hamamura Y, Yelagandula R, Toyama Y, Berger F. Dynamic F-actin movement is essential for fertilization in Arabidopsis thaliana. eLife 2014; 3. [PMID: 25303363 PMCID: PMC4221737 DOI: 10.7554/elife.04501] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/09/2014] [Indexed: 12/23/2022] Open
Abstract
In animals, microtubules and centrosomes direct the migration of gamete pronuclei for fertilization. By contrast, flowering plants have lost essential components of the centrosome, raising the question of how flowering plants control gamete nuclei migration during fertilization. Here, we use Arabidopsis thaliana to document a novel mechanism that regulates F-actin dynamics in the female gametes and is essential for fertilization. Live imaging shows that F-actin structures assist the male nucleus during its migration towards the female nucleus. We identify a female gamete-specific Rho-GTPase that regulates F-actin dynamics and further show that actin-myosin interactions are also involved in male gamete nucleus migration. Genetic analyses and imaging indicate that microtubules are dispensable for migration and fusion of male and female gamete nuclei. The innovation of a novel actin-based mechanism of fertilization during plant evolution might account for the complete loss of the centrosome in flowering plants.
Collapse
Affiliation(s)
- Tomokazu Kawashima
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Daisuke Maruyama
- Nagoya Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Murat Shagirov
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jing Li
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Yuki Hamamura
- Division of Biological Sciences, Nagoya University Graduate School of Science, Nagoya, Japan
| | - Ramesh Yelagandula
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Frédéric Berger
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
36
|
Insights from a Paradigm Shift: How the Poly(A)-Binding Protein Brings Translating mRNAs Full Circle. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/873084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, our thinking of how the initiation of protein synthesis occurs has changed dramatically. Initiation was thought to involve only events occurring at or near the 5′-cap structure, which serves as the binding site for the cap-binding complex, a group of translation initiation factors (eIFs) that facilitate the binding of the 40 S ribosomal subunit to an mRNA. Because the poly(A)-binding protein (PABP) binds the poly(A) tail present at the 3′-terminus of an mRNA, it was long thought to play no role in translation initiation. In this review, I present evidence from my laboratory that has contributed to the paradigm shift in how we think of mRNAs during translation. The depiction of mRNAs as straight molecules in which the poly(A) tail is far from events occurring at the 5′-end has now been replaced by the concept of a circular mRNA where the interaction between PABP and the cap-binding complex bridges the termini of an mRNA and promotes translation initiation. The research from my laboratory supports the new paradigm that translation of most mRNAs requires a functional and physical interaction between the termini of an mRNA.
Collapse
|
37
|
Hodgman CE, Jewett MC. Characterizing IGR IRES-mediated translation initiation for use in yeast cell-free protein synthesis. N Biotechnol 2014; 31:499-505. [PMID: 25017988 DOI: 10.1016/j.nbt.2014.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/02/2014] [Accepted: 07/02/2014] [Indexed: 12/27/2022]
Abstract
Eukaryotic cell-free protein synthesis (CFPS) systems are limited, in part, by inefficient translation initiation. Here, we report three internal ribosome entry site (IRES) sequences from the Dicistroviridae family that are highly active in yeast CFPS. These include the intergenic region (IGR) IRES from cricket paralysis virus (CrPV), plautia stali intestine virus (PSIV) and Solenopsis invicta virus 1 (SINV1). Optimization of combined transcription and translation (Tx/Tl) CFPS reactions primed with linear DNA containing the CrPV IGR IRES resulted in batch synthesis yields of 0.92 ± 0.17 μg/mL luciferase. Further template engineering, such as including the first 12 nt of native CrPV gene, increased yields to 2.33 ± 0.11 μg/mL. We next observed that the inclusion of a 50 nt poly(A) to the 3' end of the IGR IRES-mediated message increased yields an additional 81% to 4.33 ± 0.37 μg/mL, without any effect on mRNA stability or copy number. This was surprising because the CrPV IGR IRES requires no known translation initiation factors. Lastly, we investigated a method to inhibit background expression through competitive inhibition by supplying the reaction with 5' cap structure analog. This study highlights the crucial role translation initiation plays in yeast CFPS and offers a simple platform to study IRES sequences.
Collapse
Affiliation(s)
- C Eric Hodgman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute, E136, Evanston, IL 60208-3120, USA; Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208-3120, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute, E136, Evanston, IL 60208-3120, USA; Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208-3120, USA; Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 North St Clair Street, Suite 1200, Chicago, IL 60611-3068, USA; Institute for BioNanotechnology in Medicine, Northwestern University, 303 East Superior Street, Suite 11-131, Chicago, IL 60611-2875, USA.
| |
Collapse
|
38
|
Chen Z, Jolley B, Caldwell C, Gallie DR. Eukaryotic translation initiation factor eIFiso4G is required to regulate violaxanthin De-epoxidase expression in Arabidopsis. J Biol Chem 2014; 289:13926-36. [PMID: 24706761 PMCID: PMC4022864 DOI: 10.1074/jbc.m114.555151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/21/2014] [Indexed: 11/06/2022] Open
Abstract
The eukaryotic translation initiation factor (eIF) 4G is a scaffold protein that organizes the assembly of those initiation factors needed to recruit the 40 S ribosomal subunit to an mRNA. Plants, like many eukaryotes, express two eIF4G isoforms. eIFiso4G, one of the isoforms specific to plants, is unique among eukaryotic eIF4G proteins in that it is highly divergent and unusually small in size, raising the possibility of functional specialization. In this study, the role of eIFiso4G in plant growth was investigated using null mutants for the eIF4G isoforms in Arabidopsis. eIFiso4G loss of function mutants exhibited smaller cell, leaf, plant size, and biomass accumulation that correlated with its reduced photosynthetic activity, phenotypes not observed with the eIF4G loss of function mutant. Although no change in photorespiration or dark respiration was observed in the eIFiso4G loss of function mutant, a reduction in chlorophyll levels and an increase in the level of nonphotochemical quenching were observed. An increase in xanthophyll cycle activity and the generation of reactive oxygen species contributed to the qE and qI components of nonphotochemical quenching, respectively. An increase in the transcript and protein levels of violaxanthin de-epoxidase in the eIFiso4G loss of function mutant and an increase in its xanthophyll de-epoxidation state correlated with the higher qE associated with loss of eIFiso4G expression. These observations indicate that eIFiso4G expression is required to regulate violaxanthin de-epoxidase expression and to support photosynthetic activity.
Collapse
Affiliation(s)
- Zhong Chen
- From the Department of Biochemistry, University of California, Riverside, California 92521-0129
| | - Blair Jolley
- From the Department of Biochemistry, University of California, Riverside, California 92521-0129
| | - Christian Caldwell
- From the Department of Biochemistry, University of California, Riverside, California 92521-0129
| | - Daniel R Gallie
- From the Department of Biochemistry, University of California, Riverside, California 92521-0129
| |
Collapse
|
39
|
Gan R, Jewett MC. A combined cell-free transcription-translation system from Saccharomyces cerevisiae for rapid and robust protein synthe. Biotechnol J 2014; 9:641-51. [PMID: 24677809 DOI: 10.1002/biot.201300545] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 01/14/2014] [Accepted: 02/19/2014] [Indexed: 01/05/2023]
Abstract
Cell-free protein synthesis (CFPS) provides a valuable platform for understanding, using, and expanding the capabilities of the translation apparatus. For example, high-throughput CFPS is helping to address the increasing discrepancy between genome sequence data and their translation products. Here, we report the development of a combined cell-free transcription-translation (Tx/Tl) system from Saccharomyces cerevisiae that is suitable for such efforts. First, we show the ability to enable translation initiation in a cap-independent manner. The performance of various genetic elements was assessed, including 5'-UTR, 3'-UTR, and length of poly(A) tail. A specific vector harboring the 5'-UTR fragment of the Ω sequence from the tobacco mosaic virus and a poly(A) tail of 50 nucleotides led to optimal performance. Second, we developed a simple, two-step polymerase chain reaction (PCR) method for high-throughput production of linear templates for yeast CFPS. This procedure allows all functional elements needed for Tx/Tl to be added to an open-reading frame directly by overlap extension PCR. Our two-step PCR method was successfully applied to three reporter proteins: luciferase, green fluorescence protein, and chloramphenicol acetyl transferase, yielding 7 to 12.5 μg mL-1 active protein after 1.5-h batch reactions. Surprisingly, the linear templates outperformed plasmid DNA by up to 60%. Hence, the presented CFPS method has the potential to rapidly prepare tens to thousands of DNA templates without time-consuming cloning work. Further, it holds promise for fast and convenient optimization of expression constructs, study of internal ribosome entry site, and production of protein libraries for genome-scale studies. See accompanying commentary by Russ and Dueber DOI: 10.1002/biot.201400071.
Collapse
Affiliation(s)
- Rui Gan
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | | |
Collapse
|
40
|
Schoborg JA, Hodgman CE, Anderson MJ, Jewett MC. Substrate replenishment and byproduct removal improve yeast cell-free protein synthesis. Biotechnol J 2014; 9:630-40. [PMID: 24323955 DOI: 10.1002/biot.201300383] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/11/2013] [Accepted: 12/06/2013] [Indexed: 12/21/2022]
Abstract
Cell-free protein synthesis (CFPS) platforms are now considered a powerful tool for synthesizing a variety of proteins at scales from pL to 100 L with accelerated process development pipelines. We previously reported the advancement of a novel yeast-based CFPS platform. Here, we studied factors that cause termination of yeast CFPS batch reactions. Specifically, we characterized the substrate and byproduct concentrations in batch, fed-batch, and semi-continuous reaction formats through high-performance liquid chromatography (HPLC) and chemical assays. We discovered that creatine phosphate, the secondary energy substrate, and nucleoside triphosphates were rapidly degraded during batch CFPS, causing a significant drop in the reaction's energy charge (E.C.) and eventual termination of protein synthesis. As a consequence of consuming creatine phosphate, inorganic phosphate accumulated as a toxic byproduct. Additionally, we measured amino acid concentrations and found that aspartic acid was rapidly consumed. By adopting a semi-continuous reaction format, where passive diffusion enables substrate replenishment and byproduct removal, we achieved over a 70% increase in active superfolder green fluorescent protein (sfGFP) as compared with the batch system. This study identifies targets for the future improvement of the batch yeast CFPS reaction. Moreover, it outlines a detailed, generalized method to characterize and improve other CFPS platforms.
Collapse
Affiliation(s)
- Jennifer A Schoborg
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | | | | | | |
Collapse
|
41
|
Lituiev DS, Krohn NG, Müller B, Jackson D, Hellriegel B, Dresselhaus T, Grossniklaus U. Theoretical and experimental evidence indicates that there is no detectable auxin gradient in the angiosperm female gametophyte. Development 2014; 140:4544-53. [PMID: 24194471 DOI: 10.1242/dev.098301] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The plant life cycle alternates between a diploid sporophytic and a haploid gametophytic generation. The female gametophyte (FG) of flowering plants is typically formed through three syncytial mitoses, followed by cellularisation that forms seven cells belonging to four cell types. The specification of cell fates in the FG has been suggested to depend on positional information provided by an intrinsic auxin concentration gradient. The goal of this study was to develop mathematical models that explain the formation of this gradient in a syncytium. Two factors were proposed to contribute to the maintenance of the auxin gradient in Arabidopsis FGs: polar influx at early stages and localised auxin synthesis at later stages. However, no gradient could be generated using classical, one-dimensional theoretical models under these assumptions. Thus, we tested other hypotheses, including spatial confinement by the large central vacuole, background efflux and localised degradation, and investigated the robustness of cell specification under different parameters and assumptions. None of the models led to the generation of an auxin gradient that was steep enough to allow sufficiently robust patterning. This led us to re-examine the response to an auxin gradient in developing FGs using various auxin reporters, including a novel degron-based reporter system. In agreement with the predictions of our models, auxin responses were not detectable within the FG of Arabidopsis or maize, suggesting that the effects of manipulating auxin production and response on cell fate determination might be indirect.
Collapse
Affiliation(s)
- Dmytro S Lituiev
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
42
|
Kim Y, Lee G, Jeon E, Sohn EJ, Lee Y, Kang H, Lee DW, Kim DH, Hwang I. The immediate upstream region of the 5'-UTR from the AUG start codon has a pronounced effect on the translational efficiency in Arabidopsis thaliana. Nucleic Acids Res 2013; 42:485-98. [PMID: 24084084 PMCID: PMC3874180 DOI: 10.1093/nar/gkt864] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The nucleotide sequence around the translational initiation site is an important cis-acting element for post-transcriptional regulation. However, it has not been fully understood how the sequence context at the 5′-untranslated region (5′-UTR) affects the translational efficiency of individual mRNAs. In this study, we provide evidence that the 5′-UTRs of Arabidopsis genes showing a great difference in the nucleotide sequence vary greatly in translational efficiency with more than a 200-fold difference. Of the four types of nucleotides, the A residue was the most favourable nucleotide from positions −1 to −21 of the 5′-UTRs in Arabidopsis genes. In particular, the A residue in the 5′-UTR from positions −1 to −5 was required for a high-level translational efficiency. In contrast, the T residue in the 5′-UTR from positions −1 to −5 was the least favourable nucleotide in translational efficiency. Furthermore, the effect of the sequence context in the −1 to −21 region of the 5′-UTR was conserved in different plant species. Based on these observations, we propose that the sequence context immediately upstream of the AUG initiation codon plays a crucial role in determining the translational efficiency of plant genes.
Collapse
Affiliation(s)
- Younghyun Kim
- Department of Life Sciences, School of Bioscience and Bioengineering and Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wen Y, Lim GXY, Wong SM. Profiling of genes related to cross protection and competition for NbTOM1 by HLSV and TMV. PLoS One 2013; 8:e73725. [PMID: 24023899 PMCID: PMC3762752 DOI: 10.1371/journal.pone.0073725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022] Open
Abstract
Cross protection is the phenomenon through which a mild strain virus suppresses symptoms induced by a closely related severe strain virus in infected plants. Hibiscus latent Singapore virus (HLSV) and Tobacco mosaic virus (TMV) are species within the genus tobamovirus. HLSV can protect Nicotianabenthamiana against TMV-U1 strain, resulting in mild symptoms instead of severe systemic necrosis. The mechanism of cross protection between HLSV and TMV is unknown. In the past, some researchers suggest that the protecting virus strain might occupy virus-specific replication sites within a cell leaving no room for the challenge virus. Quantitative real-time RT-PCR was performed to detect viral RNA levels during cross protection. HLSV accumulation increased in cross protected plants compared with that of single HLSV infected plants, while TMV decreased in cross protected plants. This suggests that there is a competition for host factors between HLSV and TMV for replication. To investigate the mechanism under the cross protection between HLSV and TMV, microarray analysis was conducted to examine the transcriptional levels of global host genes during cross protection, using Tobacco Gene Expression Microarray, 4 x 44 k slides. The transcriptional level of some host genes corresponded to accumulation level of TMV. Some host genes were up-regulated only by HLSV. Tobamovirus multiplication gene 1 (TOM1), essential for tobamovirus multiplication, was involved in competition for replication by HLSV and TMV during cross protection. Both HLSV and TMV accumulation decreased when NbTOM1 was silenced. A large quantity of HLSV resulted in decreased TMV accumulation in HLSV+TMV (100:1) co-infection. These results indicate that host genes involved in the plant defense response and virus multiplication are up-regulated by challenge virus TMV but not by protecting virus HLSV during cross protection.
Collapse
Affiliation(s)
- Yi Wen
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Grace Xiao-Yun Lim
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, Singapore
- National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu, China
| |
Collapse
|
44
|
Singhabahu S, George J, Bringloe D. Expression of a functional human adenosine deaminase in transgenic tobacco plants. Transgenic Res 2013; 22:643-9. [PMID: 23264022 DOI: 10.1007/s11248-012-9676-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/06/2012] [Indexed: 11/28/2022]
Abstract
An inherited disorder, adenosine deaminase deficiency is a form of severe combined immunodeficiency, which is ultimately caused by an absence of adenosine deaminase (ADA), a key enzyme of the purine salvage pathway. The absence of ADA-activity in sufferers eventually results in a dysfunctional immune system due to the build-up of toxic metabolites. To date, this has been treated with mixed success, using PEG-ADA, made from purified bovine ADA coupled to polyethylene glycol. It is likely, however, that an enzyme replacement therapy protocol based on recombinant human ADA would be a more effective treatment for this disease. Therefore, as a preliminary step to produce biologically active human ADA in transgenic tobacco plants a human ADA cDNA has been inserted into a plant expression vector under the control of the CaMV 35S promoter and both human and TMV 5' UTR control regions. Plant vector expression constructs have been used to transform tobacco plants via Agrobacterium-mediated transformation. Genomic DNA, RNA and protein blot analyses have demonstrated the integration of the cDNA construct into the plant nuclear genome and the expression of recombinant ADA mRNA and protein in transgenic tobacco leaves. Western blot analysis has also revealed that human and recombinant ADA have a similar size of approximately 41 kDa. ADA-specific activities of between 0.001 and 0.003 units per mg total soluble protein were measured in crude extracts isolated from transformed tobacco plant leaves.
Collapse
Affiliation(s)
- Sanjeewa Singhabahu
- School of Health, Sport and Bioscience, University of East London, Water Lane, London E15 4LZ, UK
| | | | | |
Collapse
|
45
|
Filchakova O, McIntosh JM. Functional expression of human α9* nicotinic acetylcholine receptors in X. laevis oocytes is dependent on the α9 subunit 5' UTR. PLoS One 2013; 8:e64655. [PMID: 23717646 PMCID: PMC3661583 DOI: 10.1371/journal.pone.0064655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/18/2013] [Indexed: 11/19/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) containing the α9 subunit are expressed in a wide variety of non-neuronal tissues ranging from immune cells to breast carcinomas. The α9 subunit is able to assemble into a functional homomeric nAChR and also co-assemble with the α10 subunit into functional heteromeric nAChRs. Despite the increasing awareness of the important roles of this subunit in vertebrates, the study of human α9-containing nAChRs has been severely limited by difficulties in its expression in heterologous systems. In Xenopus laevis oocytes, functional expression of human α9α10 nAChRs is very low compared to that of rat α9α10 nAChRs. When oocytes were co-injected with cRNA of α9 and α10 subunits of human versus those of rat, oocytes with the rat α9 human α10 combination had an ∼-fold higher level of acetylcholine-gated currents (IACh) than those with the human α9 rat α10 combination, suggesting difficulties with human α9 expression. When the ratio of injected human α9 cRNA to human α10 cRNA was increased from 1∶1 to 5∶1, IACh increased 36-fold (from 142±23 nA to 5171±748 nA). Functional expression of human α9-containing receptors in oocytes was markedly improved by appending the 5′-untranslated region of alfalfa mosaic virus RNA4 to the 5′-leader sequence of the α9 subunit cRNA. This increased the functional expression of homomeric human α9 receptors by 70-fold (from 7±1 nA to 475±158 nA) and of human α9α10 heteromeric receptors by 80-fold (from 113±62 nA to 9192±1137 nA). These findings indicate the importance of the composition of the 5′ untranslated leader sequence for expression of α9-containing nAChRs.
Collapse
Affiliation(s)
- Olena Filchakova
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, United States of America.
| | | |
Collapse
|
46
|
Wu TY, Juan YT, Hsu YH, Wu SH, Liao HT, Fung RW, Charng YY. Interplay between heat shock proteins HSP101 and HSA32 prolongs heat acclimation memory posttranscriptionally in Arabidopsis. PLANT PHYSIOLOGY 2013; 161:2075-84. [PMID: 23439916 PMCID: PMC3613477 DOI: 10.1104/pp.112.212589] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/23/2013] [Indexed: 05/20/2023]
Abstract
Heat acclimation improves the tolerance of organisms to severe heat stress. Our previous work showed that in Arabidopsis (Arabidopsis thaliana), the "memory" of heat acclimation treatment decayed faster in the absence of the heat-stress-associated 32-kD protein HSA32, a heat-induced protein predominantly found in plants. The HSA32 null mutant attains normal short-term acquired thermotolerance but is defective in long-term acquired thermotolerance. To further explore this phenomenon, we isolated Arabidopsis defective in long-term acquired thermotolerance (dlt) mutants using a forward genetic screen. Two recessive missense alleles, dlt1-1 and dlt1-2, encode the molecular chaperone heat shock protein101 (HSP101). Results of immunoblot analyses suggest that HSP101 enhances the translation of HSA32 during recovery after heat treatment, and in turn, HSA32 retards the decay of HSP101. The dlt1-1 mutation has little effect on HSP101 chaperone activity and thermotolerance function but compromises the regulation of HSA32. In contrast, dlt1-2 impairs the chaperone activity and thermotolerance function of HSP101 but not the regulation of HSA32. These results suggest that HSP101 has a dual function, which could be decoupled by the mutations. Pulse-chase analysis showed that HSP101 degraded faster in the absence of HSA32. The autophagic proteolysis inhibitor E-64d, but not the proteasome inhibitor MG132, inhibited the degradation of HSP101. Ectopic expression of HSA32 confirmed its effect on the decay of HSP101 at the posttranscriptional level and showed that HSA32 was not sufficient to confer long-term acquired thermotolerance when the HSP101 level was low. Taken together, we propose that a positive feedback loop between HSP101 and HSA32 at the protein level is a novel mechanism for prolonging the memory of heat acclimation.
Collapse
MESH Headings
- Acclimatization/drug effects
- Acclimatization/genetics
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/physiology
- Arabidopsis Proteins/metabolism
- Autophagy/drug effects
- Autophagy/genetics
- Crosses, Genetic
- Cycloheximide/pharmacology
- Epistasis, Genetic/drug effects
- Ethyl Methanesulfonate
- Gene Expression Regulation, Plant/drug effects
- Genetic Complementation Test
- Heat-Shock Proteins/metabolism
- Hot Temperature
- Leucine/analogs & derivatives
- Leucine/pharmacology
- Luciferases/metabolism
- Mutation, Missense/genetics
- Phenotype
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Protein Stability/drug effects
- Proteolysis/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Time Factors
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
|
47
|
Echevarría-Zomeño S, Yángüez E, Fernández-Bautista N, Castro-Sanz AB, Ferrando A, Castellano MM. Regulation of Translation Initiation under Biotic and Abiotic Stresses. Int J Mol Sci 2013; 14:4670-83. [PMID: 23443165 PMCID: PMC3634475 DOI: 10.3390/ijms14034670] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 01/12/2023] Open
Abstract
Plants have developed versatile strategies to deal with the great variety of challenging conditions they are exposed to. Among them, the regulation of translation is a common target to finely modulate gene expression both under biotic and abiotic stress situations. Upon environmental challenges, translation is regulated to reduce the consumption of energy and to selectively synthesize proteins involved in the proper establishment of the tolerance response. In the case of viral infections, the situation is more complex, as viruses have evolved unconventional mechanisms to regulate translation in order to ensure the production of the viral encoded proteins using the plant machinery. Although the final purpose is different, in some cases, both plants and viruses share common mechanisms to modulate translation. In others, the mechanisms leading to the control of translation are viral- or stress-specific. In this paper, we review the different mechanisms involved in the regulation of translation initiation under virus infection and under environmental stress in plants. In addition, we describe the main features within the viral RNAs and the cellular mRNAs that promote their selective translation in plants undergoing biotic and abiotic stress situations.
Collapse
Affiliation(s)
- Sira Echevarría-Zomeño
- Centro de Biotecnología y Genómica de Plantas, INIA-UPM, Campus de Montegancedo, 28223 Madrid, Spain; E-Mails: (S.E.-Z.); (E.Y.); (N.F.-B.); (A.C.-S.)
| | - Emilio Yángüez
- Centro de Biotecnología y Genómica de Plantas, INIA-UPM, Campus de Montegancedo, 28223 Madrid, Spain; E-Mails: (S.E.-Z.); (E.Y.); (N.F.-B.); (A.C.-S.)
| | - Nuria Fernández-Bautista
- Centro de Biotecnología y Genómica de Plantas, INIA-UPM, Campus de Montegancedo, 28223 Madrid, Spain; E-Mails: (S.E.-Z.); (E.Y.); (N.F.-B.); (A.C.-S.)
| | - Ana B. Castro-Sanz
- Centro de Biotecnología y Genómica de Plantas, INIA-UPM, Campus de Montegancedo, 28223 Madrid, Spain; E-Mails: (S.E.-Z.); (E.Y.); (N.F.-B.); (A.C.-S.)
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas CSIC-Universidad Politécnica de Valencia, Valencia, Spain; E-Mail:
| | - M. Mar Castellano
- Centro de Biotecnología y Genómica de Plantas, INIA-UPM, Campus de Montegancedo, 28223 Madrid, Spain; E-Mails: (S.E.-Z.); (E.Y.); (N.F.-B.); (A.C.-S.)
| |
Collapse
|
48
|
Verchot J. Cellular chaperones and folding enzymes are vital contributors to membrane bound replication and movement complexes during plant RNA virus infection. FRONTIERS IN PLANT SCIENCE 2012; 3:275. [PMID: 23230447 DOI: 10.3389/fpls.2012.00275/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 11/21/2012] [Indexed: 05/24/2023]
Abstract
Cellular chaperones and folding enzymes play central roles in the formation of positive-strand and negative-strand RNA virus infection. This article examines the key cellular chaperones and discusses evidence that these factors are diverted from their cellular functions to play alternative roles in virus infection. For most chaperones discussed, their primary role in the cell is to ensure protein quality control. They are system components that drive substrate protein folding, complex assembly or disaggregation. Their activities often depend upon co-chaperones and ATP hydrolysis. During plant virus infection, Hsp70 and Hsp90 proteins play central roles in the formation of membrane-bound replication complexes for certain members of the tombusvirus, tobamovirus, potyvirus, dianthovirus, potexvirus, and carmovirus genus. There are several co-chaperones, including Yjd1, RME-8, and Hsp40 that associate with the bromovirus replication complex, pomovirus TGB2, and tospovirus Nsm movement proteins. There are also examples of plant viruses that rely on chaperone systems in the endoplasmic reticulum (ER) to support cell-to-cell movement. TMV relies on calreticulin to promote virus intercellular transport. Calreticulin also resides in the plasmodesmata and plays a role in calcium sequestration as well as glycoprotein folding. The pomovirus TGB2 interacts with RME-8 in the endosome. The potexvirus TGB3 protein stimulates expression of ER resident chaperones via the bZIP60 transcription factor. Up-regulating factors involved in protein folding may be essential to handling the load of viral proteins translated along the ER. In addition, TGB3 stimulates SKP1 which is a co-factor in proteasomal degradation of cellular proteins. Such chaperones and co-factors are potential targets for antiviral defense.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- Department of Entomology and Plant Pathology, Oklahoma State University Stillwater, OK, USA
| |
Collapse
|
49
|
Ortega JL, Wilson OL, Sengupta-Gopalan C. The 5' untranslated region of the soybean cytosolic glutamine synthetase β(1) gene contains prokaryotic translation initiation signals and acts as a translational enhancer in plants. Mol Genet Genomics 2012; 287:881-93. [PMID: 23080263 PMCID: PMC3881598 DOI: 10.1007/s00438-012-0724-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 10/04/2012] [Indexed: 01/03/2023]
Abstract
Glutamine synthetase (GS) catalyzes the synthesis of glutamine from glutamate and ammonia. In plants, it occurs as two major isoforms, a cytosolic form (GS(1)) and a nuclear encoded chloroplastic form. The focus of this paper is to determine the role of the 5'UTR of a GS(1) gene. GS(1) gene constructs with and without its 5' and 3' UTRs, driven by a constitutive promoter, were agroinfiltrated into tobacco leaves and the tissues were analyzed for both transgene transcript and protein accumulation. The constructs were also tested in an in vitro transcription/translation system and in Escherichia coli. Our results showed that while the 3'UTR functioned in the destabilization of the transcript, the 5'UTR acted as a translation enhancer in plant cells but not in the in vitro translation system. The 5'UTR of the GS(1) gene when placed in front of a reporter gene (uidA), showed a 20-fold increase in the level of GUS expression in agroinfiltrated leaves when compared to the same gene construct without the 5'UTR. The 5'UTR-mediated translational enhancement is probably another step in the regulation of GS in plants. The presence of the GS(1) 5'UTR in front of the GS(1) coding region allowed for its translation in E. coli suggesting the commonality of the translation initiation mechanism for this gene between plants and bacteria.
Collapse
Affiliation(s)
- Jose Luis Ortega
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Olivia L. Wilson
- Molecular Biology Graduate Program, New Mexico State University, Las Cruces, NM 88003, USA
| | - Champa Sengupta-Gopalan
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA,
| |
Collapse
|
50
|
Lázaro-Mixteco PE, Nieto-Sotelo J, Swatek KN, Houston NL, Mendoza-Hernández G, Thelen JJ, Dinkova TD. The absence of heat shock protein HSP101 affects the proteome of mature and germinating maize embryos. J Proteome Res 2012; 11:3246-58. [PMID: 22545728 DOI: 10.1021/pr3000046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maize heat shock protein HSP101 accumulates during embryo maturation and desiccation and persists at high levels during the first 24 h following kernel imbibition in the absence of heat stress. This protein has a known function in disaggregation of high molecular weight complexes and has been proposed to be a translational regulator of specific mRNAs. Here, a global proteomic approach was used to identify changes in the maize proteome due to the absence of HSP101 in embryos from mature-dry or 24 h-imbibed kernels. A total of 26 protein spots from the mature dry embryo exhibited statistically significant expression changes in the L10 inbred hsp101 mutant (hsp101-m5::Mu1/hsp101-m5::Mu1) line as compared to the corresponding wild type (Hsp101/Hsp101). Additional six spots reproducibly showed qualitative changes between the mutant and wild-type mature and germinating embryos. Several chaperones, translation-related proteins, actin, and enzymes participating in cytokinin metabolism were identified in these spots by tandem mass-spectrometry (MS). The proteomic changes partially explain the altered root growth and architecture observed in young hsp101 mutant seedlings. In addition, specific protein de novo synthesis was altered in the 24 h-imbibed mutant embryos indicating that maize HSP101 functions as both chaperone and translational regulator during germination. Supporting this, HSP101 was found as part of Cap-binding and translation initiation complexes during early kernel imbibition. Overall, these findings expose the relevance of maize HSP101 for protein synthesis and balance mechanisms during germination.
Collapse
Affiliation(s)
- Pedro E Lázaro-Mixteco
- Departamento de Bioquímica, Facultad de Química, ‡Jardín Botánico, Instituto de Biología, and #Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México , 04510, México, D.F., Mexico
| | | | | | | | | | | | | |
Collapse
|